电除尘静电除尘器结构教程PPT课件
合集下载
电厂静电除尘器课件

2.悬浮尘粒荷电; 3.荷电尘粒在电场力的作用下向电极运动; 4.荷电尘粒在电场中被捕集; 5.振打清灰。
火花放电
电晕放电之后,在极间电压继续升高到某值时, 两极之间产生一个接一个的瞬时的、通过整个间
隙的火花闪络和噼啪声,闪络是沿着各个弯曲的
或多或少成枝状的窄路贯穿两极,这种现象称为
火花放电,火花放电的特征是电流迅速增大。
槽型板:成迷宫 式结构布置在出 气烟箱出口,作 用是降低细灰在 出气烟箱和出口 烟道的沉积。
气流分布板
气流分布 版
3层
槽型板
高压硅整流变压器
升压变压器: 用于实现交 流升压和阻 抗匹配,是 提高高压供 电设备的主 要原件。
高压硅堆: 实现高压整 流,输出脉 动负直流高 压。
阻尼 电阻
高压 硅整 流变
可查多 依奇效 率公式
粉尘比电阻的影响
粉尘比电阻小,导电性能好,比电阻 大导电差 比电阻过小的粉尘到达收尘极后,很 快就释放出负电荷而成为中性,失去 吸力,因而易于从收尘极上脱落,重 返气流,使除尘效率降低。 比电阻过大的粉尘到达收尘极后,负 电荷不能很快的释放而逐渐积存于收 尘极板上。
静电除尘器常见故障及处理三
一次电流异常增大,二次电流和二次电压却很小,甚至为零,投运不久 就会跳闸 原因:整流硅堆部分桥路被击穿,二次线圈烧坏短路。 处理:变压器吊芯检查,及时停电,汇报值班长,通知检修人员。
静电除尘器常见故障及处理四
二次电压正常,而二次电流很低,除尘效率明显下降 原因 1.阴极振打故障或者振打强度不够,造成电晕极积灰过多。 2.粉尘比电阻变大或粉尘浓度过高,造成电晕封闭。 3.高压回路不良,如阻尼电阻烧坏,造成高压硅整流变压器开路。 处理 4.检查振打装置,调整振打周期或采用连续振打。 5.烟气调质。 6.通知电气维护,更换阻尼电阻。
火花放电
电晕放电之后,在极间电压继续升高到某值时, 两极之间产生一个接一个的瞬时的、通过整个间
隙的火花闪络和噼啪声,闪络是沿着各个弯曲的
或多或少成枝状的窄路贯穿两极,这种现象称为
火花放电,火花放电的特征是电流迅速增大。
槽型板:成迷宫 式结构布置在出 气烟箱出口,作 用是降低细灰在 出气烟箱和出口 烟道的沉积。
气流分布板
气流分布 版
3层
槽型板
高压硅整流变压器
升压变压器: 用于实现交 流升压和阻 抗匹配,是 提高高压供 电设备的主 要原件。
高压硅堆: 实现高压整 流,输出脉 动负直流高 压。
阻尼 电阻
高压 硅整 流变
可查多 依奇效 率公式
粉尘比电阻的影响
粉尘比电阻小,导电性能好,比电阻 大导电差 比电阻过小的粉尘到达收尘极后,很 快就释放出负电荷而成为中性,失去 吸力,因而易于从收尘极上脱落,重 返气流,使除尘效率降低。 比电阻过大的粉尘到达收尘极后,负 电荷不能很快的释放而逐渐积存于收 尘极板上。
静电除尘器常见故障及处理三
一次电流异常增大,二次电流和二次电压却很小,甚至为零,投运不久 就会跳闸 原因:整流硅堆部分桥路被击穿,二次线圈烧坏短路。 处理:变压器吊芯检查,及时停电,汇报值班长,通知检修人员。
静电除尘器常见故障及处理四
二次电压正常,而二次电流很低,除尘效率明显下降 原因 1.阴极振打故障或者振打强度不够,造成电晕极积灰过多。 2.粉尘比电阻变大或粉尘浓度过高,造成电晕封闭。 3.高压回路不良,如阻尼电阻烧坏,造成高压硅整流变压器开路。 处理 4.检查振打装置,调整振打周期或采用连续振打。 5.烟气调质。 6.通知电气维护,更换阻尼电阻。
电除尘器培训教材-PPT课件

总结ESP收尘的四个过程
• 电离--荷电--移动--清灰:四个过程要连续 不断的进行,以保证ESP良好的工作状态。 • 具体过程是:进口封头-气流分布装置-荷电 并收集到电极上-振打清灰-出口封头分布板 (改善气流分布,抑制二次扬尘)-气力输 灰装置。
第二模块 ESP术语和结构 一.ESP术语:
A V
( 1 e
• • • •
) 100 %
η:除尘效率(%) A:收尘极板面积(m2) V:烟气量( m3/s) ω:趋进速度(m/s)
效率公式及其影响因素ຫໍສະໝຸດ • 趋进速度与除尘效率密切相关 • 对趋进速度的分析实际就是对除尘效率的分析,影响趋进 速度的因素很多: • 粉尘粒径:对于1μm以上的粉尘,粒径越大,驱进速度也 越大,除尘效率也越高。粒径还影响电气条件、二次扬尘 等。 • 电场数目:电场数量增多时ω减小。 • 电压与电流:存在一个合理的供电制度。 • 极板间距:宽间距有优越性。 • 收尘面积:A增大,驱进速度下降并趋近于某一值。 • 粉尘比电阻:高比电阻范围内,驱进速度与比电阻近似于 反比的线性关系。
2.阴极系统
• 阴极又称为放电极或电晕极,与阳极一起 形成非均匀电场,产生电晕电流。由阴极 线、阴极框架和阴极吊挂装置等组成。 • 国内常见几种阴极线形式:管型芒刺线、 新型管型芒刺线、星型线、锯齿线、螺旋 线、鱼骨针刺线、螺旋线等。 • 菲达ESP常用的阴极线RSB新型管型芒刺 线和螺旋线。
阴极线应该具备特点:
• 1.牢固可靠、机械强度大、不断线、不掉线。 ESP的一个供电分区往往有上千根阴极线, 一个断线就会造成电场短路。 • 2.电气特性良好。使阳极板上电流密度分布 均匀、平均电场强度高;对于含尘浓度高、 细粉尘及高比电阻粉尘有良好适应性。起 晕电压底,击穿电压高。 • 3.易清灰,制造成本低。
静电除尘器结构原理课件

电除尘器效率的影响因素
烟气比电阻 烟气含尘浓度 烟气流速
烟气比电阻
比电阻:指面积为1cm2、厚度为1cm的粉尘层所 具有的电阻值. 比电阻在104~1011Ω•cm之间的粉尘,电除尘效 果好。当粉尘比电阻小于104Ω•cm时,由于粉尘 导电性能好,到达集尘极后,释放负电荷的时间 快,容易感应出与集尘极同性的正电荷,由于同 性相斥而使“粉尘形成沿极板表面跳动前进”, 降低除尘效率。当粉尘比电阻大于1011Ω•cm时, 粉尘释放负电荷慢,粉尘层内形成较强的电场强 度而使粉尘空隙中的空气电离,出现反电晕现象。 正离子向负极运动过程中与负离子中和,而使除 尘效率下降。
粉尘比电阻与除尘效率之间的关系
反电晕现象及影响
所谓反电晕就是指沉积在收尘极表面上的高比电阻粉尘 层所产生的局部放电现象。 当粉尘比电阻超过临界值 1011(Ω·cm)后,电除尘器的性能就随着比电阻的增高而下降。 比电阻超过1012(Ω·cm),采用常规电除尘器就难以达到理想 的效果。这是因为:若沉积在收尘极上的粉尘是良导体,则 不会干扰正常的电晕放电,当如果是高比电阻粉尘,则电荷 不易释放。 随着沉积在收尘极上的粉尘层增厚,释放电荷 更加困难。此时一方面由于粉尘层未能将电荷全部释放,其 表面仍有与电晕极相同的极性,便排斥后来的荷电粉尘。另 一方面由于粉尘层电荷释放缓慢,于是在粉尘间形成较大的 电位梯度。当粉尘层中的电场强度大于其临界值时,就在粉 尘层的孔隙间产生局部击穿,产生与电晕极极性相反的正离 子,所产生的正离子便向电晕极运动,中和电晕区带负电的 粒子。其结果是电流大幅度增大, 电压降低。 运行参数及 为不稳, 电除尘性能显著恶化。
静电除尘器的工作原理
静电除尘器的工作原理:含有粉尘颗粒的气 体,在接有高压直流电源的阴极线(又称电晕极) 和接地的阳极板之间所形成的高压电场通过时, 由于阴极发生电晕放电、气体被电离,此时,带 负电的气体离子,在电场力的作用下,向阳极板 运动,在运动中与粉尘颗粒相碰,则使尘粒荷以 负电,荷电后的尘粒在电场力的作用下,亦向阳 极运动,到达阳极后,放出所带的电子,尘粒则 沉积于阳极板上,而得到净化的气体排出防尘器 外。
电除尘器工作原理PPT课件

精选ppt课件2021
16
• (一)、供电控制系统
• 高压供电系统一般分布于电除尘器的顶部,一般为一个电场一套对 应一套高压供电装置,通过除尘器顶部的绝缘子箱与电晕极相连,低 压控制系统即为我们在集控制室看到的各个控制柜,与高压供电系统 相对应,低应控制系统同样为一个电场对应一套低压控制系统,一般 提到的电除尘器供电控制系统即为高压供电与低压控制的总称,两者 不可分割。
• (7)供电装置
• 由高压整流器及控制器组成。
精选ppt课件2021
10
四、除尘效率
• 除尘效率 η=(λ入- λ出)/λ入 %
气体性质、粉尘特性、本体结构、操作条件均 影响电除尘器的除尘效率。
(1)气体性质,包括气体温度、压力、湿度、流速和含尘浓度。温度 的升高和压力的降低,会使气体密度减小,从而降低起晕电压、电 晕极表面电场强度和火花放电电压,气体温度的变化,尚引起粉尘 比电阻值的改变;—般来说,气体湿度大(含水多),收尘效率高,但 若气体湿度过大,电除尘器内易结露而腐蚀;电除尘器内的气流速 度不宜过大,以免造成集尘极上的粉尘重返气流和电极晃动,降低 除尘效率;但亦不宜过小,以免设备体积庞大,耗费钢材与投 资。—般考虑在满足除尘效率,尽可能降低钢耗条件下,选择合理 风速。进入电除尘器的气体含尘浓度超过—定值时,造成空间电荷 过多,抑制电晕电流的产生,影响除尘效率,—般要求进入电除尘 器的气体含尘浓度在50g/m3以下。
精选ppt课件2021
8
• (3) 电晕电极
包括电晕线、电晕线框架、电晕线框悬吊架、悬吊杆和支承绝缘套管 等。常用的电晕线有圆线、螺旋线、芒刺线等。选用要求是:起晕电 压低、放电特性好、电晕电流大;机械强度高、易维持准确的极距、 不易断裂脱落;便于粉尘分湿式和干式两种。采用喷雾或溢流方法,使电极上经常保持—层水膜, 使粉尘随水膜流下,达到清灰目的,称为湿式清灰。采用振打方式, 将粉尘以干燥的形式振落,称为干式清灰。集尘极的振打种类有锤击、 电磁和电容振打。清灰装置的振打强度,用传递给电极的振打加速度g 来量度,g值的大小随电极的刚度、粉尘的粒度和沉积厚度、比电阻的 不同而异。确定的原则是既使粉尘彻底剥落,又使粉尘二次飞扬为最 少。
静电除尘器简介PPT教案

尘合一)或双区(放电、集尘分 开)型。
大型电除尘器可设计为多室(单 元电联)、电场(单元电场串联) 形式。
第26页/共33页
电除尘器构造图
第27页/共33页
第28页/共33页
七、集尘效率及影响因素
集尘效率
1
exp
Q f
Vg
vd
式中:f — 集尘极有效面积;
Q — 气体流量; v由d 实—验有确效定驱。进速度是重要的设计参数,是经验数据,通常
单区电除尘器
双区电除尘器
第23页/共33页
(3)按气流方向 卧式、立式
(4)按清灰方式 干式、湿式
第24页/共33页
2、构造
电晕极(圆线、星型线、芒刺线等)
集尘极(板式、管式、蜂窝式等) (
振打清灰装置
气流分布装置
壳体和灰斗
电源(直流、脉冲)
控制装置
第25页/共33页
放电极—集尘极构成一个电场。 电场可以设置为单区(放电、集
尘极作驱进运动,颗粒上的电 荷与集尘极上的电荷中和,从 而颗粒恢复中性,此为颗粒的 放电过程。 粒子的比电阻在104Ω·cm~ 5×1010Ω·cm的范围内,最适 宜静电除尘。
注意:比电阻过大或过小的影响: 第14页/共33页 重返气流(低比电阻); 电荷积累,形成反电晕(高比
反电晕:反电晕是在电除尘器中 沉积在极板表面上的高比电阻 粉尘层所产生的局部放电现象。 高比电阻粉尘到达收尘极板后 不易释放。其极性及电晕极相 同,便排斥后来的荷电粉尘, 由于粉尘层的电荷释放缓慢, 粉尘间形成较大的电位梯度, 当粉尘层中的电场强度大于其 临界值时,就会在粉尘层的空 隙间产生局部击穿,产生与电
避开比电阻峰值温度;向烟气中添加导电性物质(如三氧
大型电除尘器可设计为多室(单 元电联)、电场(单元电场串联) 形式。
第26页/共33页
电除尘器构造图
第27页/共33页
第28页/共33页
七、集尘效率及影响因素
集尘效率
1
exp
Q f
Vg
vd
式中:f — 集尘极有效面积;
Q — 气体流量; v由d 实—验有确效定驱。进速度是重要的设计参数,是经验数据,通常
单区电除尘器
双区电除尘器
第23页/共33页
(3)按气流方向 卧式、立式
(4)按清灰方式 干式、湿式
第24页/共33页
2、构造
电晕极(圆线、星型线、芒刺线等)
集尘极(板式、管式、蜂窝式等) (
振打清灰装置
气流分布装置
壳体和灰斗
电源(直流、脉冲)
控制装置
第25页/共33页
放电极—集尘极构成一个电场。 电场可以设置为单区(放电、集
尘极作驱进运动,颗粒上的电 荷与集尘极上的电荷中和,从 而颗粒恢复中性,此为颗粒的 放电过程。 粒子的比电阻在104Ω·cm~ 5×1010Ω·cm的范围内,最适 宜静电除尘。
注意:比电阻过大或过小的影响: 第14页/共33页 重返气流(低比电阻); 电荷积累,形成反电晕(高比
反电晕:反电晕是在电除尘器中 沉积在极板表面上的高比电阻 粉尘层所产生的局部放电现象。 高比电阻粉尘到达收尘极板后 不易释放。其极性及电晕极相 同,便排斥后来的荷电粉尘, 由于粉尘层的电荷释放缓慢, 粉尘间形成较大的电位梯度, 当粉尘层中的电场强度大于其 临界值时,就会在粉尘层的空 隙间产生局部击穿,产生与电
避开比电阻峰值温度;向烟气中添加导电性物质(如三氧
静电除尘器PPT课件

气体性质 :温度、湿度、成分、压力等 操作条件: 电场强度、气流速度、清灰等
除尘器结构:电极形式、气流分布等
影响因素众多 无理论公式
复杂问题简单化、理想化
2.3工作原理-荷电颗粒运动和捕集
几点假设:
①除尘器中气流为紊流状态。
②在垂直于收尘表面的任一横断面上颗粒浓度河气流速度是均匀分布的。
③颗粒进入除尘器后迅速完成荷电过程,达到饱和荷电。
最适宜的比电阻: 104-1011Ώ·cm
4.静电除尘器-效率影响因素
(2)气体温度(T)、湿度(W)对除尘效率的影响
T T↓ →气体体积↓→气速↓→η ↑
T↑ →气体黏度↑→阻力↑→驱进速度↓→η ↓
电除尘器的运行温度以较低为好,但不能低于烟气的露点温度。
如果低于露点温度:
粉尘板结在极板上难于清灰 造成电极腐蚀、 绝缘体爬电等故障
(C)400 mg/m3
(D)500 mg/m3
解析:德意希方程: 故障后效率η',则
1 2
e
-
Q A
ln(1')
e
Q A
ln(1)
2 ln(1 99.96%) ln(1 ' )
进口粉尘浓度C=10/(1-99.96%)=25000mg/m3
当效率为98%时,出口气体含尘浓度为25000*(1-98%)=500mg/m3
2.4工作原理-捕集粉尘的清除
反电晕:
高比电阻粉尘到达收尘极,电荷释放缓慢 ↓
在粉尘间形成较大的电位梯度, 当电场强度大于其临界值时 ↓
粉尘层的空隙产生局部击穿,空隙中空气电离,产生大量正负离子 ↓
与电晕极板性相反的正离子,向电晕极运动 ↓
中和电晕区带负电的粒子,大量的中性粒子由气流带出除尘器 ↓
电除尘静电除尘器结构教程PPT演示课件

20
谢谢观看
21
16
阴极振打电机
瓷转轴保温筒
阴打电机 瓷转轴
加热器
阴极振打电机位于除尘器的顶部平台,作用是将粘附在阴极板上的粉尘通过 振打使其脱落,振打时间由PLC时序周期性控制,也可手动连续振打(维修/ 调试时使用)。
17
除尘器灰斗
粉尘由电场 分离后粘附在集 尘极,然后借助 于振打装置将纷 尘脱落到除尘的 灰斗内,在料位 信号的控制下, 将粉尘输送到指 定地点
4
整流变维护注意事项
1/2 1/3
0
油位保持在1/3位置
瓷瓶无裂痕,无渗油现象
换油时须保证是25#变压器油
放油处无渗漏油现象
5
接地装置
整流变内部 与外壳接地
整流变外壳与 除尘器本体接
地
接地可靠,接地电阻应小于4欧姆
6
整流变压器部件
(瓦丝)气体继电器:正常情况应该是注满油,如发现内有空气,可打开上面排气孔将空气排净.若变 压器漏油而使油面降低,将发出报警信号。当变压器内发生严重故障,气体继电器触点动作, 同样发出报警信号。
沉积在极板上的粉尘必 须通过振打及时清灰,极 板上的积灰过多影响放电, 影响尘粒的驱进速度,还 会引起反电晕,大大降低 除尘效率
11
阳极振打电机
转动轴 转动链条
减速机 电机
注意事项:
调试前须检查 变速箱内是否已 加满齿轮油
检查链条松紧 程度
第一次通电时 须点动控制电机, 确认正确方向后 方可使用
温度传感器:主要检测变压器油温,当变压器温升超过45℃时(温升=变压器温度-环境温度) 发出临界油温度报警信号。危险油温报警时检查线路是否完好,检查温度传感器是否正常, 检查调整器设置是否正确。连接线需使用屏蔽电缆,接线方式采用两相三线制,
谢谢观看
21
16
阴极振打电机
瓷转轴保温筒
阴打电机 瓷转轴
加热器
阴极振打电机位于除尘器的顶部平台,作用是将粘附在阴极板上的粉尘通过 振打使其脱落,振打时间由PLC时序周期性控制,也可手动连续振打(维修/ 调试时使用)。
17
除尘器灰斗
粉尘由电场 分离后粘附在集 尘极,然后借助 于振打装置将纷 尘脱落到除尘的 灰斗内,在料位 信号的控制下, 将粉尘输送到指 定地点
4
整流变维护注意事项
1/2 1/3
0
油位保持在1/3位置
瓷瓶无裂痕,无渗油现象
换油时须保证是25#变压器油
放油处无渗漏油现象
5
接地装置
整流变内部 与外壳接地
整流变外壳与 除尘器本体接
地
接地可靠,接地电阻应小于4欧姆
6
整流变压器部件
(瓦丝)气体继电器:正常情况应该是注满油,如发现内有空气,可打开上面排气孔将空气排净.若变 压器漏油而使油面降低,将发出报警信号。当变压器内发生严重故障,气体继电器触点动作, 同样发出报警信号。
沉积在极板上的粉尘必 须通过振打及时清灰,极 板上的积灰过多影响放电, 影响尘粒的驱进速度,还 会引起反电晕,大大降低 除尘效率
11
阳极振打电机
转动轴 转动链条
减速机 电机
注意事项:
调试前须检查 变速箱内是否已 加满齿轮油
检查链条松紧 程度
第一次通电时 须点动控制电机, 确认正确方向后 方可使用
温度传感器:主要检测变压器油温,当变压器温升超过45℃时(温升=变压器温度-环境温度) 发出临界油温度报警信号。危险油温报警时检查线路是否完好,检查温度传感器是否正常, 检查调整器设置是否正确。连接线需使用屏蔽电缆,接线方式采用两相三线制,
《电除尘器》PPT课件

而任一点的场强等于该点的电位梯度的负值,即
(6-2)
dV Er dr
通过积分变换得E:r
r
V ln b a
(6-3)
------------------
上式为任一点场强与电压的关系。
式中: V——电压;
r——半径(距电晕线中心的距离); a——电晕线半径;b——集尘管半径。
(6-3)式表明,在电晕开始发生之前,管式电
P0、T0为标况下的大气压(1atm)和温度(298K); T、P为运行状况的温度和空气压力;
f 为导线光滑修正系数,一般 0.5<f≤1,清洁的光滑 导线 f=1,实际中所遇到的导线可取 f = 0.6-0.7;
式中正负号视电晕极性而定,正电晕取正号,负电晕取负 号。
当r=a时,由(6-3)式得 VcEcalnba
2. 电晕起始电压计算公式
现在推导管式电除尘器中电压与场强的数学关系。 近似把电晕线看成无限长的均匀带电直线,电荷 线密度为λ(库仑/米),假想两电极间没有电晕 电流,即不存在空间电荷,由高斯定理可知,在 管式电除尘器中距电晕线距离为r处的场强为
(6-1)
Er 20r
----------
ξ0为真空中的介电系数,ξ0=8.85×10-12库仑2/牛 顿·米2
《电除尘器》PPT课件
本课件PPT仅供学习使用 本课件PPT仅供学习使用 本课件PPT仅供学习使用
学习完毕请自行删除
§6-1 概述 §6-2 电晕放电 §6-3 电场 §6-4 粉尘荷电 §6-5 粉尘的迁移和收集 §6-6 电除尘器的结构 §6-7 粉尘比电阻 §6-8 电除尘器的选择和设计
极的距离。
正、负电晕极在空气中的电晕电流一电压曲线
《电除尘原理》课件

电除尘器的调试与性能测试
调试电除尘器
根据实际情况调整电除尘器的 各项参数,以达到最佳的除尘
效果。
进行性能测试
通过测试电除尘器的入口和出 口粉尘浓度、效率等指标,评 估电除尘器的性能。
分析测试数据
根据测试数据,分析电除尘器 的运行状况,找出存在的问题 并采取相应的措施。
优化电除尘器设计
根据性能测试结果,对电除尘 器进行优化设计,提高其除尘
由多个管状电极并排组成,适用于处理大面积的 烟气。
供电装置的工作原理与性能
高压直流电源
为电除尘器提供高压直流电,产生电 场力以吸附和收集颗粒物。
脉冲电源
通过脉冲放电为电除尘器提供能量, 具有较高的除尘效率。
电极间距与极配型式对性能的影响
电极间距
电极之间的距离影响电场强度和电流分布,进而影响除尘效率。合适的间距可以 提高除尘效果。
除尘效率的计算
通过理论分析和实验数据,可以计算 出电除尘器的除尘效率。这有助于评 估电除尘器的性能,并指导后续的设 计和优化。
电场强度的计算与电极间距的选择
电场强度的计算
电场强度是影响电除尘器性能的关键因素之一。通过计算,可以确定合适的电场强度,以提高除尘效 率。
电极间距的选择
电极间距对电场强度和电流分布有直接影响。合理的电极间距选择有助于优化电除尘器的性能。
供电装置的设计与计算
供电装置的设计
供电装置是电除尘器的核心部分,其设 计需满足电除尘器的运行需求。合理设 计供电装置,可以提高电除尘器的稳定 性和可靠性。
VS
供电装置的计算
根据电除尘器的运行参数和工况,可以对 供电装置进行详细计算,以确保其性能和 安全性。这包括电压、电流、功率等参数 的计算和优化。
静电除尘器设计原理 ppt课件

–气体温度和压力的不同影响 电子平均自由程和加速电子及 能产生碰撞电离所需要的电压
–气流中要捕集的粉尘的浓度、 粒度、比电阻以及在电晕极和 集尘极上的沉积
–电压的波形
ppt课件
16
二、电除尘器的工作原理
(二)粉尘粒子荷电
两种机理
粒子进入电场到带 电历时0.1s移动10-
20cm.
–电场荷电或碰撞荷电--离子在静电力作用下做定向运动,与
• 气体分子离子化的过程又产生 大量电子-雪崩过程
• 远离金属丝,电场强度降低, 气体离子化过程结束,电子被 气体分子捕获
• 气体离子化区域-电晕区
•
自由电子和气体负离子是粒子 ppt课件
15
荷电的电荷来源。
电晕放电
•影响电晕特性的因素
–电极的形状、电极间距离
–气体组成、压力、温度
–不同气体对电子的亲合力、 迁移率不同
2.粉尘比电阻的影响
• 粉尘比电阻定义:在厚1cm,覆盖层1cm2集尘面积的粉尘电阻。
ARm
式中:ρ为粉尘比电阻,Ω·cm;A为集尘极面积,cm2; Rm为平均比电阻,Ω;为颗粒层厚度,cm。 • 电除尘器运行最适合的比电阻的范围大约是104~2×1010Ω·cm。
ppt课件
29
三、电除尘效率的影响因素
• 单区电除尘器:集尘极和电晕极在同一区域内,颗粒荷电和捕 集在同一区域内完成。
• 双区电除尘器:电晕极系统和收尘集系统分别装在两个不同区 域内,前区安装电晕极称电晕区,粉尘粒子在前区荷电;后区 安装集尘极称收尘区,荷电粉尘粒子在收集尘区被捕集。双区 电除尘器主要用于空调的空气净化方面。
4.按清灰方式分类
• 干式电除尘器:在干燥状态下采用机械振打、电磁振打和压缩 空气等方法清除集尘极上粉尘。干式电除尘器有利于回收有经 济价值的粉尘,但容易产生二次扬尘。
电除尘静电除尘器结构教程ppt课件

通电后检查电 机温度、声音有 无异常
阳极振打电机位于除尘器检修平台,作用是将粘附在阳极板上的纷尘通过振打 使其脱落,振打时间由PLC周期性控制,也可手动连续振打(维修/调试时使用)。
13
阳极振打现场操作箱
阳 打 操 作 箱
位于本体的检修平台,控制阳打的手动/自动,调试维修时使用。正常使用时须 打到远程位置,让PLC时序来控制电机,切勿长时间使用手动振打。
此课件可编辑版,如对课件 有异议或侵权的请及时联系
删除!
课件可编辑版,请放心使用 !
基本电路图
交流380V经高压控制柜调压后送入整流变压 器初级,经升压、整流后输出足以维持设 备工作的负高压。
2
高压控制器的控制原理
控制器根据设定的工作模式和控制方式按不 同算法确定每个半波的导通角,并发出相应的定 时值启动内部定时器,定时时间到,定时器输出 SCR移相触发脉冲。触发脉冲经门控电路送至 SCR触发电路,经光控可控硅隔离输出两路同电 源正、负半波同步的晶闸管出发信号,经SCR调 控输出的电压、电流不断增大。而电压、电流反 馈信号又由A/D输入控制器,不断调整导通角使 输出达到设定值。
14
转动轴 振打锤
阴极振打装置
绝缘板
传动轴
瓷转轴
阴极振打位于除尘器内顶部,由电机传动振打极线框架。
不同与阳打的是:阴极部分全部带电所以传动部分需由瓷转轴隔开。
15
瓷转轴加热
注意事项:
升压前两小时须先 打开加热装置,保 持瓷瓶干燥,避免 爬电
阴打电机首次通电 时须点动控制电机, 确认正确方向后方 可使用,如反转会 使瓷瓶爆裂
9
本体内部结构
阴极振打及 加热装置
阳极板和 阴极线
阳极振 打装置
阳极振打电机位于除尘器检修平台,作用是将粘附在阳极板上的纷尘通过振打 使其脱落,振打时间由PLC周期性控制,也可手动连续振打(维修/调试时使用)。
13
阳极振打现场操作箱
阳 打 操 作 箱
位于本体的检修平台,控制阳打的手动/自动,调试维修时使用。正常使用时须 打到远程位置,让PLC时序来控制电机,切勿长时间使用手动振打。
此课件可编辑版,如对课件 有异议或侵权的请及时联系
删除!
课件可编辑版,请放心使用 !
基本电路图
交流380V经高压控制柜调压后送入整流变压 器初级,经升压、整流后输出足以维持设 备工作的负高压。
2
高压控制器的控制原理
控制器根据设定的工作模式和控制方式按不 同算法确定每个半波的导通角,并发出相应的定 时值启动内部定时器,定时时间到,定时器输出 SCR移相触发脉冲。触发脉冲经门控电路送至 SCR触发电路,经光控可控硅隔离输出两路同电 源正、负半波同步的晶闸管出发信号,经SCR调 控输出的电压、电流不断增大。而电压、电流反 馈信号又由A/D输入控制器,不断调整导通角使 输出达到设定值。
14
转动轴 振打锤
阴极振打装置
绝缘板
传动轴
瓷转轴
阴极振打位于除尘器内顶部,由电机传动振打极线框架。
不同与阳打的是:阴极部分全部带电所以传动部分需由瓷转轴隔开。
15
瓷转轴加热
注意事项:
升压前两小时须先 打开加热装置,保 持瓷瓶干燥,避免 爬电
阴打电机首次通电 时须点动控制电机, 确认正确方向后方 可使用,如反转会 使瓷瓶爆裂
9
本体内部结构
阴极振打及 加热装置
阳极板和 阴极线
阳极振 打装置
电除尘装置六.ppt

(气体电离)
粉尘荷电
电晕区 粉尘运动
二、 ❖ 1.电晕放电机理
电晕放电
❖ 金属丝放出的电子迅速向正 极移动,与气体分子撞击使 之离子化
❖ 气体分子离子化的过程又产 生大量电子-雪崩过程
❖ 远离金属丝,电场强度降低, 气体离子化过程结束,电子 被气体分子捕获
❖ 气体离子化区域-电晕区
❖ 自由电子和气体负离子是粒 子荷电的电荷来源
3 πd p/m 3 πd p/(1 6 π d p 3) 1 d 8 p 2 ( 1 1 8 0 1 1 .0 8 4 ) 1 2 0 4 1 = 3 2 4 0
若t>10-2s,e
(
3
π d m
p
)
t
完全可以忽略不计
所以,驱进速度(电场力与空气阻力达到平衡)
=qEp /(3πdp)
❖ 现代的电除尘器大都采用电磁振打或锤式振打清 灰。振打系统要求既能产生高强度的振打力,又 能调节振打强度和频率
❖ 常用的振打器 ❖ 有电磁型和
❖ 挠臂锤型
振打装置示意图
本图为摇臂锤振打示 意图 每排收尘极板设置一 摇臂锤,各锤错开
六、电除尘器结构-除尘器类型
❖ 1.除尘器类型 双区电除尘器-通风空气的净化和某些轻工业部门 单区电除尘器-控制各种工艺尾气和燃烧烟气污染
u一 气 体 离 子 的 平 均 热 运 动 速 度 , m/s
3.电场荷电和扩散荷电的综合作用
❖ 处于中间范围 (0.15~0.5μm)的粒子,需同时考虑 电场荷电和扩散荷电
根据Robinson的研究,简单地将电场荷电和扩散荷电的电荷 相加,可近似地表示两种过程综合作用时的荷电量,与实验 值基本一致
二、 电晕放电(续)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21
谢谢观看
22
2019/12/23
23
14
转动轴 振打锤
阴极振打装置
绝缘板
传动轴
瓷转轴
阴极振打位于除尘器内顶部,由电机传动振打极线框架。
不同与阳打的是:阴极部分全部带电所以传动部分需由瓷转轴隔开。
15
瓷转轴加热
注意事项:
升压前两小时须先 打开加热装置,保 持瓷瓶干燥,避免 爬电
阴打电机首次通电 时须点动控制电机, 确认正确方向后方 可使用,如反转会 使瓷瓶爆裂
通电后检查电 机温度、声音有 无异常
阳极振打电机位于除尘器检修平台,作用是将粘附在阳极板上的纷尘通过振打 使其脱落,振打时间由PLC周期性控制,也可手动连续振打(维修/调试时使用)。
13
阳极振打现场操作箱
阳 打 操 作 箱
位于本体的检修平台,控制阳打的手动/自动,调试维修时使用。正常使用时须 打到远程位置,让PLC时序来控制电机,切勿长时间使用手动振打。
沉积在极板上的粉尘必 须通过振打及时清灰,极 板上的积灰过多影响放电, 影响尘粒的驱进速度,还 会引起反电晕,大大降低 除尘效率
11
2019/12/23
12
阳极振打电机
转动轴 转动链条
减速机 电机
注意事项:
调试前须检查 变速箱内是否已 加满齿轮油
检查链条松紧 程度
第一次通电时 须点动控制电机, 确认正确方向后 方可使用
16
瓷套
外部示意图
内部示意图
瓷套是支撑阴极框架的重要部件,一个电场由四个瓷套共同支撑,筒内装有加 热装置及测温装置,由测温装置(PT100)将温度信号传到PLC温度模块,模块里 设定上下线温度,使其保持恒温,保证筒内温度干燥,防止结露,避免爬电现象, 外部有保温筒防止热量散发,使瓷套内外温度相近(如温差较大易使瓷套破裂)。
温度传感器:主要检测变压器油温,当变压器温升超过45℃时(温升=变压器温度-环境温度) 发出临界油温度报警信号。危险油温报警时检查线路是否完好,检查温度传感器是否正常, 检查调整器设置是否正确。连接线需使用屏蔽电缆,接线方式采用两相三线制,
7
静电除尘器本体
内部结构 工作原理 振打清灰装置 加热装置 灰斗
2
晶闸管电路
具有二极管的正向导通特性 具有门极触发信号,可以调节交流电压输出
3
电源
高压整流 变压器
整流变压器
空气吸湿器 (内装有硅胶)
隔离 开关
电场
硅整流变压器一般装在除 尘器顶部,与高压隔离开关相 连。电压由硅整流变压经隔离 开关送至电场。
硅胶正常时显白色,吸水后 变黄色;如有变色,必须立即更 换。
基本电路图
交流380V经高压控制柜调压后送入整流变压 器初级,经升压、整流后输出足以维持设 备工作的负高压。
1
高压控制器的控制原理
控制器根据设定的工作模式和控制方式按不 同算法确定每个半波的导通角,并发出相应的定 时值启动内部定时器,定时时间到,定时器输出 SCR移相触发脉冲。触发脉冲经门控电路送至 SCR触发电路,经光控可控硅隔离输出两路同电 源正、负半波同步的晶闸管出发信号,经SCR调 控输出的电压、电流不断增大。而电压、电流反 馈信号又由A/D输入控制器,不断调整导通角使 输出达到设定值。
8
本体内部结构
阴极振打及 加热装置
阳极板和 阴极线
阳极振 打装置
灰斗
本体内部 主要是相互错 开的阳极板和 阴极线(也称 集尘极和电晕 极),另外还 有振打装置、 加热装置和位 于底部的灰斗 组成。
9
静电除尘器工作原理
电晕极
电晕区
集尘极
电晕极放电 使电晕区气体电 离产生阴离子和 阳离子,阴阳离 子吸附在粉尘上, 在电场力的作用 下向两极运动, 因电晕区范围较 小,大部分粉尘 沉积在集尘极上, 少部分在电晕极 上。
19
检修孔
布线桥架 顶部检修孔
下部检修孔
顶部检修孔
检修观察时使用。进入除尘器内部前必须关闭所有电源,锁必安全连锁箱, 控制柜上须挂有安全警示牌,必要时需专人看护。将隔离开关刀闸打到接地位 置。检修照明尽量采用24V安全电源
20
检修箱/加热端子箱
加热端子箱
检修箱
检修箱/加热端子箱都位于除尘器顶部,因长期安装在户外,箱子必须达到 防尘/防雨级别。检修箱主要是方便检修时使用,内有380V/220V/24V电源。 加热端子箱用途是分流加热电缆,控制部分加热回路的作用。
粉尘沉积较多时,会影响除尘的效率,需要清除,以保证静电除尘 器的正常工作。
10
阳极振打装置
阳极板
轴套 振打锤 传动轴
阳极振打装置机械部分 由中心轴、轴套、振打锤 等组成。
调试时须配合本体安装 单位检查轴心是否在一条 线,每个锤头的中心与极 板固定粱对齐,轴传动是 否良好。以上每一向都对 振打效率起着关键性的作 用。
4
整流变维护注意事项
1/2 1/3
0
油位保持在1/3位置
瓷瓶无裂痕,无渗油现象
换油时须保证是25#变压器油
放油处无渗漏油现象
5
接地装置
整流变内部 与外壳接地
整流变外壳与 除尘器本体接
地Байду номын сангаас
接地可靠,接地电阻应小于4欧姆
6
整流变压器部件
(瓦丝)气体继电器:正常情况应该是注满油,如发现内有空气,可打开上面排气孔将空气排净.若变 压器漏油而使油面降低,将发出报警信号。当变压器内发生严重故障,气体继电器触点动作, 同样发出报警信号。
瓷转轴在除尘器部件中也起着关键性的作用,位于阴极振打下部,阴极线所有框架都是带
负高压,但振打装置在壳体接地,所以必须使用瓷转轴来绝缘振打传动装置,瓷转轴下部装
有加热装置及测温装置,由测温装置(PT100)将温度信号传到PLC温度模块,模块里设定
上下线温度,使其保持恒温,加热空气干燥瓷瓶,保持绝缘强度。避免爬电
17
阴极振打电机
瓷转轴保温筒
阴打电机 瓷转轴
加热器
阴极振打电机位于除尘器的顶部平台,作用是将粘附在阴极板上的粉尘通过 振打使其脱落,振打时间由PLC时序周期性控制,也可手动连续振打(维修/ 调试时使用)。
18
除尘器灰斗
粉尘由电场 分离后粘附在集 尘极,然后借助 于振打装置将纷 尘脱落到除尘的 灰斗内,在料位 信号的控制下, 将粉尘输送到指 定地点
谢谢观看
22
2019/12/23
23
14
转动轴 振打锤
阴极振打装置
绝缘板
传动轴
瓷转轴
阴极振打位于除尘器内顶部,由电机传动振打极线框架。
不同与阳打的是:阴极部分全部带电所以传动部分需由瓷转轴隔开。
15
瓷转轴加热
注意事项:
升压前两小时须先 打开加热装置,保 持瓷瓶干燥,避免 爬电
阴打电机首次通电 时须点动控制电机, 确认正确方向后方 可使用,如反转会 使瓷瓶爆裂
通电后检查电 机温度、声音有 无异常
阳极振打电机位于除尘器检修平台,作用是将粘附在阳极板上的纷尘通过振打 使其脱落,振打时间由PLC周期性控制,也可手动连续振打(维修/调试时使用)。
13
阳极振打现场操作箱
阳 打 操 作 箱
位于本体的检修平台,控制阳打的手动/自动,调试维修时使用。正常使用时须 打到远程位置,让PLC时序来控制电机,切勿长时间使用手动振打。
沉积在极板上的粉尘必 须通过振打及时清灰,极 板上的积灰过多影响放电, 影响尘粒的驱进速度,还 会引起反电晕,大大降低 除尘效率
11
2019/12/23
12
阳极振打电机
转动轴 转动链条
减速机 电机
注意事项:
调试前须检查 变速箱内是否已 加满齿轮油
检查链条松紧 程度
第一次通电时 须点动控制电机, 确认正确方向后 方可使用
16
瓷套
外部示意图
内部示意图
瓷套是支撑阴极框架的重要部件,一个电场由四个瓷套共同支撑,筒内装有加 热装置及测温装置,由测温装置(PT100)将温度信号传到PLC温度模块,模块里 设定上下线温度,使其保持恒温,保证筒内温度干燥,防止结露,避免爬电现象, 外部有保温筒防止热量散发,使瓷套内外温度相近(如温差较大易使瓷套破裂)。
温度传感器:主要检测变压器油温,当变压器温升超过45℃时(温升=变压器温度-环境温度) 发出临界油温度报警信号。危险油温报警时检查线路是否完好,检查温度传感器是否正常, 检查调整器设置是否正确。连接线需使用屏蔽电缆,接线方式采用两相三线制,
7
静电除尘器本体
内部结构 工作原理 振打清灰装置 加热装置 灰斗
2
晶闸管电路
具有二极管的正向导通特性 具有门极触发信号,可以调节交流电压输出
3
电源
高压整流 变压器
整流变压器
空气吸湿器 (内装有硅胶)
隔离 开关
电场
硅整流变压器一般装在除 尘器顶部,与高压隔离开关相 连。电压由硅整流变压经隔离 开关送至电场。
硅胶正常时显白色,吸水后 变黄色;如有变色,必须立即更 换。
基本电路图
交流380V经高压控制柜调压后送入整流变压 器初级,经升压、整流后输出足以维持设 备工作的负高压。
1
高压控制器的控制原理
控制器根据设定的工作模式和控制方式按不 同算法确定每个半波的导通角,并发出相应的定 时值启动内部定时器,定时时间到,定时器输出 SCR移相触发脉冲。触发脉冲经门控电路送至 SCR触发电路,经光控可控硅隔离输出两路同电 源正、负半波同步的晶闸管出发信号,经SCR调 控输出的电压、电流不断增大。而电压、电流反 馈信号又由A/D输入控制器,不断调整导通角使 输出达到设定值。
8
本体内部结构
阴极振打及 加热装置
阳极板和 阴极线
阳极振 打装置
灰斗
本体内部 主要是相互错 开的阳极板和 阴极线(也称 集尘极和电晕 极),另外还 有振打装置、 加热装置和位 于底部的灰斗 组成。
9
静电除尘器工作原理
电晕极
电晕区
集尘极
电晕极放电 使电晕区气体电 离产生阴离子和 阳离子,阴阳离 子吸附在粉尘上, 在电场力的作用 下向两极运动, 因电晕区范围较 小,大部分粉尘 沉积在集尘极上, 少部分在电晕极 上。
19
检修孔
布线桥架 顶部检修孔
下部检修孔
顶部检修孔
检修观察时使用。进入除尘器内部前必须关闭所有电源,锁必安全连锁箱, 控制柜上须挂有安全警示牌,必要时需专人看护。将隔离开关刀闸打到接地位 置。检修照明尽量采用24V安全电源
20
检修箱/加热端子箱
加热端子箱
检修箱
检修箱/加热端子箱都位于除尘器顶部,因长期安装在户外,箱子必须达到 防尘/防雨级别。检修箱主要是方便检修时使用,内有380V/220V/24V电源。 加热端子箱用途是分流加热电缆,控制部分加热回路的作用。
粉尘沉积较多时,会影响除尘的效率,需要清除,以保证静电除尘 器的正常工作。
10
阳极振打装置
阳极板
轴套 振打锤 传动轴
阳极振打装置机械部分 由中心轴、轴套、振打锤 等组成。
调试时须配合本体安装 单位检查轴心是否在一条 线,每个锤头的中心与极 板固定粱对齐,轴传动是 否良好。以上每一向都对 振打效率起着关键性的作 用。
4
整流变维护注意事项
1/2 1/3
0
油位保持在1/3位置
瓷瓶无裂痕,无渗油现象
换油时须保证是25#变压器油
放油处无渗漏油现象
5
接地装置
整流变内部 与外壳接地
整流变外壳与 除尘器本体接
地Байду номын сангаас
接地可靠,接地电阻应小于4欧姆
6
整流变压器部件
(瓦丝)气体继电器:正常情况应该是注满油,如发现内有空气,可打开上面排气孔将空气排净.若变 压器漏油而使油面降低,将发出报警信号。当变压器内发生严重故障,气体继电器触点动作, 同样发出报警信号。
瓷转轴在除尘器部件中也起着关键性的作用,位于阴极振打下部,阴极线所有框架都是带
负高压,但振打装置在壳体接地,所以必须使用瓷转轴来绝缘振打传动装置,瓷转轴下部装
有加热装置及测温装置,由测温装置(PT100)将温度信号传到PLC温度模块,模块里设定
上下线温度,使其保持恒温,加热空气干燥瓷瓶,保持绝缘强度。避免爬电
17
阴极振打电机
瓷转轴保温筒
阴打电机 瓷转轴
加热器
阴极振打电机位于除尘器的顶部平台,作用是将粘附在阴极板上的粉尘通过 振打使其脱落,振打时间由PLC时序周期性控制,也可手动连续振打(维修/ 调试时使用)。
18
除尘器灰斗
粉尘由电场 分离后粘附在集 尘极,然后借助 于振打装置将纷 尘脱落到除尘的 灰斗内,在料位 信号的控制下, 将粉尘输送到指 定地点