2014年哈尔滨市南岗区三模数学试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年初中升学考试调研测试(三)
数学试卷参考答案与评分标准
一、选择题(每小题3分,共计30分)
二、(每小题3分,共计30分)
三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共计60分) 21.(本题满分6分) 解:4 (1)
)
1)(1(1)1)(1(11)1(1)111(2'
-=-+⨯+=-+⨯+-+=-÷
+-x x
x x x x x x x x x x x x 因为1..................................................................
32
1
2-460cos 24'=⨯=︒-=x 所以'
1..........................................................................................21311)111(2
=-=-=-÷+-x x x x
22.(本题满分6分) (1)
图①
..................................................................................................................................3'
题号 1 2 3 4 5 6 7 8 9 10 选项 C
D
B
C
A
B
B
C
B
A
题号 11 12
13
14
15 选项
2
1x ≥-
)3)(3(-+x x x
34x ≤<
40
题号 16
17 18 19 20
选项
1=x
6
1 1或5
28
1255
A
D
C
B
(2)
图②
图②
画对一种情况..........................................................................................3' (本题满分6分) 23. 解:(1)240÷40%=600(人).
600-180-60-240=120(人)
如图
………………………………………………………………………………………3'
(2)8000×
600
180
=2400(人). 答:该居民区有8000人,估计爱吃A 粽的人有2400人.………………………………3'
24.(本题满分6分)
解:∵∠ADB=∠CBD-∠BAD=60°-30°=30°=∠BAD ∴BD=AB=72(米)……………………………'2
在Rt △BCD 中,∠DBC=60°, ∴BC=BD •cos60°=2172⨯
=36 CD=BD •sin60°=2
372⨯=336;………………………………'2
在Rt △BCE 中,∠EBC=45°,∴CE=BC=36; ………………………………'1 塔高DE=CD ﹣EC=36336- ················································································ '1 答:塔高DE 为)36336(-米. 25.(本题满分8分)
解:(1)∵E F ∥CD ∴∠EFB=∠DBF ∵弧BE=弧BE ∴∠EFB=∠BAC ···················································· '1
∴∠DBF=∠BAC 又∵∠CBE=∠DBF ∴∠CBE=∠BAC ······································································································ '1
∵AB 是直径 ∴∠AEB=90°
E
A C
B
A
E
C B
∴∠ABE+∠BAC=90°∴∠ABE+∠CBE=90°∴∠ABC=90° ····································· '1
∴AB CD ⊥ ∴CD 为⊙O 的切线 ········································································ '1
(2)∵CD ⊥AB ,E F ∥CD ,∴EF ⊥AB 又∵AB 是直径,∴EG=FG . ···························································································· '1 连接E O ,设OG=x ,则BG=9-x .
由勾股定理可知:2
2
2
2
2
OE OG BE BG EG -=-=,
即2222)9(69x x --=-,7=x . ················································································· 2' 因此282
279
2
2
=-==EG EF . ·
········································································· '1
26.(本题满分8分)
解:(1)设乙工程队每天完成x 米,则甲工程队每天完成2x 米.
1026000
6000+=x
x 解得x =300 ………………………… '2
经检验:x =300是原方程的解 ·························································································· '1
2x=2×300=600 ·············································································································· '1 答:略
(2)设两工程队合作施工a 天,
7600)500700(700600
)600300(6000≤++⨯+-a a
………………………… '2
∴4a ≤ ∴两工程队最多可合作施工4天………………………… '2
27.(本题满分10分) (1)依题意可得
2
2
4(8)4(8)4040a a c a a c ⎧=⨯-+⨯-+⎪⎨=⨯+⨯+⎪⎩ 解得184
a c ⎧=-⎪⎨⎪=⎩ 所
求抛物线的解析式为
211
4 (282)
y x x '=--+.
(2)解法一;如图1,可求D (4
3
-
,0)........................................................................................1'
x
y
L P Q
D
B
A C
O
图1
过点D 作DL ⊥AC ,垂足为点L.连接PC 、PQ.
∵∠DAL=∠CAO ∠ALD=∠AOC=90°∴△ADL ∽△ACO ∴20
34845
DL AL
== ∴DL=
534 AL=538 ∴CL=AL ==-53
8
53454 ∴∠DCL=45° ∴∠ACP=2∠DCL=90° ······································································· '1
由△CPO ∽△ACO 可得OP=2 PC=52 ∴CQ= PC=52 ∴t=PB=OB-OP=4-2=2 ·········································································································· '1
∴点Q 的运动速度为
25
52
=······················································································· '1 解法二:如图2,可求D (4
3
-,0)........................................................................................1'
连接DQ 、PQ. 设PQ 与CD 的交点为点E
则直线CD 垂直平分PQ ∴ PD=DQ ,PC=CQ ,∠PDE=∠EDQ ∴tan ∠EDQ=tan ∠PDE=
3OC
OD
= 令DE=n ,则PE=EQ=3n ,PD=10n.过点Q 作QF ⊥x 轴于F.
由△PDE ∽△PQF 得QF=3
105
a ,PF=9105a
∴DF=94
10101055
a a a -= 图2 ∵tan ∠QAF=tan ∠CAO=12OC OA = ∴3
10152
a
AF = ∴AF=6
105
a ∴AD=
64410102108553a a a +==- ∴a=103
∴AQ=525FQ = ·········································································································· '1
∴t=PB=BD-PD=103
10
344⨯-+=2 ·············································································· '1
∴点Q 的运动速度为25
52

······················································································ '1
(3)如图3,由(2)可求 P(2,0) Q(-4,2) ∵2PN NQ NA =⨯ ∴
PN NA
NQ PN
= 又∵∠QNP=∠PNA ∴△NPQ ∽△NAP
∴∠NPQ=∠NAP ........................................................................................1'
∴tan ∠MPQ=tan ∠CAO=
12

1
2
QM PM = 过点M 作直线l ∥x 轴,过点P 、Q 分别作PG ⊥l 、QH ⊥l ,垂足分别为点G 、H.
∵∠QMH+∠PMG=90°,∠MPG+∠PMG=90°∴∠QMH=∠MPG 又∵∠QHM=∠PGM=90°
∴△QMH ∽△MPG ∴1
2
QH HM QM MG PG PM === ∴MG=2QH PG=2HM ........................................................................................1'
设点M 的坐标为(m ,n ) ∴22(2)2(4)m n n m -=-⎧⎨
=+⎩ 解得2
4
m n =-⎧⎨=⎩
∴点M 的坐标为(-2,4)........................................................................................1'
211482y x x =--+ 当2x =-时,2119
(2)(2)44822
y =-⨯--⨯-+=≠
∴点M 不在(1)中的抛物线上.........................................................................................1'
图3
28.(本题满分10分) (1)如图1,
正方形ABCD 中,AB=BC=DC, ∠BCD=90°
∵BH ⊥CD ∴∠BHE=90°∴∠CBF+∠DEB=90°,
又∵∠CDE+∠DEB=90° 图1
∴∠CBF=∠CDE ················································································································ '1
∴△CBF ≌△CDE ············································································································ 2'
∴CF=CE ∵CD ∥AB ∴CE GE
BC AG
= ······························································································· '1 ∴
CF GE
AB AG
= ··············································································································· '1
(2) ○1当点F 在线段DC 上时 (如图2) 连接DQ ,连接QG 并延长交DE 于点N.
由△CQF ∽△AQB 得 CF QC
AB AQ
= ∵
CF GE AB AG = ∴GE QC
AG AQ
= ∴11GE QC AG AQ +=+ 即AE AC
AG AQ
=又∵∠QAG=∠CAE ∴△AQG ∽△ACE ∴∠AQG=∠ACE 图2
∴QG ∥CE △CQG 为等腰直角三角形 ································································· '1
∵BC=CD ∠BCQ=∠DCQ CQ=CQ ∴△CBQ ≌△CDQ ∴∠CBQ=∠CDQ
∵∠CBQ=∠CDE ∴∠CDQ=∠CDE 又∵DG=DG ∠DGQ=∠DGN=90° ∴△DQG ≌△DNG
∴QG=GN 又∵∠QHN=90°
∴GH=QG ∴∠QHG=∠HQG=∠HBC
∴∠CPQ=∠GHQ+∠CED =∠HBC +∠CED =90° ························································· '1 过点G 作GM ⊥GP 交CP 于点M ,设PC 与QG 的交点为O ∵∠PQG+∠POQ =∠MCG +∠COG =90° ∠POQ=∠COG ∴∠PQG=∠MCG 同理∠PGQ=∠MGC 又∵QG=CG ∴△GPQ ≌△GMC ∴PQ=CM 又∵2PM PG =
O M
N
G
Q
P
F
H
D A
B
C
E
∴2PC PQ PC CM PM PG -=-== ····································································· 2'

2当点F 在线段DC 延长线上时(如图3) 2PQ PC PG -=
············································································································································ '1
图3
(以上各解答题如有不同解法并且正确,请按相应步骤给分)。

相关文档
最新文档