数值分析 插值法

合集下载

数值分析插值法

数值分析插值法

数值分析插值法插值法是数值分析中的一种方法,用于通过已知数据点的函数值来估计介于这些数据点之间的未知函数值。

插值法在科学计算、数据处理、图像处理等领域中得到广泛应用。

插值法的基本思想是通过已知数据点构造一个函数,使得该函数逼近未知函数,并在已知数据点处与未知函数值相等。

插值法的关键是选择适当的插值函数,以保证估计值在插值区间内具有良好的近似性质。

常用的插值法有拉格朗日插值法、牛顿插值法和埃尔米特插值法等。

以下将分别介绍这些插值法的原理及步骤:1. 拉格朗日插值法:拉格朗日插值法通过构造一个多项式函数来逼近未知函数。

假设已知n+1个数据点(x0, y0), (x1, y1), ..., (xn, yn),其中x0, x1, ..., xn为给定的节点,y0, y1, ..., yn为对应的函数值。

拉格朗日插值多项式的一般形式为:L(x) = y0 * l0(x) + y1 * l1(x) + ... + yn * ln(x)其中l0(x), l1(x), ..., ln(x)为拉格朗日基函数,定义为:li(x) = (x - x0)(x - x1)...(x - xi-1)(x - xi+1)...(x - xn) / (xi - x0)(xi - x1)...(xi - xi-1)(xi - xi+1)...(xi - xn)拉格朗日插值法的步骤为:a. 计算基函数li(xi)的值。

b.构造插值多项式L(x)。

c.计算L(x)在需要估计的插值点上的函数值f(x)。

2.牛顿插值法:牛顿插值法通过构造一个差商表来逼近未知函数。

差商表的第一列为已知数据点的函数值,第二列为相邻数据点的差商,第三列为相邻差商的差商,以此类推。

最终,根据差商表中的数值,构造一个差商表与未知函数值相等的多项式函数。

牛顿插值法的步骤为:a.计算差商表的第一列。

b.计算差商表的其他列,直至最后一列。

c.根据差商表构造插值多项式N(x)。

数值分析实验报告--实验2--插值法

数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。

显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。

我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。

龙格(Runge )给出一个例子是极著名并富有启发性的。

设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。

实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。

(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。

(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。

1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。

1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。

Matlab 脚本文件为Experiment2_1_1fx.m 。

可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。

数值分析第五章插值法

数值分析第五章插值法

数值分析第五章插值法插值法是数值分析中常用的一种数值逼近方法,它的目的是通过已知数据点之间的插值多项式来逼近未知数据点的函数值。

插值法可以在信号处理、图像处理、计算机图形学等领域中广泛应用。

在插值法中,最常用的方法有拉格朗日插值法和牛顿插值法。

拉格朗日插值法是一种利用拉格朗日插值多项式来逼近函数的方法。

对于n个已知数据点(xi, yi),拉格朗日插值多项式L(x)可以表示为:L(x) = ∑(yi * li(x))其中,li(x)表示拉格朗日基函数,定义为:li(x) = ∏[(x - xj)/(xi - xj)] (j≠i)可以证明,在给定的n个数据点上,拉格朗日插值多项式L(x)满足:L(xi) = yi牛顿插值法是另一种常用的插值方法,它利用差商的概念来逼近函数。

对于n个已知数据点(xi, yi),差商可以定义为:f[xi] = yif[xi, xi+1] = (f[xi+1] - f[xi]) / (xi+1 - xi)f[xi, xi+1, ..., xi+k] = (f[xi+1, ..., xi+k] - f[xi, ...,xi+k-1]) / (xi+k - xi)通过差商的递归定义,可以得到牛顿插值多项式N(x)的表达式,其中:N(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...与拉格朗日插值法类似,牛顿插值多项式N(x)也满足:N(xi) = yi这两种插值方法都有自己的优点和缺点。

拉格朗日插值法简单易懂,计算量小,但当数据点较多时,多项式的次数会很高,容易出现龙格现象。

而牛顿插值法可以通过求差商一次次递推得到插值多项式,计算效率较高,且具备局部逼近性,不易出现龙格现象。

除了拉格朗日插值法和牛顿插值法,还有其他插值方法,如分段线性插值、样条插值等。

分段线性插值是利用线性多项式逼近函数,将数据点之间的区间分为若干段,每段内使用一条线性多项式进行插值。

数值分析 插值法

数值分析 插值法

图形见图2-3. 称 lk ( x) 及 lk 1 ( x) 为线性插值基函数,
11
图2-3
12
பைடு நூலகம் 2.
n次插值多项式
根据插值的定义 Ln ( x) 应满足
Ln ( x j ) y j ( j 0,1, , n).
为构造 Ln ( x), 先定义 n 次插值基函数.
13
定义1 若 n 次多项式 L j ( x ) ( j 0,1, , n) 在 n 1 个节点
L1 ( xk 1 ) yk 1.
8
其几何意义就是通过两点( xk , yk ), ( xk 1 , yk 1 ) 的直线. 如图2-2.
图2-2
9
由 L1 ( x) 的几何意义可得到表达式
L1 ( x ) y k y k 1 y k ( x xk ) xk 1 xk
5
因为线性方程组的系数行列式
1 1 . . 1 xn ...
n xn
x0 x1
... ...
n x0 n x1
0
所以线性方程组 的解存在且唯一。
6
定理1
在次数不超过 n 的多项式集合 H n 中,满足条
件的
插值多项式 L ( x) H是存在唯一的. n n
7
2.3
1. 线性插值
拉格朗日插值
y
k 0
n
k
l k ( x ).
Ln ( x j ) yk lk ( x j ) y j
( j 0,1, , n).
称为拉格郎日(Lagrange)插值多项式 而线性插值与抛物线插值是 n=1 和 n=2 的特殊情形
若引入记号

数值分析解决实际问题

数值分析解决实际问题

数值分析解决实际问题数值分析是一门研究利用计算机对数学问题进行数值计算的学科,它通过数值方法来解决实际问题,广泛应用于工程、科学、经济等领域。

数值分析的方法包括插值法、数值积分、常微分方程数值解、线性代数方程组求解等,这些方法在解决实际问题时发挥着重要作用。

本文将介绍数值分析在实际问题中的应用,并探讨其在解决实际问题中的重要性和价值。

一、插值法插值法是数值分析中常用的方法之一,它通过已知数据点之间的插值多项式来估计未知数据点的值。

在实际问题中,插值法常用于数据的平滑处理、曲线拟合等方面。

例如,在气象学中,我们需要根据已知的气温数据点来预测未来某一时刻的气温变化,这时可以利用插值法来进行数据的预测和分析。

二、数值积分数值积分是数值分析中的另一个重要方法,它通过数值逼近来计算定积分的近似值。

在实际问题中,数值积分常用于计算曲线下面积、求解物理学中的力学问题等。

例如,在工程学中,我们需要计算某一形状的曲线或曲面的面积或体积,这时可以利用数值积分方法来进行计算。

三、常微分方程数值解常微分方程数值解是数值分析中的重要内容之一,它通过数值方法来求解常微分方程的数值解。

在实际问题中,常微分方程数值解常用于模拟物理系统、生态系统等的动态行为。

例如,在生态学中,我们需要研究种群数量随时间的变化规律,这时可以利用常微分方程数值解来模拟和预测种群数量的变化趋势。

四、线性代数方程组求解线性代数方程组求解是数值分析中的重要内容之一,它通过数值方法来求解线性代数方程组的解。

在实际问题中,线性代数方程组求解常用于工程、经济等领域的优化问题。

例如,在工程优化中,我们需要确定某一系统的最优参数配置,这时可以利用线性代数方程组求解来进行优化计算。

综上所述,数值分析在解决实际问题中发挥着重要作用,它通过插值法、数值积分、常微分方程数值解、线性代数方程组求解等方法来对实际问题进行数值计算和分析,为工程、科学、经济等领域的发展提供了重要支持。

数值分析第2章插值法

数值分析第2章插值法

0.32 0.34
0.34 0.32
0.330365.
截 断 误 差 为 :R1x
f
1
2!
2
x
M2 2
x
x0 x
x1 , 其 中 :
M2
max
x0 x x1
f x,f x sin x,f x
sin x,M2
sin x1
0.3335
R1 0.3367
sin0.3367
L1 0.3367
x a, b,插 值余 项Rn x
f x Ln x
f n1 n 1!
n1
x
,


a,
b,
与x有 关,n1x
n
x
k0
xk
.
n
性质: lk x 1. k0
5
例1、证明: ( xi x)2 li ( x) 0, 其中li ( x)是关于点x0 , x1 ,, x5的插值 i0
基 函 数.
2.2 拉格朗日插值
2.2.1、线性插值与抛物插值
1、 线 性 插 值 :
设 yk f xk , yk1 f xk1 , xk xk1 求 一 次 多 项 式 L1 x, 满 足 :L1 xk yk,L1 xk1 yk1
L1 x
yk
yk1 xk1
yk xk
x xk
求n次 插 值 多 项 式Ln x, 满 足 :Ln xi yi i 0,1,2,,n
Ln
x
n
lk
x
yk
k0
lk
xj
1,k j
kj 0,k j
j 0,1,2,,n
lk x
x

数值分析中的插值算法及其应用

数值分析中的插值算法及其应用

数值分析中的插值算法及其应用数值分析是研究解决数学问题的数值方法的一门学科。

其中,插值算法是数值分析中重要的方法之一。

插值是指在给定一些数据点的情况下,用一些方法建立一个函数,该函数可以在给定区间内的任何一点上计算出函数值。

插值方法有很多种,其中比较常用的有拉格朗日插值法、牛顿插值法和埃尔米特插值法。

1. 拉格朗日插值法拉格朗日插值法是一种将一个多项式函数p(x)与一系列已知数据点相联系的方法。

假设给定n个数据点(x1, y1), (x2, y2), ..., (xn, yn),其中x1 < x2 < ... < xn,那么可以构造一个次数小于等于n-1的多项式函数p(x)满足p(xi) = yi,i=1,2,...,n。

设p(x)的表达式为:p(x) = Σyi li(x)其中,li(x)为拉格朗日基函数。

每个基函数都满足:li(xi) = 1, li(xj) = 0, j≠i基函数的表达式为:li(x) = Π[j≠i] (x - xj) / (xi - xj)利用拉格朗日插值法,可以在给定数据点的情况下,快速计算函数在其他点上的值。

2. 牛顿插值法牛顿插值法是一种利用差商的方法建立插值多项式的方法。

相比于拉格朗日插值法,牛顿插值法更注重于递推计算。

给定n个数据点(x1, y1), (x2, y2), ..., (xn, yn),牛顿插值法可以建立一个关于x的n次多项式。

首先,定义一个差商:f[xi] = yif[xi, xi+1, ..., xj] = (f[xi+1, ..., xj] - f[xi, ..., xj-1]) / (xj - xi)差商f[xi, xi+1, ..., xj]是由区间(xi, xj)内的函数值f(xi), f(xi+1), ..., f(xj)所计算得到的。

定义一个新的多项式qk(x),其中:qk(x) = f[x0, x1, ..., xk] + (x - xk) qk-1(x)其中q0(x) = f[x0]。

数值分析 插值法

数值分析 插值法
系数行列式(n+1阶范德蒙行列式)
1 1 1
x0 x1 xn
2 x0 2 x1
n x0 n x1

0 i j n
2 xn n xn

( x j xi ) 0
, an .
由克莱默法则知,方程组有唯一解 a0 , a1 ,
§2 Lagrange Polynomial
唯一性的另一证明 满足 P( xi ) yi , i 0, ... , n 的 n 阶插 值多项式是唯一存在的。
f (x)
(x0 ,y0)
(x1 ,y1)
P1(x)
x0
x1
可见 P1(x) 是过 ( x0 , y0 ) 和 ( x1, y1 ) 两点的直线。
§2 Lagrange Polynomial
y1 y0 直线方程为: y y0 x x ( x x0 ) 1 0
记 P 1 ( x) L 1 ( x) ,上式等价变形为:
化简得到
L2 ( x ) l0 ( x ) y0 l1 ( x ) y1 l2 ( x ) y2 l i ( x ) yi .
i 3
成立:
l 0 ( x0 ) 1 l ( x ) 0 0 1 l 0 ( x 2 ) 0
l1 ( x 0 ) 0 l ( x ) 1 1 1 l1 ( x 2 ) 0
l 2 ( x0 ) 0 l ( x ) 0 2 1 l 2 ( x 2 ) 1
将以上思路推广到n+1个节点情形,即可得到类似的 插值基函数和插值多项式表示形式。
§2 Lagrange Polynomial
2-3 Lagrange插值多项式

数值分析中的(插值法)

数值分析中的(插值法)
与其他方法的结合
插值法可以与其他数值分析方法结合使用,以获得更准确和可靠的估计结果。例如,可以 考虑将插值法与回归分析、时间序列分析等方法结合,以提高数据分析的效率和精度。
THANKS
感谢观看
多项式的阶数
根据数据点的数量和分布情况,选择适当的多项式阶数,以确保多 项式能够更好地逼近真实数据。
计算多项式的系数
通过已知的数据点和多项式阶数,计算出多项式的系数,从而得到 完整的插值多项式。
计算插值多项式的导数
导数的计算
在某些应用中,需要计算插值多项式的导数,例如在 曲线拟合、数值微分等场景中。
总结词
牛顿插值法是一种基于差商的插值方法,通过构造差商表来逼近未知点的数值。
详细描述
牛顿插值法的基本思想是通过构造差商表来逼近未知点的数值,差商表中的每一 项都是根据前一项和后一项的差来计算的。该方法在数值分析中广泛应用于数据 拟合、函数逼近等领域。
样条插值法
总结词
样条插值法是一种通过已知的离散数据点来构造一个样条函 数,用于估计未知点的数值的方法。
常见的插值法
拉格朗日插值法
总结词
拉格朗日插值法是一种通过已知的离散数据点来构造一个多项式,用于估计未 知点的数值的方法。
详细描述
拉格朗日插值法的基本思想是通过构造一个多项式来逼近已知数据点,使得该 多项式在每个数据点的取值与实际值相等。该方法在数值分析中广泛应用于数 据拟合、函数逼近等领域。
牛顿插值法
增加采样点的数量可以减小离散化误差,提高插值结果的稳定
性。
选择合适的插值方法
02
根据具体情况选择适合的插值方法,如多项式插值、样条插值
等,以获得更好的逼近效果和稳定性。
引入阻尼项

数值分析中常用的插值方法

数值分析中常用的插值方法

数值分析中常用的插值方法在数值计算中,许多问题都可以用插值方法来近似求解,比如曲线拟合、函数逼近和图像重建等。

插值方法是指在已知数据点的情况下,通过一些数值计算技巧,在每个数据点处构造一个多项式函数,使得该函数在每个数据点处都能通过数据点。

在数据点之间计算函数值时,就可以使用这个多项式函数进行估算。

接下来,我们就来详细介绍一些常见的插值方法。

一、拉格朗日插值法拉格朗日插值法是一个经典的插值方法,它的思想是通过给定的数据点,构造一个经过这些点的多项式函数进行逼近。

具体来讲,拉格朗日插值法会首先构造一个基函数,该函数满足只在其对应的数据点处等于1,其余的数据点处等于0。

然后,根据基函数和数据点,构造一个多项式函数,使得该函数在每个数据点处都能通过数据点。

最终得到的多项式函数就是插值函数。

优点:简单易懂,使用较为广泛。

缺点:多项式次数较高时造成的误差会较大,且在数据点密集的区域可以出现龙格现象,使得插值函数在某些区间内呈现大幅度振荡。

二、牛顿插值法牛顿插值法是一种递推式的插值方法,它通过利用已知的数据点和前面已经计算出来的差商,得到一个逐步逼近的插值函数。

具体来讲,牛顿插值法会先将已知的数据点连成一条曲线,然后逐个向这条曲线添加新的数据点,每次添加一个新的数据点后,将差商计算出来并加入到之前的差商序列中,最终得到一个多项式函数,它在每个数据点处都能通过数据点。

牛顿插值法的优缺点与拉格朗日插值法相似,但是由于牛顿插值法是递推式的,可以方便的添加新的数据点,因此在数据点多变的情况下,牛顿插值法具有很大的优势。

三、分段插值法分段插值法是一种将插值区间划分为多个子区间的插值方法,在每个子区间内使用插值方法进行插值,然后将所有子区间内的插值函数拼接起来,得到最终的插值函数。

分段插值法主要分为两种:线性分段插值和三次样条插值。

1.线性分段插值线性分段插值的思路很简单,即在每个数据点处构造两条直线,在数据点之间的区间内使用一条直线作为插值函数。

数值分析第二章 插值法

数值分析第二章 插值法
i =0 n
多项式,其中 p( x )可以是任意多项式。
推论
§1 Lagrange Polynomial
插值余项 /* Remainder */
设节点 a x0 x1 xn b f ( n) ( x)在[a, b]上连续 f ( n1)在[a , b]内存在, 考察截断误差 R ( x) = f ( x) - L ( x) n n
li ( xi ) = 1
Ci =
1 j i ( xi - x j )
与 节点 有关,而与 f 无关
ቤተ መጻሕፍቲ ባይዱ
Lagrange Polynomial
(x - xj ) li ( x ) = ( xi - x j ) ji
n j =0
Ln ( x ) = l i ( x ) yi
i =0
n
§1 Lagrange Polynomial

sin 50 = 0.7660444…
2次插值的实际误差 0.00061 高次插值通常优于 低次插值 但绝对不是次数越 高就越好,嘿 嘿……
课堂作业
1. 当x = 1,-1,2时, f ( x) = 0,-3,4, 求f ( x)的二次插值多项式 2.
已知由数据 (0,0), (0.5, y), (1,3)和(2,2)构造出的 3 三次插值多项式 P ( x ) 的 x 的系数是 6,试确定数据 y 3
=
x - x1 y + x 0 - x1 0
x - x0 y = x1 - x 0 1
l ( x) y
i =0 i
1
i
l0(x)
l1(x)
§1 拉格朗日多项式
例1
/* Lagrange Polynomial */

数值分析-插值法

数值分析-插值法

数值分析-插值法我们能得到⼀个函数f在区间[a,b]上某些点的值或者这些点上的⾼阶导数我们就能通过插值法去得到⼀个函数g,g与f是⾮常相近的⼀般来说g分为三类,⼀类是n次多项式 a n*x n +a n-1*x n-1 + .......+a0,⼀类是三⾓多项式,最后⼀类是分段n次多项式多项式插值这个可以说是最简单的插值了对于a n*x n +a n-1*x n-1 + .......+a0,我们有n+1个未知数,我只需要知道n+1个点的函数值就可以解出这n+1个未知数将解出的值带⼊即可优点:简单粗暴缺点:要解n+1个⽅程,时间复杂度较⾼,n不好确定,若n过⼤,容易过拟合,若n过⼩,容易⽋拟合拉格朗⽇插值先说⼀阶多项式我们有两点式f(x) = y k*(x k+1 - x) / (x k-x k+1) + y k+1*(x-x k) / (x k+1 - x k)此两点式可以看做∂ * y k + (1-∂) * y k+1那么⾃然的在x=x k的时候 ∂=0 在x=x k+1的时候∂=1这⾥的∂其实是与x相关的⼀阶多项式再说⼆阶多项式对于⼀个⼆次函数,我们有三个点(x k-1,y k-1) ,(x k,y k) ,(x k+1,y k+1)我们有l k-1,l k,l k+1f(x) = l k-1*y k-1 + l k*y k + l k+1*y k+1其中l是与x相关的⼆次多项式我们可以把l当作基函数这样的话就有x = x k-1 时l k-1 = 1, l k=0, l k+1 = 0x = x k时 l k-1 = 0, l k=1, l k+1 = 0x = x k+1时l k-1 = 0, l k=0, l k+1 = 1那么这个插值基函数是很好求的因为每个插值函数都有两个零点对于l k-1来说有零点x k,x k+1那么lk-1就可以表⽰为l k-1 = A*(x-x k)*(x-x k+1)因为x=xk-1时l k-1 = 1所以A = 1 / ((x k-1 - x k)* (x k-1 - x k+1) )那么同理l k和l k+1也能求出来了那我们得到⼆阶的拉格朗⽇插值多项式现在将⼆阶推⼴到n阶得到n接的拉格朗⽇插值多项式余项:R n(x) = f(x) - L n(x) R n(x)表⽰n次拉格朗⽇多项式的插值余项R n(x) = f n+1(e)/(n+1)! * w n+1(x) e属于[a,b]且依赖与x w n+1(x) = (x-x0)(x-x1).......(x-x n)优点:算法较为简单缺点:⽆法处理动态增加节点的情况⽜顿插值还是先从⼀阶到⼆阶进⾏说明我先得到了⼀阶差值多项式P1(x),P1(x) 满⾜过点(x1, f(x1)), (x2,f(x2))假设现在有第三个点(x3,f(x3))我们要通过这个点去得到⼆阶差值多项式P2(x) 使得P2(x)过这三个点可以设P2(x) = P1(x) + a2*(x-x0)*(x-x1)通过第三个点解出a2就⾏了推⼴到多阶那么可以得到P n(x) = a0 + a1(x-x0) + a2(x-x0)(x-x1) + a3(x-x0)(x-x1)(x-x2) + ......求这个插值多项式的值可以通过递推⼀步⼀步的求这样就实现了动态增删可以看到计算a k需要计算(k-1)2次,那么⽜顿插值法就是⼀个快速的计算⽅法均差⼀阶均差 f[x0, x k] = ( f(x k) - f(x0) ) / (x k - x0)⼆阶均差 f[x0, x1, x2] = (f[x0, x2] -f[x0, x1] ) / (x2 - x1)可以看到⼀阶均差就是简单的求斜率⼆阶均差就是对⼀阶均差求斜率那么k阶均差就是f[x0, x1,,,,,,x k] = (f[x0,,,,,x k-2, x k] -f[x0, ,,,,,,,x k-2,x k-1] ) / (x k - x k-1)f[x0, x1,,,,,,x k] = f n(ε) / n!均差的性质k阶均差可表⽰为f(x0),f(x1), f(x2),,,,,,,,, f(x k)的线性组合⽜顿插值中的a就是均差,可以从⼀阶开始推,然后使⽤数学归纳法证明那么⽜顿插值多项式就是:在计算f[x0,x1,,,,,,,,,,x n]时,⼀般使⽤均差表均差表的计算⽅式为a[i,j] = ( a[i-1][j] - a[i-1][j-1] ) / (末尾的x - 最开始的x)误差:误差为最后⼀阶的均差 * w(x)优点:可动态增删节点缺点:⽆法处理要求导数相同的情况埃尔⽶特插值法实验报告⼀个点,多个导数:⽜顿插值中的均差在xi->x0时其实分别是i阶导数,这样就是我们熟悉的泰勒多项式此时的插值函数就是泰勒多项式两个点,⼀个导数我们有三个条件,也就是说我们能求出三次插值多项式这时我们先写出过这两个点的⽜顿插值多项式在这个多项式的基础上我们再加上⼀个三次项搞定,可以观察到,这三个项数其实可以算是正交的,因为当x=x1或者x=x2时最后⼀项是0满⾜条件的两个点,两个导数这也是题⽬所要求的情况因为有两个导数,所以⽜顿插值法⽆法解决,这⾥只能使⽤基函数⽅法设插值函数为H(x), 点与导数分别为(x1,y1,m1),(x2,y2,m2)H(x)满⾜:H(x1) =y1, H(x2) = y2, H(x1)’ = m1,H(x2)=m2H(x) = a1*x1 + a2*x2 + b1*m1 + b2*m2其中 a1, a2, b1, b2均为三层插值多项式X=x1时 a1(x1) = 1,a2(x1) = 0, b1(x1) = 0,b2(x1) = 0,a1’(x1) = 1,a2’(x1) = 0X=x2时 a1(x2) = 0,a2(x2) = 1, b1(x2) = 0,b2(x2) = 0,a1’(x2) = 1,a2’(x2) = 0X=x1时 b1’(x1) = 1,b2’(x1) = 0X=x2时b1’(x1) = 0,b2’(x1) = 1然后⽤了⼀个很巧妙的⽅法设基函数,解出来值和就是这样⼦的R3(x) = 1/4! * (x-x k)2(x-x k+1)2*f4(ε)两个点,两个导数2直接使⽤泰勒多项式,并把将余项改为未知数,使⽤多余的⼀个条件去求余项的值例如:求次数⼩于等于3的多项式P(x),使满⾜条件P(x0)=f(x0),P'(x0)=f'(x0),P"(x0)=f"(x0),P(x1)=f(x1)。

数值分析常用的插值方法

数值分析常用的插值方法

数值分析常用的插值方法数值分析中常用的插值方法有线性插值、拉格朗日插值、分段线性插值、Newton插值、Hermite插值、样条插值等。

下面将对这些插值方法进行详细介绍。

一、线性插值(linear interpolation)线性插值是最简单的插值方法之一、假设已知函数在两个点上的函数值,通过这两个点之间的直线来估计中间点的函数值。

线性插值公式为:f(x)=f(x0)+(x-x0)*(f(x1)-f(x0))/(x1-x0)其中,f(x)表示要求的插值点的函数值,f(x0)和f(x1)是已知的两个点上的函数值,x0和x1是已知的两个点的横坐标。

二、拉格朗日插值(Lagrange interpolation)拉格朗日插值是一种基于多项式的插值方法。

它通过多个已知点的函数值构造一个多项式,并利用这个多项式来估计其他点的函数值。

拉格朗日插值多项式的一般形式为:f(x) = Σ[f(xi) * Li(x)] (i=0,1,2,...,n)其中,f(x)表示要求的插值点的函数值,f(xi)是已知的多个点的函数值,Li(x)是拉格朗日基函数。

拉格朗日基函数的表达式为:Li(x) = Π[(x-xj)/(xi-xj)] (i≠j,i,j=0,1,2,...,n)三、分段线性插值(piecewise linear interpolation)分段线性插值是一种逐段线性近似函数的方法。

通过将整个插值区间分成多个小段,在每个小段上使用线性插值来估计函数的值。

分段线性插值的过程分为两步:首先确定要插值的点所在的小段,在小段上进行线性插值来估计函数值。

四、Newton插值(Newton interpolation)Newton插值也是一种基于多项式的插值方法。

利用差商的概念来构造插值多项式。

Newton插值多项式的一般形式为:f(x)=f(x0)+(x-x0)*f[x0,x1]+(x-x0)*(x-x1)*f[x0,x1,x2]+...其中,f(x)表示要求的插值点的函数值,f(x0)是已知的一个点的函数值,f[xi,xi+1,...,xi+k]是k阶差商。

数值分析课件-第02章插值法

数值分析课件-第02章插值法
数值分析课件-第02章插值法
目录
• 插值法基本概念与原理 • 拉格朗日插值法 • 牛顿插值法 • 分段插值法 • 样条插值法 • 多元函数插值法简介
01 插值法基本概念与原理
插值法定义及作用
插值法定义
插值法是一种数学方法,用于通过已知的一系列数据点,构造一个新的函数, 使得该函数在已知点上取值与给定数据点相符,并可以用来估计未知点的函数 值。
06 多元函数插值法简介
二元函数插值基本概念和方法
插值定义
通过已知离散数据点构造一个连 续函数,使得该函数在已知点处
取值与给定数据相符。
插值方法分类
根据构造插值函数的方式不同, 可分为多项式插值、分段插值、
样条插值等。
二元函数插值
针对二元函数,在平面上给定一 组离散点,构造一个二元函数通 过这些点,并满足一定的光滑性
差商性质分析
分析差商的性质,如差商 的对称性、差商的差分表 示等,以便更好地理解和 应用差商。
差商与导数关系
探讨差商与原函数导数之 间的关系,以及如何利用 差商近似计算导数。
牛顿插值法优缺点比较
构造简单
牛顿插值多项式构造过程相对简 单,易于理解和实现。
差商可重用
对于新增的插值节点,只需计算 新增节点处的差商,原有差商可 重用,节省了计算量。
要求。
多元函数插值方法举例
多项式插值
分段插值
样条插值
利用多项式作为插值函数,通 过已知点构造多项式,使得多 项式在已知点处取值与给定数 据相符。该方法简单直观,但 高阶多项式可能导致Runge现 象。
将整个定义域划分为若干个子 区间,在每个子区间上分别构 造插值函数。该方法可以避免 高阶多项式插值的Runge现象 ,但可能导致分段点处的不连 续性。

(完整版)数值分析插值法

(完整版)数值分析插值法

第二章插值法2.在区间[-1,1]上分别取n=10,20用两组等距节点对龙哥函数f(x)=1/(1+25*x^2)做多项式插值及三次样条插值,对每个n值,分别画出插值函数及f(x)的图形。

(1)多项式插值①先建立一个多项式插值的M-file;输入如下的命令(如牛顿插值公式):function [C,D]=newpoly(X,Y)n=length(X);D=zeros(n,n)D(:,1)=Y'for j=2:nfor k=j:nD(k,j)=(D(k,j-1)- D(k-1,j-1))/(X(k)-X(k-j+1));endendC=D(n,n);for k=(n-1):-1:1C=conv(C,poly(X(k)))m=length(C);C(m)= C(m)+D(k,k);end②当n=10时,我们在命令窗口中输入以下的命令:clear,clf,hold on;X=-1:0.2:1;Y=1./(1+25*X.^2);[C,D]=newpoly(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.2:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到插值函数和f(x)图形:③当n=20时,我们在命令窗口中输入以下的命令:clear,clf,hold on;X=-1:0.1:1;Y=1./(1+25*X.^2);[C,D]=newpoly(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.1:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到插值函数和f(x)图形:(2)三次样条插值①先建立一个多项式插值的M-file;输入如下的命令:function S=csfit(X,Y,dx0,dxn)N=length(X)-1;H=diff(X);D=diff(Y)./H;A=H(2:N-1);B=2*(H(1:N-1)+H(2:N));C=H(2:N);U=6*diff(D);B(1)=B(1)-H(1)/2;U(1)=U(1)-3*(D(1));B(N-1)=B(N-1)-H(N)/2;U(N-1)=U(N-1)-3*(-D(N));for k=2:N-1temp=A(k-1)/B(k-1);B(k)=B(k)-temp*C(k-1);U(k)=U(k)-temp*U(k-1);endM(N)=U(N-1)/B(N-1);for k=N-2:-1:1M(k+1)=(U(k)-C(k)*M(k+2))/B(k);endM(1)=3*(D(1)-dx0)/H(1)-M(2)/2;M(N+1)=3*(dxn-D(N))/H(N)-M(N)/2;for k=0:N-1S(k+1,1)=(M(k+2)-M(k+1))/(6*H(k+1));S(k+1,2)=M(k+1)/2;S(k+1,3)=D(k+1)-H(k+1)*(2*M(k+1)+M(k+2))/6;S(k+1,4)=Y(k+1);end②当n=10时,我们在命令窗口中输入以下的命令:clear,clcX=-1:0.2:1;Y=1./(25*X.^2+1);dx0= 0.0739644970414201;dxn= -0.0739644970414201; S=csfit(X,Y,dx0,dxn)x1=-1:0.01:-0.5;y1=polyval(S(1,:),x1-X(1));x2=-0.5:0.01:0;y2=polyval(S(2,:),x2-X(2));x3=0:0.01:0.5; y3=polyval(S(3,:),x3-X(3));x4=0.5:0.01:1;y4=polyval(S(4,:),x4-X(4));plot(x1,y1,x2,y2,x3,y3,x4,y4, X,Y,'.')结果如图:②当n=20时,我们在命令窗口中输入以下的命令:clear,clcX=-1:0.1:1;Y=1./(25*X.^2+1);dx0= 0.0739644970414201;dxn= -0.0739644970414201; S=csfit(X,Y,dx0,dxn)x1=-1:0.01:-0.5;y1=polyval(S(1,:),x1-X(1));x2=-0.5:0.01:0;y2=polyval(S(2,:),x2-X(2));x3=0:0.01:0.5; y3=polyval(S(3,:),x3-X(3));x4=0.5:0.01:1;y4=polyval(S(4,:),x4-X(4));plot(x1,y1,x2,y2,x3,y3,x4,y4, X,Y,'.')结果如图:第三章函数逼近与快速傅里叶变换2. 由实验给出数据表x 0.0 0.1 0.2 0.3 0.5 0.8 1.0y 1.0 0.41 0.50 0.61 0.91 2.02 2.46试求3次、4次多项式的曲线拟合,再根据数据曲线形状,求一个另外函数的拟合曲线,用图示数据曲线及相应的三种拟合曲线。

常用数值分析方法

常用数值分析方法

常用数值分析方法常用数值分析方法指的是应用数值计算方法研究和解决实际问题的一类方法。

它涉及到计算机科学、数学、算法及相关工程应用等多个领域的交叉应用,被广泛应用于科学研究、工程设计、经济分析、物理模拟、天气预测等领域。

以下是常用的数值分析方法的介绍。

1.插值法:插值法是通过已知数值点的函数值来推导任意点的函数值。

其中最常用的方法是拉格朗日插值法和牛顿插值法。

插值法在数值计算、图像处理、信号处理等领域有广泛应用。

2.数值微分与积分:数值微分和积分方法是通过一系列近似计算来求解微分和积分问题,常用的方法有数值微分公式、数值积分公式和龙格-库塔方法等。

这些方法在工程数学、物理学、金融学等领域得到了广泛应用。

3.非线性方程求解:非线性方程求解方法用于求解形如f(x)=0的非线性方程,在科学计算和工程设计中具有重要作用。

常用的方法有二分法、牛顿法、割线法、迭代法等。

4.数值优化:数值优化方法是求解最优化问题的一种方法,常用的算法有梯度下降法、共轭梯度法、拟牛顿法、模拟退火算法、遗传算法等。

这些方法被广泛应用于机器学习、数据挖掘、工程设计等领域。

5.差分方程与差分法:差分方程是运用差分近似的数值方法来求解常微分方程的一种方法。

常用的差分法有向前差分法、向后差分法、中心差分法等。

差分法在数值模拟、物理仿真等领域有广泛应用。

6.线性代数方程组的数值解法:数值解线性代数方程组是数值分析中的经典问题之一、常用的算法有高斯消元法、LU分解法、迭代法(如雅可比法、高斯-赛德尔法、稀疏矩阵迭代法)等。

7.数值逼近与最小二乘拟合:数值逼近和最小二乘拟合方法是通过一系列近似计算来拟合和逼近已知的数据集。

常用的方法有多项式拟合、最小二乘法、曲线拟合、样条插值等。

这些方法在数据分析、信号处理、模糊识别等方面有广泛应用。

8.数值统计:数值统计方法是通过数值计算和统计学方法来处理和分析实际数据。

常用的方法有假设检验、参数估计、方差分析、回归分析等。

数值分析第2章插值法

数值分析第2章插值法

数值分析第2章插值法插值法是数值分析中常用的一种数值逼近方法,用于在给定一组有限数据点的情况下,通过构造合适的数学模型来估计这些数据点之间的未知数值。

插值法的应用广泛,包括图像处理、计算机辅助设计、数值计算等领域。

常见的插值方法有拉格朗日插值、牛顿插值、埃尔米特插值以及样条插值等。

这些方法都是基于多项式的插值形式,通过构造一个多项式函数来逼近数据点,并据此对未知点进行估计。

拉格朗日插值是一种基于拉格朗日多项式的插值方法。

对于给定的n+1个不同的数据点 (x0, y0), (x1, y1), ..., (xn, yn),拉格朗日插值构造了一个n次多项式Ln(x),满足:Ln(x) = y0L0(x) + y1L1(x) + ... + ynLn(x)其中,L0(x),L1(x),...,Ln(x)是拉格朗日基函数,定义为:Lk(x) = ∏(i≠k)(x - xi)/(xk - xi) (k = 0, 1, ..., n)拉格朗日插值方法的优点是简单易用,但随着数据点数量的增加,拉格朗日多项式的计算复杂度也会大大增加。

牛顿插值是另一种基于多项式的插值方法,它使用差商的概念来构造插值多项式。

对于给定的n+1个不同的数据点 (x0, y0), (x1, y1), ..., (xn, yn),牛顿插值构造了一个n次多项式Nn(x),满足:Nn(x) = y0 + c0(x - x0) + c1(x - x0)(x - x1) + ... + cn(x -x0)(x - x1)...(x - xn-1)其中,c0 = Δy0/(x0 - x1),ci = Δyi/(xi - xi+1) (i = 0, 1, ..., n-1),Δyi = yi+1 - yi。

牛顿插值方法相比于拉格朗日插值方法,在计算多项式时具有更高的效率,尤其是在需要更新数据点时。

此外,牛顿插值方法还可以通过迭代的方式得到更高次数的插值多项式。

数值分析第5版插值法

数值分析第5版插值法
第2章 插值法
第一节 引言
n 一、 插值问题 设 y= f(x) 是区间[a , b] 上的一个实函数, xi ( i=0,
1, ... ,n)是[a,b]上n+1个互异实数,已知 y=f(x) 在 xi 的
值 yi=f(xi) (i=0,1,...,n), 求次数不超过n的多项式Pn(x)
使其满足
从几何意义来看,上述 问题就是要求一条多项 式曲线 y=Pn(x), 使它通
过已知的n+1个点(xi,yi)
(i=0,1, … ,n),并用Pn(x) 近似表示f(x).
2
二、插值多项式的存在性和唯一性
定理1 设节点xi (i=0,1, … ,n)互异, 则满足插值条件 Pn(xi)=yi 的次数不超过n的多项式存在且唯一. 证 设所求的插值多项式为
f [ x0 , x1]
f ( x0 ) f ( x1 ) x0 x1
为 f (x)在x0、x1点的一阶差商.一阶差商的差商
f [ x0 , x1, x2 ]
f [ x0 , x1] f [ x1, x2 ] x0 x2
称为函数f (x)在x0、x1 、x2 点的二阶差商.
25
一般地,n-1阶差商的差商
还应注意,对于插值节点,只要求它们互异,与大小次序无 关。
14
例1 已知 y x , x0 用4,线x1性插9,值求 近
7
似值。
解 y0 2, y1 3, 基函数分别为:
l0 ( x)
x9 49
1(x 5
9), l1( x)
x4 94
1(x 5
4)
插值多项式为
1
1
L1 ( x)
y0l0 ( x) y1l1 ( x) 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注:若不将多项式次数限制为 n ,则插值多项式不唯一。
n
例如 P ( x ) ? Ln ( x ) ? p ( x )? ( x ? x i ) 也是一个插值 i? 0
多项式,其中 p( x )可以是任意多项式。
Interpolation polynomial
?
2-2 线性插值与抛物插值 1. 线性插值 n = 1
知函数的一个便于计算的近似表达式 . ? 解决方法- 插值法
1. 插值概念
已知定义于 [a , b] 上的函数 f (x) 在 n ? 1 个
互异节点
?xi
?n i?
0
?
[a,
b]
处的函数值
?f
(
xi
?)
n i?
0

若函数族 ? 中的函数 ? (x) 满足条件
? (xi ) ? f (xi ), i ? 0,1,? , n
?
max{x
i
}n i ?0
m~
?
min{
x
i
}n i ?0
内插
x? [m~, M~ ]
外插
x? [a, b] but x? [m~, M~ ]
§2 Lagrange Polynomial
§2 拉格朗日多项式 /* Lagrange Polynomial */
求 n 次多项式 Pn ( x) ? a0 ? a1 x ? ? ? a n xn 使得
§2 Lagrange Polynomial
直线方程为:
y?
y0 ?
y1 ? x1 ?
y0 ( x ? x0
x0 )
记 P1(x) ? L1(x) ,上式等价变形为:
L1(x) ?
x ? x1 x0 ? x1
y0 +
x ? x0 x1 ? x0
y1
l0(x)
l1(x)
称为拉氏基函数 满足条件 li(xj)=?ij
x0 ? x2
代入L2( x) , 并记
l0 ( x)
?
(x ( x0
? ?
x1 )( x ? x2 ) , x1 )( x0 ? x2 )
l1( x)
?
(x ( x1
? ?
x0 )( x ? x2 ) , x0 )( x1 ? x2 )
则由其过第三个点得
y2 ?
解得
L2 ( x2 ) ?
y0 ?
y12 ?
x0 ) ? a( x2 ?
x0 )( x2 ?
x1 )
a?
y2 ? y0 ?
y1 x1
? ?
y0 x0
( x2
?
x0 )
?
y0 ? y1 ? x0 ? x1
y1 ? y2 x1 ? x2
( x2 ? x0 )( x2 ? x1 )
? 提问:上面所提的多项式Pn(x)是否存在?
若存在,是否唯一?如何求?
2-1 插值多项式的存在唯一性
定理1 满足插值条件(2.2) 的不超过n次的插值多项式唯一存在。 证明 插值条件(2.2) 等价于线性方程组
? ?
a
0
?
a1 x0
?
a 2 x02
?
L
? a n x0n
?
y0
? ?
a
0
?
a1 x1
由克莱默法则知,方程组有唯一解 a0 ,a1 ,L ,an .
§2 Lagrange Polynomial
唯一性的另一证明 满足 P ( xi ) ? yi , i ? 0, ... , n 的 n 阶插 值多项式是唯一存在的。 证明 ( 前面已利用Vandermonde 行列式论证)
反证:若不唯一,则除了Ln(x) 外还有另一 n 阶多项 式 Pn(x) 满足 Pn(xi) = yi 。 考察 Qn (x) ? Pn (x) ? Ln(x) , 则 Qn 的阶数 ? n 而 Qn 有 n + 1个不同的根 x0 … xn
已知 (x0, y0), ( x1, y1), 求 P1 ( x ) ? a 0 ? a 1 x 使得
P1( x0 ) ? y0 , P1( x1 ) ? y1
f (x) (x1 ,y1) P1(x)
(x0 ,y0)
x0
x1
可见 P1(x) 是过 ( x0 , y0 ) 和 ( x1, y1 ) 两点的直线。
(1)
则称 ? (x) 为 f (x) 在 ?
中关于节点
?xi
?n i?
0
的一个插值函数

f (x) ——被插值函数; [a, b] ——插值区间;
?xi
?n i?
0
——
插值节点

式(1)—— 插值条件 .
求插值函数 ? (x)的问题(方法)称为插值问题(方法)。
2. 几何意义、内插法、外插法
M~
?
a 2 x12
?
L
? a n x1n ?
y1
?L L L
??a 0
?
a1 xn
?
a
2
x
2 n
?
L
? a n xnn
?
yn
系数行列式(n+1阶范德蒙行列式)
1 x0 x02 L x0n
1 L
x1 x12 L L LL
? x1n
L
?
(x j
0? i? j? n
?
xi ) ?
0
1 xn xn2 L xnn
Interpolation_introduction
第二章 插值法/* Interpolation */
§1 引 言
1.函数表达式过于复杂不便于计算 , 而又需要计算许 多点处的函数值
2.仅有几个采样点处的函数值 , 而又需要知道非采样 点处的函数值
…… ? 上述问题的一种 解决思路: 建立复杂函数或者未
分析两个基函数有:
???ll00
( (
x0 ) x1 )
? ?
1 0
??l1(x0 ) ? l1(x1)
? ?
0 1
则: L1(x) ? l0 (x) y0 ? l1(x) y1
2. 抛物线(二次)插值 n = 2
已知三点 (x0, y0), ( x1, y1), ( x2, y2), 求抛物线
使得
Pn ( xi ) ? yi , i ? 0, ... , n
条件:无重合节点,即 i ? j x i ? x j
解 几何上看,即求多项式曲线与被插值函数曲线间满足:
Pn(x) ? f(x)
x0
x1
x2
x
x3
x4
特点:插值曲线Pn(x)过被插值曲线f (x)的上给定的n+1个点。
多项式插值是数值分析的基本工具,常用来计算被插函数 的近似函数值,零l、0(x极) 点,导数l1(、x)积分(第四章 数值积分 和数值微分),解微分方程(第五章)、积分方程
L2 ( x ) ? P2 ( x ) ? a 0 ? a 1 x ? a 2 x 2 ,
P1 ( x0 ) ? y0 , P1 ( x1 ) ? y1 , P2( x2 ) ? y2 .
P2(x) ? f(x) P2(x)
x0
x1
f(x)
x
x2

L2(x) ? L1( x) ? a( x ? x0 )( x ? x1)
相关文档
最新文档