重庆高考数学试题文Word版

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年重庆高考数学试题(文)

一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.实部为-2,虚部为1 的复数所对应的点位于复平面的( )

.A 第一象限 .B 第二象限

.C 第三象限 .D 第四象限

2.在等差数列{}n a 中,1352,10a a a =+=,则7a =( )

.5A .8B .10C .14D

3.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )

.100A .150B .200C .250C

4.下列函数为偶函数的是( )

.()1A f x x =- 3.()B f x x x =+ .()22x x C f x -=- .()22x x D f x -=+

5.执行如题(5)图所示的程序框图,则输出,的值为

.10A .17B .19C .36C

6.已知命题

:p 对任意x R ∈,总有||0x ≥;

:"1"q x =是方程"20"x +=的根

则下列命题为真命题的是( )

.A p q ∧⌝ .B p q ⌝∧ .C p q ⌝∧ .D p q ∧

7.某几何体的三视图如图所示,则该几何体的体积为( )

A.12

B.18

C.24

D.30

8.设21F F ,分别为双曲线)0,0(122

22>>=-b a b y a x 的左、右焦点,学科 网双曲线上存在一点P 使

得,3|)||(|2

221ab b PF PF -=+则该双曲线的离心率为( ) A.2 B.15 C.4 D.17 9.若b a ab b a +=+则)(,log 43log 24的最小值是( ) A.326+ B.327+ C.346+ D.347+

10.已知函数]

1,1)()(,]1,0(,]0,1(,311)(---=⎪⎩⎪⎨⎧∈-∈-+=在(且m mx x f x g x x x x x f 内有且仅有两个不同

的零点,则实数m 的取值范围是( )

A.]21,0(]2,4

9(⋃-- B.]21,0(]2,411(⋃-- C.]32,0(]2,4

9(⋃-- D.]32,0(]2,411(⋃-- 二、填空题

11.已知集合=⋂==B A B A 则},13,8,5,3,1{},8,5,3,2,1{______.

12.已知向量=⋅=--=b a b a b a 则,且的夹角为与,10||),6,2(60_________.

13. 将函数

()()⎪⎭⎫ ⎝⎛<≤->+=220sin πϕπωϕω,x x f 图像上每一点的横坐标缩短为原来的

一半,纵坐标不变,再向右平移6π的单位长度得到x y sin =的图像,则=

⎪⎭⎫ ⎝⎛6πf ______.

14. 已知直线0=+-a y x 与圆心为C 的圆04422

2=--++y x y x 相交于B A ,

两点,且 BC AC ⊥,则实数a 的值为_________.

15. 某校早上8:00上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在

该时间段的任何时间到校是等可能的,学科 网则小张比小王至少早5分钟到校的概率为_____ (用数字作答)

三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.

16. (本小题满分13分.(I )小问6分,(II )小问5分) 已知{}n a 是首相为1,公差为2的等差数列,n S 表示{}n a 的前n 项和.

(I )求n a 及n S ;

(II )设{}n b 是首相为2的等比数列,公比q 满足()01442=++-S q a q ,求{}n b 的通

项公式及其前n 项和n T .

17. (本小题满分13分.(I )小问4分,(II )小问4分,(III )小问5分)

20名学生某次数学考试成绩(单位:分)的频数分布直方图如下:

(I )求频数直方图中a 的值;

(II )分别球出成绩落在[)6050,

与[)7060,中的学生人数; (III )从成绩在[)7050,

的学生中人选2人,求次2人的成绩都在[)7060,中的概率.

18.(本小题满分12分)

在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,且8=++c b a

(1)若25,2==b a ,求C cos 的值;

(2)若C A B B A sin 22cos sin 2cos sin 22=+,且ABC ∆的面积C S sin 29=,求a

和b 的值.

19.(本小题满分12分)

已知函数23ln 4)(--+=x x a x x f ,其中R a ∈,且曲线)(x f y =在点))1(,1(f 处的切 线垂直于x y 21=

(1)求a 的值;

(2)求函数)(x f 的单调区间和极值。

20.(本小题满分12分,(1)问4分,(2)问8分)

如题(20)图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,

2,3AB BAD π=∠=,M 为BC 上一点,且

1

2BM =. (1)证明:BC ⊥平面POM ;

(2)若MP AP ⊥,求四棱锥P ABMO -的体积.

相关文档
最新文档