2013年数学建模A题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

车道被占用对城市道路通行能力的影响

参赛队员 (打印并签名) :

1、徐胜杰

2、包小红

3、冯金慧

指导教师或指导教师组负责人 (打印并签名):刘志伟

摘要

本文研究车道被占用对城市道路通行能力的影响的问题,根据所给的附件,运用数据统计和回归拟合方法,建立了实际道路通行能力模型,运用Excel 、SPSS 软件进行求解和作图,进而得出了同一横断面交通事故所占车道不同对该横断面实际通行能力的影响差异和变化过程。

针对问题一,首先,使用数理统计方法,分别统计出不同车型的车辆;其次,将统计出来的车型数量换算成标准的小车数量;最后,根据换算后的小车数量来计算出道路的实际通行能力并用Excel 作成折线图,直观描述事故所处横断面实际通行能力的变化过程。

针对问题二,采用和问题一相同的方法,用Excel 绘制实际通行能力的变化图,然后与问题一的结果相比较,并绘制出折线图,通过比较得出同一横断面交通事故所占车道不同对该横断面实际通行能力影响有较大的差异。视频2(事故发生在车道一和车道二)中统计的事故所处横断面的通行能力普遍高于视频1(事故发生在车道二和车道三)中的横断面的通行能力。视频2横断面的通行能力高于视频1横断面的通行能力主要因为左车道的车流量高于右车道车流量。

针对问题三,采用线性回归与非线性回归模型相结合,通过SPSS 分别判断车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。因此我

们得到非线性函数关系式:823.95105.0986.0039.0332

1-+--=x x x y ,即:车辆排队长度与事故横断面实际通行能力、路段上游车流量呈线性关系,与事故持续时间呈非线性关系。经过检验,该模型和计算结果均是合理的。

针对问题四,首先考虑到绿灯的周期性,司机看见绿灯,行车通过十字路口到达下方车道的时间,绿灯期间,上游车流量在大于下方车道通行能力时,会出现排队现象,在一定时间内,拥堵车辆越来越多,排队长度越来越长,通过这个差值与时间、车长、车距可以建立数学模型来计算车辆排队长度。根据此数学模型计算出到达排队长度140m 所需时间约为4.47min 。经过检验,该模型和计算结果均是合理的。

最后,我们总结了模型的优缺点,并提出了改进方法和推广。

关键词:通行能力 数理统计 SPSS 软件 回归分析方程 数学模型

一、问题的重述

1.1 问题重述

车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。如处理不当,甚至出现区域性拥堵。

车道被占用的情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。

视频1(附件1)和视频2(附件2)中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道。请研究以下问题:

1.根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实

际通行能力的变化过程。

2.根据问题1所得结论,结合视频2(附件2),分析说明同一横断面交通事故所占

车道不同对该横断面实际通行能力影响的差异。

3.构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队长度与

事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。

4.假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段

下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长

度为零,且事故持续不撤离。请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口。

1.2 问题分析

1、问题一的分析

道路通行能力是指在一定的道路条件,交通条件和服务水平的情况下,单位时间能够通过车道上某截面处的最大交通流量。根据视频1统计出一定时间内通过车辆数,计算出道路的实际通行能力,并作图以观察道路通行能力的变化。

2、问题二的分析

在问题一的基础上,运用相同的方法,绘制实际通行能力的变化图。比较两幅图的区别分析对横断面实际通行能力影响的差异。

3、问题三的分析

通过分析可以确定的是车辆长度是因变量,而其他三个量是作为自变量的来影响因变量的变化的。采用线性回归与非线性回归模型相结合,分别判断车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。

4、问题四的分析

首先我们考虑到红绿灯的周期性。其次,司机看见绿灯到启动的反应时间为,驾驶车辆通过十字路口到达车道所需时间,结合问题一中我们得到下方车道平均通行能力,可以由此建立数学模型。

三、模型的假设与符号说明

(一) 模型假设

1、假设统计数据真实有效

2、假设问题中车辆都各行其道,不抢占车道

3、假设上游路段红路灯处来车分布均匀

4、假设事故期间不重复发生事故

5、假设各车辆排队时保持相等间距

6、司机反应时间均为1s

(二) 符号说明

四、模型的分析、建立与求解

4.1 问题一

4.1.1 问题一的分析

问题一要求根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。道路通行能力是指在一定的道路条件,交通条件和服务水平的情况下,单位时间能够通过车道上某截面处的最大交通流量。首先,根据视频1从交通事故发生至撤离期间选择每个30秒左右的时间间隔来统计出通过横断面不同车型的数量;其次,将统计出来的车型数量换算成标准的小车数量;最后,根据换算后的小车数量来计算出道路的实际通行能力,并通过excel软件进行作图,以便直观的反应和观察。

4.1.2 模型的建立与求解

首先,根据视频1从交通事故发生至撤离期间选择每个30秒左右的时间间隔来统计出通过横断面不同车型的数量;其次,将统计出来的车型数量换算成标准的小车数量;最后,根据换算后的小车数量来计算出道路的实际通行能力,并通过excel软件进行作

相关文档
最新文档