空间激光通信

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间激光通信研究现状

空间激光通信相对射频通信有着速率高、容量大等许多优点,从上世纪80年代起,各国就陆续开展了对空间激光通信的研究。目前,各国激光通信的调制方式主要分为PPM、PSK和OOK三种,本文按照调制方式对各国的空间激光通信研究现状进行描述。

1,PPM

欧洲的SILEX项目、OPTEL项目和美国的LLCD项目、LCRD项目、MLCD项目使用或部分使用PPM调制方式。

1.1,LLCD项目[1~3]

LLCD是美国NASA2013年开始实行的一个项目,该项目建了两个探测器,月球环境探测器LLST和地面站LLGT,LLST和LLGT的通信距离距离在35000~400000km之间。

如图1(1)所示,地面站LLGT重达7吨,有4个15cm发射镜头和4个40cm接收镜头组成。LLGT的发射机使用的调制方式为4-PPM,每4个数据时隙后跟有12个或者28个静默时隙,发射激光器的波长是1550nm,通过4个发射镜头实现4路时分复用,信号发射前经过一个10W光放大器放大,传输速率为10/20Mbps,这个速度是目前地月RF通信的5000倍。为降低误码率采用了turbo码作为信道编码,码率为1/2,实现了0误码。4路接收镜头阵列有效提高了接收信号强度,接收机是4个超导单光子计数探测器(工作在3K温度上),接收灵敏度极高,如图1(2)所示,能够提供高速光子计数测量[1]。

月球探测器LLST由光学模块、调制解调器、电子控制器三个模块组成[2],质量30kg。光学模块由一个10cm镜头的镜头组成,完成发射和接收光信号的功能,光学模块安装在一个二轴平衡台上,台上有粗瞄准和捕获探测器,该模块能够测试飞船的振动并进行补偿,实现对地面站的瞄准和捕获,光学模块通过光纤耦合到调制解调模块上。调制解调模块的主要功能是调制和解调光信号,如图2所示,模块内置了311MHz低噪声时钟(经VCO可倍频至5GHz),解调模块前置了一个0.5W的放大器,对接收光信号进行放大,光信号进入后一部分经PLL使时钟频率同步,一部分进入解调器,解调器的时隙时钟由频率同步后的时钟提供(不需要额外的时隙同步),FPGA的主要作用是上行链路帧同步,下行链路产生帧

信号发送出去[3]。电子控制器模块有一些控制算法功能包括稳定光模块等。LLST的激光器功率仅为0.5W,波长为1550nm,使用的调制方式16-ppm,速率达到了40-622Mbps,使用turobo码信道编码,码率为1/2,速率为40/80/155/311Mbps时可做到0误码,速率622Mbps时误码率小于10^-5。上行链路速度明显小于下行,一个原因是地面接收机没有体积质量等要求,灵敏度可以做的很高,另一个原因是大气信道具有不对称性,对上行链路的影响较大,使之误码率变高。

图1 (1)地面站LLGT (2)接收机在各个速率下的接收灵敏度

图2 月球探测器LLST信号处理过程

LLCD除了实现月地高速通信外,还实现了cm距离精度的测距功能[3]。

1.2,LCRD项目[4~5]

2013美国NASA提出LCRD激光通信卫星中继项目(后面的数据都是预定的,还未实测),任务包括:高速地面和GEO双向通行;GND-GEO-GND中继实验;验证PPM适合深空通信和功率受限的小型星地通信,DPSK适合近地高速通信。如图3所示,LCRD终端

包括DPSK模块、PPM模块和光学控制模块[5]。

PPM模块与LLCD的PPM模块类似,下行将使用1/2码率串行级联16-PPM的turbo 码,上行4-PPM,使用硬判决方式,时钟、速率等和LLCD一样,调制模块使用的是MOPA 结构,CW激光器经马赫-曾德尔调制器调制后,再经二阶EDFA放大到0.5W平均功率发射。接收机有前置放大器,后分三路,分别用以通信、时钟恢复、空间跟踪。DPSK模块有着优越的噪声耐性,因而可以支持极高的速率,速率72Mbps~2.88Gbps(编码后1.25Gbps),未来改进中有望支持10Gbps。DPSK模块的调制过程与PPM模块的几乎一摸一样,但是DPSK功率要求高,受限于EDFA平均功率,DPSK模块只在小部分时间内发送脉冲[4]。DPSK解调模块使用平衡接收和硬判决方式,与BPSK解调方式不同,DPSK不需要本地振荡器,只需要将一部分信号光延时后与原信号干涉即可。

地面站有两个,一个是LLCD项目中的LLGT地面站,可接收和发射PPM信号。另一个是OCTL地面站,可接受和发射DPSK和PPM信号。

图3 卫星LCRD终端

1.3,其他PPM项目

2009美国NASA提出MLCD[6](火星激光通信演示验证),如图4所示,火星到地球

信道衰减较大,因此将使用PPM调制方式,计划实现1~100Mbps深空高数据远程通信,卫星上用直径30.5cm天线,采用CCD成像接收,发射用MOPA结构。地面采用直径1m 光学天线,4路复用,或者6路直径30cm天线,波长1060nm。

图4 太阳系信道衰减图

SILEX[7~8]是2001年法国在GEO和LEO卫星进行的通信实验,通信距离4000km,调制方式为PPM,速率为50Mbps,误码率为10^-6。

OPTEL[9]是瑞士的一个激光通信项目,短距离到长距离多个卫星终端2000~80000km,速率在1.5~2.5Gbps之间。OPTEL-25终端:LEO-LEO,调制方式为BPSK,信号光波长1064nm功率1.25W,使用信标光瞄准捕获,信标光波长808nm。OPTEL-u终端,星地通信卫星,下行2X1.25Gbps,调制方式OOK,可切换至8-ppm,上行调制方式为16-PPM。2,OOK

早期的项目使用的一般是OOK,日本的LUCE、欧洲的OPTEL、美国的OPLAS使用或者部分使用OOK调制方式。

2.1,OPALS项目[10~13]

OPALS项目是美国JPL(喷气动力实验室)2014年实施的空间站与地面站激光通信实验,考虑到价格和风险等因素,OPALS的终端没有使用最先进的激光通信科技,终端结构如图5所示。OPALS的主要作用是获得大气干扰数据,测试连接可靠性,测试开环瞄准捕获跟踪的性能。

OPALS为单向通信链路,下行主要参数有:调制方式为OOK,速率30~50Mbps,误

相关文档
最新文档