(精选)高等代数作业 第二章行列式答案

合集下载

高等代数与解析几何1~4章习题答案(DOC)

高等代数与解析几何1~4章习题答案(DOC)

高代与解几第二章自测题(一)——行列式一、 判断题1. 一个排列施行一次对换后,其逆序数改变1.( × )2. 一个排列施行一次对换后,其奇偶性改变.( √ )3. 2≥n 时,n 级的奇排列共2!n 个. ( √ ) 二、填空题1. 排列)15342( 的逆序数是 5 ,它是一个 奇 排列. 排列 2)22)(2)(12(13 --n n n 的逆序数是 n (n -1) .2. 设行列式ijn nD a ⨯=,则n n A a A a A a 1112121111...+++= D ,n n A a A a A a 5152125111...+++= 0 .3. 行列式D =x x x x x x 2213321232321--的展开式中4x 的系数是 -4 ,常数项是 -18 .4. 排列821j j j 的逆序数是9,则排列 178j j j 的逆序数是 19 .5. 设82718491423123267----=D ,则14131211M M M M -+-= 240 .二、证明题3. nn D n 20012000302202002210002----=(提示:逐行向下叠加得上三角形行列式)4. nD n 222232222222221=(提示:爪型行列式)高代与解几第二章自测题(二)——矩阵,线性方程组一、 判断题1. 如果矩阵A 有r 阶子式大于零,那么r A rank >)(.( ×)2. 如果矩阵A 没有非零子式,那么0)(=A rank .(√ )3. 如果矩阵A 的r 阶子式都等于零,那么r A rank <)(.( √)4. 初等变换不改变矩阵的秩.(√ )5. 若n 元线性方程组有2个解,则其增广矩阵的秩小于n .(√ ) 三、填空题1. 54⨯矩阵A 的秩为2, 则A 的标准形为___⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000000001000001____________. 2 若n 元线性齐次方程组仅有零解,则其系数矩阵的秩为 n .三、计算与证明题1. 求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=++++=-++=++++04523,05734,03,02543254321543154321x x x x x x x x x x x x x x x x x x 的一般解. 解:对这个齐次线性方程组的系数矩阵施行行初等变换,得A =⎪⎪⎪⎪⎪⎭⎫⎝⎛-45230573411110312111→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----45230452304523012111→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000343532103131310100000000004523012111 取543,,x x x 为自由未知量,得其一般解为:……2. 解线性方程组12341234123421,4222,2 1.x x x x x x x x x x x x +-+=⎧⎪+-+=⎨⎪+--=⎩解 方程组的增广矩阵为:B =⎢⎢⎢⎣⎡112224112--- 111- 121⎥⎥⎥⎦⎤,….……………………………….. 2分 对B 做行初等变换:B =⎢⎢⎢⎣⎡211000010000- 100⎥⎥⎥⎦⎤,…………………………….....…… 6分 从而得方程组的解为……3. 设n a a a ,,,21 是数域K 中互不相同的数,n b b b ,,,21 是数域K 中任一组给定的数,证明:有唯一的数域K 上的多项式()112210--++++=n n x c x c x c c x f 使()i i b a f =,.,...,2,1n i =证明:要证有唯一的数域K 上的多项式()112210--++++=n n x c x c x c c x f 使()i i b a f =()n i ,,2,1 =,即要证有唯的一组数1210,...,,,-n c c c c ,使得⎪⎪⎩⎪⎪⎨⎧=++++==++++==++++=------n n n n n n n n n n n b a c a c a c c a f b a c a c a c c a f b a c a c a c c a f 112210212122221021111221101...)(......)(...)(1 …… (2分)即证方程组⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++------n n n n n n n n n n b x a x a x a x b x a x a x a x b x a x a x a x 1122102112222120111122110............1 …… (4分) 有唯一一组解.而此方程组的方程个数与未知数个数相等.其系数行列式121323312222112111111----=n nn nn n n a a a a a a a a a a a a D……(5分) T D 是范德蒙德行列式,由范德蒙德行列式的结论知,∑≤<≤-==nj i i jT a aD D 1)( ……(7分)又n a a a ,,,21 是数域K 中互不相同的数,故0≠D ,由克莱姆法则知,上述方程组有唯一一组解.得证. …… (10分)4. 设n a a a ,...,,21是互不相同的数,b 是任意数,证明线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++----11212111221121......1...n n n n n n n n n bx a x a x a b x a x a x a x x x 只有唯一解,并求出这个解.证明:观察知此方程组的未知量个数与方程个数相等,其系数行列式D =1121121111---n nn n na a a a a a是n 阶范德蒙德行列式 …… (4分) 因此,D =∏≤<≤-ni j j ia a1)(,由于n a a a ,...,,21是互不相同的数,所以0≠D ,根据克莱姆法则知此线性方程组只有唯一解, n k DD x kk ,...,2,1,==,其中k D 是将系数行列式D 的第k 列换成 T n b b b ),...,,,1(12-, …… (7分)显然k D 依然是n 阶范德蒙德行列式,且k D 的值只是将D 的值中k a 的地方换成b ,因此n k a a a a a a a a a b a b b a b a x k k k k k k n k k n k ,...,2,1,))...()()...(())...()()...((111111=--------=-+-+ (10分)5. 假设有齐次线性方程组⎪⎩⎪⎨⎧=++=++=++,0,02,0321321321 x x x p x x x x x x当p 为何值时,方程组仅有零解?又在何时有非零解?在有非零解时,求出其一般解。

线性代数课程习题

线性代数课程习题

《高等代数》课程习题第1章行列式习 题 1.11. 计算下列二阶行列式: (1)2345 (2)2163- (3)xxx x cos sin sin cos - (4)11123++-x x x x(5)2232ab b a a (6)ββααcos sin cos sin (7)3log log 1a b b a2. 计算下列三阶行列式:(1)341123312-- (2)00000d c b a (3)d c e ba 0000 (4)zy y x x 00002121(5)369528741 (6)01110111-- 3. 用定义计算行列式:(1)4106705330200100 (2)1014300211321221---(3)5000000004000300020001000 (4)dcb a 100110011001---.4.用方程组求解公式解下列方程组:(1) ⎪⎩⎪⎨⎧=-+=--=--0520322321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+-=-+=++232120321321321x x x x x x x x x习 题 1.21. 计算下列行列式:(1)123112101 (2)15810644372---- (3)3610285140 (4)6555655562.计算行列式(1)2341341241231234(2)12114351212734201----- (3)524222425-----a a a(4)322131399298203123- (5)0532004140013202527102135---- 3.用行列式的性质证明:(1)322)(11122b a b b a ab aba -=+(2)3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++ 4.试求下列方程的根:(1)022223356=-+--λλλ(2)0913251323221321122=--x x5.计算下列行列式(1)8364213131524273------ (2)efcfbfde cd bdae ac ab---(3)2123548677595133634424355---------- (4)111110000000002211n n a a a a a a ---(5)xaaa x a a a x(6)abb a b a b a 000000000000习 题 1.31. 解下列方程组(1)⎪⎩⎪⎨⎧-=++=+--=++1024305222325321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x2. k 取何值时,下列齐次线性方程组可能有非零:(1) ⎪⎩⎪⎨⎧=+-=++-=++0200321321321x x x x kx x kx x x (2)⎪⎩⎪⎨⎧=+-=++=++0300321321321x x x x kx x x x kx 习 题 五1.41.计算下列行列式(1)3010002113005004, (2)113352063410201-- (3)222111c b a c b a(4)335111243152113------, (5)nn n n n b a a a a a b a a a a D ++=+212112111112.用克莱姆法则解线性方程(1)⎪⎩⎪⎨⎧=+-=-+=--114231124342321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++=+-+=+-+=++3322212543143214321321x x x x x x x x x x x x x x3.当λ为何值时,方程组⎪⎩⎪⎨⎧=+-=+-=++0020321321321x x x x x x x x x λλ可能存在非零解?4.证明下列各等式(1) 222)(11122b a b b a a b ab a -=+(2) ))()((4)2()1()2()1()2()1(222222222c b a c a b c c c b b ba a a ---=++++++ (3) ))()()()()()((111144442222d c b a d c d b c b d a c a b a d c b a d c b a d c b a+++------=5.试求一个2次多项式)(x f ,满足1)2(,1)1(,0)1(-==-=f f f .第2章矩阵 习 题 2.21.设 ⎥⎦⎤⎢⎣⎡=530142A , ⎥⎦⎤⎢⎣⎡-=502131B , ⎥⎦⎤⎢⎣⎡--=313210C , 求3A -2B +C 。

高等代数《行列式》部分习题及解答

高等代数《行列式》部分习题及解答

高等代数《行列式》部分习题及解答例1:决定以下9级排列的逆序数,从而决定它们的奇偶性: 1).134782695;2).217986354;3).987654321. 答:1). ()134782695=10τ,134782695是一个偶排列;2). ()217986354=18τ,217986354是一个偶排列; 3). ()987654321=36τ,987654321是一个偶排列. 例2:写出把排列12435变成排列25341的那些对换.答:()()()()()()()12154,312435214352543125341−−→−−→−−−→.例3:如果排列121...n n x x x x -的逆序数为k ,排列121...n n x x x x -的逆序数是多少?答:()112n n k --例4:按定义计算行列式: 000100201).0100000n n - 010000202).0001000n n -001002003).1000000n n-答:1).原行列式()()()()1,1,,2,121!1!n n n n n n τ--=-=-2).原行列式()11!.n n -=-3).原行列式()()()1221!n n n --=-.例5:由行列式定义计算()212111321111x x x f x x x-=中4x 与3x 的系数,并说明理由. 答:()f x 的展开式中x 的4次项只有一项;2,x x x x ⋅⋅⋅故4x 的系数为2;x 的3次项也只有一项()()213411,x x x τ-⋅⋅⋅故3x 的系数为-1.例6:由111111=0111,证明:奇偶排列各半.证明:由于12n j j j 为奇排列时()()121n j j j τ- 为-1,而偶排列时为1,.设有k 个奇排列和l 个偶排列,则上述行列式()()()()12121212110.n n nnj j j j j j j j j j j j l k ττ=-+-=-=∑∑ 即奇偶排列各占一半.例7:证明1111111112222222222b cc a a b a b c b c c a a b a b c b c c a a b a b c ++++++=+++. 证明:111111111111111111122222222222222222222222.2b cc a a bac aa baa b a cab c b c c a a b a c a a b a a b a c a b c b c c a a b a c a a b a a b a c a b c +++-+++++++=-++=++=+++-++++ 例8:算出行列式:121401211).00210003-;1122).321014-的全部代数余子式. 答:111213142122232431323334414243441).6,0;12,6,0;15,6,3,0;7,0,1, 2.A A A A A A A A A A A A A A A A =-====-=====-=-=====-1112132122233132332).7,12,3;6,4,1;5,5, 5.A A A A A A A A A ==-====-=-== 例9:计算下面的行列式:111121131).12254321-;11112112132).1111321112---;01214201213).135123312121035-- 答:1111111111110115011501151).= 1.011400010012012300120001---------==-=-------原式132).12-3).483-. 例10:计算下列n 级行列式: 0000001).;000000x y x y x yyx1112121222122).n nn n n na b a b a b a b a b a b a b a b a b ---------122222223).;2232222n1231110004)..02200011n n n n-----答:()()110000000000000001).11.000000000000000n n n n xy xy yx y x xy x y x y x y x yy yxxxy++=+-=+-2).当1n =时,为11a b -;当2n =时,为()()1212a a b b --;当3n ≥时,为零.()12221000222222223).22!223200102220002n n n -==-⋅--(利用第2行(列)的特点)()()11231110001!4).1.02200211n n nn n n---+=---- (从左起,依次将前一列加到后一列) 例11:用克拉默法则解线性方程组1234123412341234232633325323334x x x x x x x x x x x x x x x x -++=⎧⎪-++=⎪⎨--+=⎪⎪-+-=⎩.答:2132333270031123131d --==-≠----,所以可以用克拉默法则求解.又因16132533270;31124131d --==-----22632353270;33123431d ==---32162335270;31323141d --==----42136333570;31133134d --==----所以此线性方程组有唯一解,解为1234 1.x x x x ====例12:求12121212111222,n nnnj j j j j j j j j nj nj nj a a a a a a a a a ∑这里12nj j j ∑是对所有n 级排列求和.答:对每个排列12n j j j ,都有:()()121212121111112122221222121.n n nnj j j n j j j j j j nn n nnnj nj nj a a a a a a a a a a a a a a a a a a τ=- 因为在全部n 级排列中,奇偶排列个数相同,各有!2n 个.所以121212121112220n n nnj j j j j j j j j nj nj nj a a a a a a a a a =∑.例13:计算n 级行列式:12222122221212111.nnn n n nnn n nx x x x x x x x x x x x ---答:作范德蒙德行列式:1212222121111111211211111.n n n n n n n n n n nnn nn n x x x x x x x x D x x x x x x x x ++----++=将这个行列式按最后一列展开,展开式中11n n x -+的系数的()11n n++-倍就是所求行列式D ,因为()111,ji i j n D xx ≤<≤+=-∏所以()()()()11111111.nnn nji k ji k k k i j n i j n D xx x xx x ++==≤<≤+≤<≤+=---=-∑∑∏∏。

高等代数2.1-引言

高等代数2.1-引言
第二章 行列式 §2.1 引言
联合收入问题
R,S,T三公司有右 三公司有右 图股份关系。 公司 图股份关系。R公司 拥有T公司60%股份 公司60%股份, 拥有 公司60%股份, 公司掌握R公司 T公司掌握 公司 20%股份 ,R,S,T 股份…, 股份 各自营业净收入分别 10、 万元。 是10、8和6万元。求 各公司联合收入及实 际收入。 际收入。
+
15/27
例2.求 n 级排列 135 (2n 1)(2n)(2n 2) 42 . 的逆序数. 的逆序数.
方法一
解:135 (2n 1)(2n)(2n 2) 42
12
n1
n1
1
τ = 1 + 2 + + (n 1) + (n 1) + + 2 + 1 = n(n 1)
16/27
19/27
定理1 定理
对换改变排列的奇偶性.即经过一次对换, 对换改变排列的奇偶性.即经过一次对换, 奇排列变成偶排列,偶排列变成奇排列. 奇排列变成偶排列,偶排列变成奇排列. 证明 1) 特殊情形:作相邻对换 特殊情形: 设排列为
a1 al ab b1 bm ab
对换 a 与 b
a1 al ba b1 bm
两式相减消去 x2,得
(a11a22 a12a21)x1 = b1a22 a12b2 ;
4/27
类似地, 类似地,消去 x1,得 (a11a22 a12a21)x1 = b1a22 a12b2;
(a11a22 a12a21)x2 = a11b2 b1a21 ,
当 a11a22 a12a21 ≠ 0 时, 原方程组有唯一解
除 a , b 外,其它元素所成逆序不改变. 其它元素所成逆序不改变

线性代数课后答案(高等教育出版社)

线性代数课后答案(高等教育出版社)

第一章行列式1.利用对角线法则计算下列三阶行列式:(1)38114112---;解38114112---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4.(3)222111cbacba;解222111cbacba=bc2+ca2+ab2-ac2-ba2-cb2=(a-b)(b-c)(c-a).4.计算下列各行列式:(1)71125102214214;解7112510221421411423102211021473234-----======cccc34)1(143102211014+-⨯---=143102211014--=014171721099323211=-++======cccc.(2)265232112131412-;解265232112131412-265321221341224--=====cc412321221341224--=====rr321221341214=--=====rr.(3)efcfbfdecdbdaeacab---;解efcfbfdecdbdaeacab---ecbecbecba d f---=a b c d e fa d fbc e4111111111=---=.(4)dcba111111---.解dcba111111---dcbaabarr11111121---++=====dcaab1111)1)(1(12--+--=+111123-+-++=====cdcadaabdcccdadab+-+--=+111)1)(1(23=abcd+ab+cd+ad+1.6. 证明:(1)1112222bbaababa+=(a-b)3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((ab a a b a b +--==(a -b)3 .(2)yx z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++bz ay by ax x byax bx az z bx az bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x byax x z bx az z y b y by ax z x bx az y z bz ay x a +++++++=22z y x yx z x z y b y x z x z y z y x a 33+=y x z xz y z y x b y x z x z y z y x a 33+=y x z xz y z y x b a )(33+=.8. 计算下列各行列式(Dk 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0;解a a a a a D n 0 0010 000 00 0000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开))1()1(10 00 0000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a ann n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=an -an -2=an -2(a2-1).(2)x a a a x aa ax D n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ;解 将第一行乘(-1)分别加到其余各行, 得ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0 ,再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a](x -a)n第二章 矩阵及其运算 1. 计算下列乘积:(5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a11x1+a12x2+a13x3 a12x1+a22x2+a23x3 a13x1+a23x2+a33x3)⎪⎪⎭⎫⎝⎛321xx x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.2. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫ ⎝⎛--=150421321B , 求3AB -2A 及A TB . 解⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z1, z2, z3到x1, x2, x3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x . 4. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(3)(A +B)(A -B)=A2-B2吗? 解 (A +B)(A -B)≠A2-B2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B)(A -B)≠A2-B2.5. 举反列说明下列命题是错误的:(1)若A2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A2=0, 但A ≠0. (2)若A2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A ,⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求Ak .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A kk k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ .用数学归纳法证明:当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫⎝⎛-=---k k kk k k k k k k k A λλλλλλ0002)1(121.8. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明BTAB 也是对称矩阵. 证明 因为A T =A , 所以 (BTAB)T =BT(BTA)T =BTA TB =BTAB , 从而BTAB 是对称矩阵. 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫⎝⎛--=1225.(3)⎪⎪⎭⎫⎝⎛---145243121; 解⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a1a2⋅ ⋅ ⋅an ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 10011211 .12. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .19.设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 20. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A8(5E -6A +A2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114. 21. 设Ak =O (k 为正整数), 证明(E -A)-1=E +A +A2+⋅ ⋅ ⋅+Ak -1.证明 因为Ak =O , 所以E -Ak =E . 又因为 E -Ak =(E -A)(E +A +A2+⋅ ⋅ ⋅+Ak -1), 所以 (E -A)(E +A +A2+⋅ ⋅ ⋅+Ak -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A2+⋅ ⋅ ⋅+Ak -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由Ak =O , 有E =(E -A)+(A -A2)+A2-⋅ ⋅ ⋅-Ak -1+(Ak -1-Ak) =(E +A +A2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A2+⋅ ⋅ ⋅+Ak -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A2+⋅ ⋅ ⋅+Ak -1.22. 设方阵A 满足A2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A2-A -2E =O 得 A2-A =2E , 即A(A -E)=2E ,或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A2-A -2E =O 得A2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或 EA E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A2-A -2E =O 得A2-A =2E , 两端同时取行列式得 |A2-A|=2, 即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A2, |A +2E|=|A2|=|A|2≠0, 故A +2E 也可逆. 由 A2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E ⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫ ⎝⎛--340313021201; 解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r2+(-2)r1, r3+(-3)r1. )~⎪⎪⎭⎝--231(下一步: r2÷(-1), r3÷(-2). )~⎪⎪⎭⎫⎝⎛--131121(下一步: r3-r2. )~⎪⎪⎭⎫⎝⎛--331121(下一步: r3÷3. )~⎪⎪⎭⎫⎝⎛--131121(下一步: r2+3r3. )~⎪⎪⎭⎫⎝⎛-11121(下一步: r1+(-2)r2, r1+r3. )~⎪⎪⎭⎫⎝⎛111.(3)⎪⎪⎪⎭⎫⎝⎛---------1243323221453334311;解⎪⎪⎪⎭⎫⎝⎛---------1243323221453334311(下一步: r2-3r1, r3-2r1, r4-3r1. )~⎪⎪⎪⎭⎫⎝⎛--------1010566388434311(下一步: r2÷(-4), r3÷(-3) , r4÷(-5). )~⎪⎪⎪⎭ ⎝---2210022********(下一步: r1-3r2, r3-r2, r4-r2. )~⎪⎪⎪⎭⎫ ⎝⎛---00000000002210032011.3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z1, z2, z3到x1, x2, x3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛323513123; 解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫ ⎝⎛---101011001200410123 ~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/12/1121112/33/26/71故逆矩阵为⎪⎪⎪⎪⎭⎫⎝⎛----2121211233267.(2)⎪⎪⎪⎭⎫⎝⎛-----1212321122123.解⎪⎪⎪⎭⎫⎝⎛-----11111212321122123~⎪⎪⎪⎭⎫⎝⎛----131111225941212321~⎪⎪⎪⎭⎫⎝⎛--------214311112111212321~⎪⎪⎪⎭⎫⎝⎛-------10612431111111212321~⎪⎪⎪⎭⎫⎝⎛----------1061263111`1221111121~⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010*********故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------10612631110104211. 5. (2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫⎝⎛-=132321B , 求X 使XA =B . 解 考虑A TXT =BT . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(TTB A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r , 所以⎪⎪⎭⎫⎝⎛---==-417142)(1TTTB A X , 从而⎪⎭⎫⎝⎛---==-4741121BA X . 9. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫⎝⎛-0000001000001010001100001,此矩阵的秩为4, 其第2行和第3行是已知向量.12. 设⎪⎪⎭⎫ ⎝⎛----=32321321k k k A , 问k 为何值, 可使 (1)R(A)=1; (2)R(A)=2; (3)R(A)=3.解⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R(A)=1; (2)当k =-2且k ≠1时, R(A)=2;(3)当k ≠1且k ≠-2时, R(A)=3. P106/1.已知向量组A : a1=(0, 1, 2, 3)T , a2=(3, 0, 1, 2)T , a3=(2, 3, 0, 1)T ;B : b1=(2, 1, 1, 2)T , b2=(0, -2, 1, 1)T , b3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示.证明 由 ⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫ ⎝⎛-------971820751610402230421301~r⎪⎪⎪⎭⎫⎝⎛------531400251552000751610421301 ~r⎪⎪⎪⎭⎫ ⎝⎛-----000000531400751610421301~r知R(A)=R(A , B)=3, 所以B 组能由A 组线性表示. 由⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=000000110201110110220201312111421402~~r r B知R(B)=2. 因为R(B)≠R(B , A), 所以A 组不能由B 组线性表示.4. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ;(2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A , 所以R(A)=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为22200043012||≠=-=B ,所以R(B)=3等于向量的个数, 从而所给向量组线性相无关.5. 问a 取什么值时下列向量组线性相关?a1=(a , 1, 1)T , a2=(1, a , -1)T , a3=(1, -1, a)T . 解 以所给向量为列向量的矩阵记为A . 由)1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时, R(A)<3, 此时向量组线性相关.9.设b1=a1+a2, b2=a2+a3, b3=a3+a4, b4=a4+a1, 证明向量组b1, b2, b3, b4线性相关. 证明 由已知条件得a1=b1-a2, a2=b2-a3, a3=b3-a4, a4=b4-a1, 于是 a1 =b1-b2+a3=b1-b2+b3-a4 =b1-b2+b3-b4+a1, 从而 b1-b2+b3-b4=0,这说明向量组b1, b2, b3, b4线性相关.11.(1) 求下列向量组的秩, 并求一个最大无关组:(1)a1=(1, 2, -1, 4)T , a2=(9, 100, 10, 4)T , a3=(-2, -4, 2, -8)T ; 解 由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a ,知R(a1, a2, a3)=2. 因为向量a1与a2的分量不成比例, 故a1, a2线性无关, 所以a1, a2是一个最大无关组.12.利用初等行变换求下列矩阵的列向量组的一个最大无关组:(1)⎪⎪⎪⎭⎫ ⎝⎛4820322513454947513253947543173125;解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~r r r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125,所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫ ⎝⎛---14011313021512012211. 解 因为⎪⎪⎪⎭⎫ ⎝⎛---141131302151201221113142~r r r r --⎪⎪⎪⎭⎫ ⎝⎛------22201512015120122112343~r r r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211,所以第1、2、3列构成一个最大无关组.13. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T 的秩为2, 求a , b .解 设a1=(a , 3, 1)T , a2=(2, b , 3)T , a3=(1, 2, 1)T , a4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=52001110311161101110311131********) , , ,(~~2143b a a b a b a r r a a a a ,而R(a1, a2, a3, a4)=2, 所以a =2, b =5.20.求下列齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ;解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A , 于是得⎩⎨⎧+=-=43231)4/1()4/3(4xx x x x . 取(x3, x4)T =(4, 0)T , 得(x1, x2)T =(-16, 3)T ; 取(x3, x4)T =(0, 4)T , 得(x1, x2)T =(0, 1)T .因此方程组的基础解系为ξ1=(-16, 3, 4, 0)T , ξ2=(0, 1, 0, 4)T .(2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x .解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛----=000019/719/141019/119/201 367824531232~r A , 于是得⎩⎨⎧+-=+-=432431)19/7()19/14()19/1()19/2(xx x x x x . 取(x3, x4)T =(19, 0)T , 得(x1, x2)T =(-2, 14)T ; 取(x3, x4)T =(0, 19)T , 得(x1, x2)T =(1, 7)T . 因此方程组的基础解系为ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .26. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x ;解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=2100013011080101 322351211250011~r B .与所给方程组同解的方程为⎪⎩⎪⎨⎧=+=--=2 13 843231x x x x x .当x3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2)T . 与对应的齐次方程组同解的方程为⎪⎩⎪⎨⎧==-=0 43231x x x x x .当x3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0)T .(2)⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x .解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-----=0000022/17/11012/17/901 6124211635113251~r B . 与所给方程组同解的方程为⎩⎨⎧--=++-=2)2/1((1/7)1)2/1()7/9(432431x x x x x x .当x3=x4=0时, 得所给方程组的一个解 η=(1, -2, 0, 0)T .与对应的齐次方程组同解的方程为⎩⎨⎧-=+-=432431)2/1((1/7))2/1()7/9(x x x x x x .分别取(x3, x4)T =(1, 0)T , (0, 1)T , 得对应的齐次方程组的基础解系 ξ1=(-9, 1, 7, 0)T . ξ2=(1, -1, 0, 2)T .。

高等代数作业第二章行列式答案

高等代数作业第二章行列式答案

高等代数作业第二章行列式答案高等代数作业第二章行列式答案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII高等代数第四次作业第二章行列式§1—§4一、填空题1.填上适当的数字,使72__43__1为奇排列. 6,52.四阶行列式44?=ija D 中,含24a 且带负号的项为_____. 112433421224314313243241,,a a a a a a a a a a a a3.设.212222111211d a a a a a a a a a nnn n n n =则._____122122211121=n n nn n n a a a a a a a a a(1)2(1)n n d -- 4.行列式11111111---x 的展开式中, x 的系数是_____. 2 二、判断题1. 若行列式中有两行对应元素互为相反数,则行列式的值为0 ()√2. 设d =nn n n nna a a a a a a a a 212222111211则121112222121n n n nnn a a a a a a a a a =d ()×3. 设d =nnn n n na a a a a a a a a 212222111211则d a a a a a a a a a nnn n n n-=112112122221()×4.abcd zzz dy y c x b a =000000 ( ) √ 5.abcd dcx b y x a z y x -=000000 ()× 6.0000000=yxh gf e d c b a ()√7. 如果行列式D 的元素都是整数,则D 的值也是整数。

()√ 8. 如果行列D 的元素都是自然数,则D 的值也是自然数。

()×9.n na a a a a a 2121= ()×10. 010002000010nn -=n !()×三、选择题1.行列式01110212=-k k 的充分必要条件是 ( ) D(A )2=k (B )2-=k (C )3=k (D )2-=k 或 32.方程093112=x x 根的个数是( )C (A )0 (B )1 (C )2 (D )3 3.下列构成六阶行列式展开式的各项中,取“+”的有 ( )A(A )665144322315a a a a a a (B )655344322611a a a a a a(C )346542165321a a a a a a (D )513312446526a a a aa a4. n 阶行列式的展开式中,取“–”号的项有()项 A(A )2!n (B )22n (C )2n (D )2)1(-n n5.若(145)11243455(1)k l k l a a a a a τ-是五阶行列式的一项,则l k ,的值及该项的符号为( )B (A )3,2==l k ,符号为正;(B )3,2==l k ,符号为负;(C )3,1k l ==,符号为正;(D )1,3k l ==,符号为负6.如果0333231232221131211≠==M a a a a a a a a a D ,则3332312322211312111222222222a a a a a a a a a D = = ( )C(A )2 M (B )-2 M (C )8 M (D )-8 M 7.如果1333231232221131211==a a a a a a a a a D ,3332313123222121131211111232423242324a a a a a a a a a a a a D ---= ,则=1D ( )C(A )8 (B )12- (C )24- (D )24四、计算题1.计算32142143143243213 2142143143243213 21421431432111110 =123012101 210111110------=4 40004001 210111110---=400004001 210111110---==1602. 计算311113111131 1113.解:3111131111311113=3111 1311113111116?=2 000020000201 1116?=.48263=?高等代数第五次作业第二章行列式§5—§7一、填空题1. 设ij ij A M ,分别是行列式D 中元素ij a 的余子式,代数余子式,则._____1,1,=+++i i i i A M 02. 122305403-- 中元素3的代数余子式是 .6-3. 设行列式4321630211118751=D ,设j j A M 44,分布是元素j a 4的余子式和代数余子式,则44434241A A A A +++ = ,44434241M M M M +++= .0,66- 4. 若方程组??=+-=++=+02020z y kx z ky x z kx仅有零解,则k . 2≠5. 含有n 个变量,n 个方程的齐次线性方程组,当系数行列式D 时仅有零解. 0≠ 二、判断题1. 若n 级行列试D 中等于零的元素的个数大于2n n -,则D=0 ()√2.222)(00000000a b b a a b b a ab -= ()√ 3.222)(00000000b a a b b a a b b a -= ()√4.0=d b a c d b c a b d c a b d a c ()√ 5.483111131111311113= ()√6.)(000000hx gy a yh fdx g e c b a -= ()× 7.0107310111187654321=--- ()√三、选择题1. 行列式102211321的代数余子式13A 的值是( )D(A )3 (B )1- (C )1 (D )2-2.下列n (n >2)阶行列式的值必为零的是 ( )D(A )行列式主对角线上的元素全为零(B )行列式主对角线上有一个元素为零(C )行列式零元素的个数多于n 个(D )行列式非零元素的个数小于n 个 3.若111111111111101)(-------=x x f ,则)(x f 中x 的一次项系数是( )D(A )1 (B )1- (C )4 (D )4-4.4阶行列式4433221100000000a b a b b a b a 的值等于( )D(A )43214321b b b b a a a a - (B )))((43432121b b a a bb a a -- (C )43214321b b b b a a a a + (D )))((41413232b b a a b b a a -- 5.如果122211211=a a a a ,则方程组 =+-=+-0022221211212111b x a x a b x a x a 的解是( )B(A )2221211a b a b x =,2211112b a b a x = (B )2221211a b a b x -=,2211112b a b a x =(C )2221211a b a b x ----=,2211112b a b a x ----=(D )2221211a b a b x ----=,2211112b a b a x -----=6. 三阶行列式第3行的元素为4,3,2对应的余子式分别为2,3,4,那么该行列式的值等于( )B(A )3 (B )7 (C )–3 (D )-77.如果方程组 ??=--=+=-+050403z y kx z y z ky x 有非零解,则 k =( )C (A )0 (B )1 (C )-1 (D )3 四、计算题1. 计算D=100110011001a a a a ---解:方法1:100110011001aa aa---21r r ?=a aa a 100 110001011---21 r ar +=aaa a a 1001 100100112--+- 32r r ?=aa a a a 10 101100112-+--232(1)r a r ++=aa a a a a 100 12001100112 3-++--=aa a a 11223-++=.13)1()2(2423++=+++a a a a a a 方法2:将行列式按第一行展开,有:100110011001a a a a ---=1011011010101a a a a a a-----=1]01111[2++---?a aa a a a=1])1([22++++a a a a a .1324++=a a 2. 计算12125431432321-=n n n D n解:12125431432321-n n n121)1(254)1(143)1(32)1(21212121-++++=n n n n n n n n n n121125411431321)1(21-+=n n n n11101111110321)1(21n nnn n --+=111111111)1(21n n nn n ---+= )1()1(0000111)1(121212)1(+-=---+=--n n n nn n n n n3. 计算6427811694143211111解:6427811694143211111)34)(24)(23)(14)(13)(12(------=12= 4. 计算=n D 12111111111na a a +++。

高等代数(北大版第三版)习题答案II

高等代数(北大版第三版)习题答案II

高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章—矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A为一个n级实对称矩阵,且,证明:必存在实n维向量,使。

证因为,于是,所以,且A不是正定矩阵。

故必存在非退化线性替换使,且在规范形中必含带负号的平方项。

于是只要在中,令则可得一线性方程组,由于,故可得唯一组非零解使,Xs即证存在,使。

13.如果A,B都是n阶正定矩阵,证明:也是正定矩阵。

证因为A,B为正定矩阵,所以BX为正定二次型,且,,因此,于是必为正定二次型,从而为正定矩阵。

14.证明:二次型是半正定的充分必要条件是它的正惯性指数与秩相等。

证必要性。

采用反证法。

若正惯性指数秩r,则。

即,22222 若令,y,则可得非零解使。

这与所给条件矛盾,故。

充分性。

由,知,222故有,即证二次型半正定。

.证明:是半正定的。

证()可见:。

21)当不全相等时2)当时f。

2故原二次型是半正定的。

AX是一实二次型,若有实n维向量X1,X2使16.设,。

X1。

证明:必存在实n维向量使X0设A的秩为r,作非退化线性替换将原二次型化为标准型,其中dr为1或-1。

由已知,必存在两个向量X1,X2使222和,X1故标准型中的系数不可能全为1,也不可能全为-1。

不妨设有p个1,q 个-1,且,即,这时p与q存在三种可能:,,下面仅讨论的情形,其他类似可证。

令,,,则由可求得非零向量X0使2222,X0即证。

17.A是一个实矩阵,证明:。

证由于的充分条件是与为同解方程组,故只要证明与同解即可。

事实上,即证与同解,故。

注该结论的另一证法详见本章第三部分(补充题精解)第2题的证明,此处略。

一、补充题参考解答1.用非退化线性替换化下列二次型为标准型,并用矩阵验算所得结果:1);2);3);4),其中。

n解1)作非退化线性替换,即,则原二次型的标准形为,且替换矩阵222222使,,其中2)若则。

高等代数习题解答(第二章)

高等代数习题解答(第二章)

高等代数习题解答第二章 行列式1.决定以下9级排列的逆序数,从而决定它们的奇偶性: 1)134782695; 2)217986354; 3)987654321.1)解 ()134********τ=,排列134782695是偶排列. 2)解 ()21798635418τ=,排列217986354是偶排列. 3)解 ()98765432136τ=,排列987654321是偶排列. 2.选择i 与k 使1)1274569i k 成偶排列; 2)1254897i k 成奇排列.1)解 当8,3i k ==时,()12748563910τ=,排列127485639为偶排列. 2)解 当3,6i k ==时,()1325648975τ=,排列132564897为奇排列. 3.写出把排列12435变成排列25341的那些变换. 解 (1,2)(1,5)(4,3)12435214352543125341→→→.4.决定排列(1)21n n - 的逆序数,并讨论它的奇偶性. 解 ()(1)(1)21012(2)(1)2n n n n n n τ--=++++-+-=. 当4n k =或41()n k k +=+∈ 时,排列为偶排列; 当42n k =+或43()n k k +=+∈ 时,排列为奇排列.5.如果排列121n n x x x x - 的逆序数为k ,排列121n n x x x x - 的逆序数是多少?解 由于一个n 级排列中,构成逆序的数对与构成顺序的数对总数是2(1)2n n n C -=,把一个排列颠倒后,原来的逆序变成顺序,原来的顺序变成逆序,所以排列121n n x x x x - 的逆序数(1)2n n k --. 6.在6级行列式中,233142561465a a a a a a 与324314516625a a a a a a 这两项应带有什么符号?解 由于(234516)(312645)4ττ+=+=;(341562)(234165)6410ττ+=+=,故两项均应带有正号.7.写出4级行列式中所有带负号并且包括因子23a 的项. 解 所求的项为112332a a a a -;12233441a a a a -;14233142a a a a - 8.按定义计算行列式:1)000100200100000n n-; 2)010000200001000n n -;3)00100200100000n n-.1)解 原行列式(1)((1)21)2(1)!(1)!n n n n n n τ--=-=- .2)解 原行列式(231)1(1)!(1)!n n n n τ-=-=- . 3)解 原行列式(1)(2)((1)(2)21)2(1)!(1)!n n n n n n n τ----=-=- .9.由行列式的定义证明:123451234512121200000000a a a a ab b b b bc cd de e =. 证明 由定义,行列式的一般项为125125()125(1)j j j j j j a a a τ- , 其中,125j j j 是一个5级排列.在这个5级排列中,345,,j j j 至少有一个大于或等于3,则相应的元素等于0,由此可知每一项都为0,从而行列式为0.10.由行列式的定义计算212111()321111xx x f x x x-=中4x 与3x 的系数,并说明理由.解 ()f x 的展开式中x 的4次项只有一项:(1234)(1)2x x x x τ-⋅⋅⋅,故4x 项的系数为2;x 的3次项也只有一项:(2134)(1)1x x x τ-⋅⋅⋅,故3x 项的系数为1-.11.由1111110111=证明:奇偶排列各半.证明 由于行列式的每个元素都等于1,所以它的每一项的绝对值都等于1,当行标按自然顺序排列时,符号由列标排列的奇偶性确定,当列标排列为奇排列时,符号为负,当列标排列为偶排列时,符号为正.由又由于行列式等于0,说明带正号的项与带负号的项个数相等,即(列标排列中)奇排列与偶排列各占一半.12.设21211112111111()1n n n n n n x x x a a a p x a a a ------=,其中121,,,n a a a - 是互不相同的数.1)由行列式定义,说明()p x 是一个1n -次多项式;2)由行列式性质,求()p x 的根.解 1)()p x 的展开式中,含1n x -的只有一项,其系数是211112112222111111(1)1n n n n n n n a a a a a a a a a --+-----,由于121,,,n a a a - 互不相同,上述的范德蒙德行列式不等于0,故1n x -项的系数不等于0,从而()p x 是一个1n -次多项式.2)2121111111112111111()()()1n n n n i j k i i k n n n n n x x x a a a p x a x a a a a a ----=≤<≤-----==∏-⋅∏-,而111()0n j k i k n a a -≤<≤-∏-≠,于是()p x 的根是121,,,n a a a - .13.计算下面的行列式:1)2464273271014543443342721621; 2)xy x y yx y x x y xy+++;3)3111131111311113; 4)1234234134124123;5)1111111111111111xx y y+-+-; 6)2222222222222222(1)(2)(3)(1)(2)(3)(1)(2)(3)(1)(2)(3)a a a a b b b b cc c cd d d d ++++++++++++.1)解 2464273271014543443342721621123100042732720005434431000721621c c c ++=23100010032720001004431000100621c c -= 121000100511327102144311621c c ÷÷=21312511327100121100294r r r r --=--529410=-⨯.2)解 xy x y y x y x x yx y +++()()()123222c c c x y y x y x y x yx x y xy++++=+++()()121211c x y y x y x y x y x xy÷++=++()2131120r r r r y x yx y xy x yx--+=+---()2x yx y x y x-=+--()()22()()x y x y x y =+----()22332()2()x y x xy y x y =+-+-=-+.3)解311113111131111312346111631161316113c c c c +++=2131416111020000200002r r r r r r ---=622248=⨯⨯⨯=.4)解1234234134124123123410234103411041210123c c c c +++=21314110234011302220111r r r r r r ----=-----32412102340113004404r r r r -+-=--101(4)(4)160=⨯⨯-⨯-=.5)解1111111111111111xx y y +-+-123411110011110r r r r x x x y yy--+--=+--21431100001010c c c c x x x y yy--+--=+--241300(1)0x x y y+++--=---拉普拉斯定理22xy xy x y =⋅=.注1:也可以不用拉普拉斯定理;注2:另解 将第4行拆成两行.6)解2222222222222222(1)(2)(3)(1)(2)(3)(1)(2)(3)(1)(2)(3)a a a a b b b b cc c cd d d d ++++++++++++2131412222214469214469214469214469c c c c c c a a a a b b b b cc c cd d d d ---++++++=++++++324222223221262126021262126c c c c a a b b cc d d --++==++.14.证明1111111112222222222b cc a a b a b cb c c a a b a b c b c c a a b a b c ++++++=+++. 证法一 左边1231111122222222c c c a c a a b a c a a b a c a a b ---++=-++-++1(2)11111222222c a c a a b a c a a b a c a a b ÷-++=-++++ 21311112222c c c c a c b a c b a c b --=-231112222c c a b ca b c a b c ↔==右边.证法二 左边123111111122222222()2()2()c c c a b c c a a b a b c c a a b a b c c a a b ++++++=++++++++12111111122222222c a b c c a a b a b c c a a b a b c c a a b ÷++++=++++++++ 213111111222222c c c c a b c b c a b c b c a b c b c --++--=++--++--1231112222c c c a b c a b c a b c ++--=----23(1)111(1)2222c c a b ca b c a b c ⨯-⨯-==右边. 15.略16.计算下面的行列式:1)1111211312254321- 2)111121121311113211102---3)0121420121135123312121035-- 4)111122011213210211012121302--- 1)解111121*********1-21314124111101151140123r r r r r r ------=---3242111101150001012r r r r +----=--3411110115001201r r ↔---=--34111101151(1)(1)(1)1001201r r ↔---=-=-⨯-⨯-⨯-=--.2)解111121121311113211102---1243223112122211211123201c c c ⨯⨯⨯-=--131211122213112123201r r ↔--=--213141331211041310541120834r r r r r r +-+-=----231211015210541120834r r +--=----32425812110152100211112003720r r r r -+--=--- 211111(1)372012--=-⨯⨯-1(2120(11)37)12=⨯-⨯--⨯1312=-.3)解 0121420121135123312121035--31415133012142012110141030551120241r r r r r r ----=------122121114101(1)355112241+---=⨯----1232422320110191141008174141219r r r r r r +++-----=-----2111019(1)(1)8174141219+--=--⨯-----2331241101907302857r r r r ---=----1173(1)(1)2857+--=--⨯--21473069r r ---=483=-.4)解 1101122011213210211012121302---13522221022201121642108110124261r r r ⨯⨯⨯--=-3141514221022201121202788300300645r r r r r r -+---=--- 31415141222112227811(1)303080645r r r r r r -++----=⨯⨯--31211222581300080645c c -----=--313111213(1)2588645c c -+--=-⨯⨯---21312611230712801017r r r r ++--=---117123(1)(1)10178+-=-⨯-⨯--33((7)1712(10))88=-⨯-⨯-=.17.计算下列n 级行列式:1)000000000000x y x y x y yx; 2)111212122212nnn n n na b a b a b a b a b a b a b a b a b ---------;3)121212n n n x m x x x x m x x x x m---; 4)122222222232222n;5)12311100002200011n n n n-----. 1)解 000000000000x y x y x y y x111110000000000000(1)(1)00000000000000n n n x y y x y x y x y x y y x x y ++--=⋅-+⋅-按第1列展开111(1)n n n x x y y -+-=⋅+⋅-1(1)(2)n n n x y n +=+-≥.2)解 当1n =时,1111a b a b -=-; 当2n =时,11122122a b a b a b a b ----112212211212()()()()()()a b a b a b a b a a b b =-----=--;当3n ≥时,111212122212nnn n n na b a b a b a b a b a b a b a b a b ---------21311112121212131313112nr r r r n n n na b a b a b a a a a a a a a a a a a a b a b a b --------=------=0. (第2,3两行成比例)3)解121212n n n x mx x x x m x x x x m---12212121nni n i nc c c i n i ni n i x mx x x mx m x x mx x m=+++==---=--∑∑∑121(2,3,,)000i ninr r i i n x mx x m m-==--=-∑11()n n i i m x m -=⎛⎫=-- ⎪⎝⎭∑. 4)解 122222222232222n2(1,3,4,,)1000222200100002i r r i n n -=-=-2121000022200100002r r n +-=-(1)2(2)!2(2)!n n =-⨯⨯-=--.另解:1(2,3,,)i r r i n -= ,然后按第2行展开.5)解 1231110000220000011n n n n -----12(1)23120100002200011nc c c n n n n n n++++--=---10002200(1)211n n n n--+=--按第1列展开(1)(1)(2)(1)2n n n +=---11(1)(1)!(1)(1)!(1)22n n n n n n --++=--=-. 另解:第1列起,各列加到后一列,然后按第n 列展开.18.证明1)01212011111001100()100nn i ina a a a a a a a a ==-∑; 2)012111021000100010000001n n n n n x a x a x a x a x a x a xa x a ------=++++-+;3)1100010001000001n n αβαβαβαβαβαβαβαβ++++-=+-+; 4)cos 100012cos 100cos 012cos 00012cos n ααααα=;5)1231211111111111111111(1)11111nn i ina a a a a a a a =+++=++∑. 1)证法一 当1n =(2级)时,左边=0011111a a a a =-=右边;假设等式对于n 级的情形成立,则对于1n +级情形:左边=0121111001001na a a a0111(1)1(1)(1)2211111111100000(1)(1)100000100n n n n n n nna a a a a a a ++++++-=-+-按第行 展开1(1)1(121)12112101(1)(1)[()]n n n n n n n iia a a a a a a a a τ-++---=--+-∑第2个行列式根据归纳假设112112101[()]n n n n iia a a a a a a a a ---=-+-∑ 12101()nn n i ia a a a a a -=-∑=右边. 证法二 左边=012111100100100n a a a a11221(1)1033200011111111000000000000000(1)000000n n na a a a a a a a a a ++=-++-按第列 展开2(121)01223121(1)(1)n n n n n n a a a a a a a a a a τ+--=-++-- 2101223121(1)(1)n n n n n a a a a a a a a a a +--=-++--01223121n n n a a a a a a a a a a -=--- =右边.证法三提示 将第(2,3,,1)i i n =+ 行的1ia -倍加到第一行即得下三角行列式. 2)证法一 当1n =时,左边=00x a x a +=+=右边; 假设等式对于n -1级情形成立,则对于n 级情形:左边=01221000100010000001n n x a x a x a xa x a -----+0121032110001000100010001000100(1)000000100101nn n n n xa x x a x x a xa xa x x a +---------=+---+-按第1行 展开111210()(1)(1)n n n x x a x a a -+-=++++-- 第1行列式根据归纳假设2210()n x a x a x a =++++ 第1行列式根据归纳假设=右边.于是,等式成立.证法二 左边=01221000100010000001n n x a x a x a xa x a -----+120110000000010001000010000100(1)(1)000100010101n nnx x x x a a x x ++-----=-+-+----按第列 展开(1)21000000001000100001000100(1)()(1)00000000000100n nn nn n x x x x x x a x a xx x-++-------++--1122211210121(1)(1)(1)(1)(1)(1)()(1)n n n n n n n n n n a a x a x x a x +-+------=--+--++--++- 110121()n n n n a a x a x x a x ----=+++++=右边.3)将等式左边的行列式记为n D ,按第1列展开,得 12()n n n D D D αβαβ--=+-, 即 112()n n n n D D D D αβα----=-, 该等式对于一切的n 都成立,于是2123()n n n n D D D D αβα----=- 334()n n D D βα--=- =221()n D D βα-=-22[()()]n βαβαβααβ-=+--+n β=. ① 在原式中,是,αβ对称的,故同理可得1n n n D D βα--=. ②②α⨯-①β⨯,得11()n n n D αβαβ++-=-,所以 11n n n D αβαβ++-=-.另解 第二数学归纳法,按第1行展开(略).4)提示 用第二数学归纳法,按第n 行展开得122cos n n n D D D α--=⋅-. 5)提示 用数学归纳法,将第n 行拆成两行111 与00n a . 19—21略。

高等代数学答案02

高等代数学答案02
n n n n n ∑ ∑ ∑ ∑ ∑ 2 2 2 2 ¯ ( |ai | )( |bi | ) ≥ ( |ai ||bi |) = ( |ai bi |) ≥ | ai¯ bi |2 . i=1 i=1 i=1 i=1 i=1
2. 例 2.65. 3. 例 2.66. 4. 例 2.69.
复习题二
3. 由 A 非异, 则 AA−1 = A−1 A = In , 故直接计算可得 Ak (A−1 )k = (A−1 )k Ak = In . 4. 两边左乘 A−1 ; 两边右乘 A−1 . 5. 沿着这一行 (列) 展开求方阵的行列式显然值为 0, 故为奇异阵. 6. 由 Am = O , 得 (In − A)(In + A + A2 + · · · + Am−1 ) = (In + A + A2 + · · · + Am−1 )(In − A) = In . 7. 由于 B (A + B )−1 A(A−1 + B −1 ) = In , 故 A−1 + B −1 奇异. 8. 由 A2 = In 可得 (A + In )(A − In ) = O . 又 In + A 非异, 故 A − In = O , 即 A = In . 9. 由 A2 = A 可得 A2 − A − 2In = −2In , 即 (A + In )(A − 2In ) = −2In , 故 A + In 非异. 10. 由 A2 − A − 3In = O 可得 (A + In )(A − 2In ) = In , 故 A − 2In 非异.
7 30. 例 2.24. 31. 例 2.25 (3). 32. 例 2.26. 33. 例 2.10 (1). 34. (1) 例 2.36; (2) 例 2.37. 35. 例 2.3. 36. 例 2.32. 37. 例 2.33. 38. 例 2.34. 39. 例 2.35. 40. 例 1.39. 41. 例 2.70 的直接推论. 42. 例 2.71. 43. (1) 例 2.57; (2)2.3.2 训练题解答题 9. 44. 2.3.2 训练题解答题 10. 45. 例 2.48. 46. 例 2.63. 47. 例 2.61. 48. 类似例 2.52, 作多项式 f (x) = a1 + a2 x + a3 x2 + · · · + an xn−1 , 令 ϵ1 , ϵ2 , · · · , ϵn 是 −1 的所有 n 次方根. 又令 V = ··· ··· ···

《高等代数》第二章习题及答案

《高等代数》第二章习题及答案

习题2.11. 设m,n 是不同的正整数,A 是m ×n 矩阵,B 是n ×m 矩阵,下列运算式中有定义的有哪几个?A+B ,AB ,BA ,AB T ,A-B T 答 只有AB 和A-B T 有定义. 2. 计算①⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-322113075321134 ②⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-213075321134 ③()⎪⎪⎪⎭⎫ ⎝⎛213321 ④()321213⎪⎪⎪⎭⎫⎝⎛⑤()⎪⎪⎪⎭⎫ ⎝⎛-0713******** ⑥⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛c b a 321012100010501 ⑦()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x解①⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-322113075321134=⎪⎪⎪⎭⎫⎝⎛-922147117②⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-213075321134=⎪⎪⎪⎭⎫ ⎝⎛22717 ③()⎪⎪⎪⎭⎫⎝⎛213321=()11④()321213⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛642321963 ⑤()⎪⎪⎪⎭⎫⎝⎛-0713********=()111813⑥⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛c b a 321012100010501=⎪⎪⎪⎭⎫ ⎝⎛-+-c b a c b a 32155125 ⑦()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x=233323321331322322221221311321122111x a x x a x x a x x a x a x x a x x a x x a x a ++++++++3. 设A=⎪⎪⎭⎫⎝⎛3121,B=⎪⎪⎭⎫⎝⎛3101,计算: ① (A+B)(A-B) ② A 2-B 2③ (AB)T ④ A T B T解 ① (A+B)(A-B)= ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛4040002062223101312131013121 ② A 2-B 2=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛20829401114833101310131213121③ (AB)T=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛9643946331013121TT④ A T B T=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛112413011321131013121TT 4. 求所有的与A=⎪⎪⎭⎫⎝⎛1011可交换的矩阵. 解 设矩阵B 与A 可交换,则B 必是2×2矩阵,设B=⎪⎪⎭⎫⎝⎛d c b a ,令AB=BA ,即 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛10111011d c b a d c b a 从而有 ⎪⎪⎭⎫⎝⎛++=⎪⎪⎭⎫⎝⎛++d c c b a a d cd b c a 由此得⎪⎪⎩⎪⎪⎨⎧+==+=+=+dc d c c b a d b ac a解得,c=0,a=d ,b 为任意数.即与A 可交换的矩阵B 可写成B=⎪⎪⎭⎫⎝⎛a b a 0. 5. 设A ,B 是n ×n 矩阵,并且A 是对称矩阵,证明:B T AB 也是对称矩阵.证 已知A 是对称矩阵,即A T =A ,从而 (B T AB)T =B T A T (B T ) T =B T AB ,所以B T AB 也是对称矩阵.6. 设A=⎪⎪⎭⎫ ⎝⎛b a b 0,求A 2,A 3,…,A k.解A 2=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛222000b ab b b a b b a bA 3=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛3232230020b ab b b a b b ab b …A k =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----k k k k k k b kabb b a b b ab k b 112100)1(0 7.设B 是2×2矩阵.由B 2=02×2能推出B=0吗?试举反例.(提示:参见上题.) 解 不能.例如令B=⎪⎪⎭⎫⎝⎛000a ,当a ≠0时,B ≠0,但B 2=02×2. 8. 设A ,B 是n ×n 矩阵,证明:(A+2B)(A-5B)=A 2-3AB-10B 2的充分必要条件是A 与B 可交换.证 充分性:若A 与B 可交换,即AB=BA ,则(A+2B)(A-5B)=A 2-5AB+2BA-10B 2= A 2-5AB+2AB-10B 2= A 2-3AB-10B 2 必要性:若(A+2B)(A-5B)=A 2-3AB-10B 2 即 A 2-5AB+2BA-10B 2= A 2-3AB-10B 2 比较两边相同的项得 -2AB+2BA=0 故 AB=BA9. 设A ,B 是n ×n 对称矩阵,证明:AB 是对称矩阵的充分必要条件是A 与B 可交换. 证 因A ,B 是n ×n 对称矩阵,即A T =A ,B T =B .必要性:若AB 是对称矩阵,则(AB)T =AB ,有因 (AB)T =B T A T =BA ,从而AB= BA ,即A 与B 可交换.充分性:若A 与B 可交换,由必要性证明过程反图推,知AB 是对称矩阵.习题2.21.设A ,B ,C 是矩阵,且满足AB=AC ,证明:如果A 是可逆的,则B=C .证 已知AB=AC ,两边左乘矩阵A -1,有A -1(AB)= A -1(AC),根据结合律得(A -1A)B=( A -1A)C ,从而有EB=EC ,故B=C .2.设P 是可逆矩阵,证明:线性方程组AX=β与线性方程组PAX=P β同解.证 设X (1)是AX=β的任一解解,即有AX (1)=β成立,两边左乘矩阵P ,得PAX (1)=P β,说明X (1)也是PAX=P β的解.反之,设X (2)是PAX=P β的任一解,即有PAX (2)=P β成立,两边左乘矩阵P -1,得P -1 (PAX (2))= P -1 (P β),根据结合律得(P -1 P)AX (2)=(P -1 P)β,从而有AX (2)=β,这说明X (2)也是AX=β的解.综合以上可知,线性方程组AX=β与线性方程组PAX=P β同解.3.设P 是n ×n 可逆矩阵,C 是n ×m 矩阵.证明:矩阵方程PX=C 有唯一解.证 令X *=P -1C ,代入PX=C 中验证知X *是矩阵方程的一个解.反之,设X (1)是矩阵方程PX=C的任一解,即有PX (1)=C 成立,两边左乘P -1得,X (1)=P -1C=X *,所以矩阵方程PX=C 有唯一解.4. 设A 是n ×n 可逆矩阵,且存在一个整数m 使得A m=0.证明:(E-A)是可逆的,并且(E-A)-1=E+A+…+A m-1.证 由于(E-A)(E+A+…+A m-1)=E+A+…+A m-1-A-A 2-…-A m =E-A m=E-0=E显然交换(E-A)和(E+A+…+A m-1)的次序后相乘结果仍成立,根据逆阵的定义知(E-A)-1=E+A+…+A m-1.5.设P ,A 都是n ×n 矩阵,其中P 是可逆的,m 是正整数.证明:(P -1AP)m =P -1A mP .证 (P -1AP)m =(P -1AP)(P -1AP)(P -1AP)…(P -1AP)=P -1A(PP -1)A(PP -1)…AP=P -1AEAE …AP=P -1A m P6. 设A ,B 都是n ×n 可逆矩阵,(A+B)一定是可逆的吗?如果(A+B)是可逆的,是否有(A+B)-1=A -1+B -1?若不是,试举出反例.解 如果A ,B 都是n ×n 可逆矩阵,(A+B)不一定是可逆的.例如A=⎪⎪⎭⎫ ⎝⎛1001,B=⎪⎪⎭⎫⎝⎛--1001都是可逆的,但A+B=⎪⎪⎭⎫⎝⎛0000是不可逆的. 如果(A+B)是可逆的,也不能说(A+B)-1=A -1+B -1.例如A=⎪⎪⎭⎫ ⎝⎛1001,B=⎪⎪⎭⎫⎝⎛1001,则A ,B 可逆,A+B=⎪⎪⎭⎫⎝⎛2002可逆,且(A+B)-1=⎪⎪⎭⎫ ⎝⎛2/1002/1,但A -1+B -1=⎪⎪⎭⎫ ⎝⎛1001+⎪⎪⎭⎫ ⎝⎛1001=⎪⎪⎭⎫ ⎝⎛2002.显然(A+B)-1≠A -1+B -1.7*.设A ,B 都是n ×n 矩阵,满足ABA=A ,β是n ×1矩阵.证明:当且仅当AB β=β时,线性方程组AX=β有解.证 当AB β=β时,记X *=B β,即X *是AX=β的一个解.反之,若线性方程组AX=β有解,设X (1)是它的一个解,即有AX (1)=β,两边左乘(AB)得(ABA)X (1)=AB β用已知条件ABA=A 代到上式左边得AX (1)=AB β 由于X (1)是AX=β的一个解,即AX (1)=β,所以AB β=β.习题2.31.用行和列的初等变换将矩阵A 化成⎪⎪⎭⎫⎝⎛000E 的形式: A=⎪⎪⎪⎪⎪⎭⎫⎝⎛----10030116030242201211解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛----10030116030242201211→⎪⎪⎪⎪⎪⎭⎫⎝⎛---10030140300400001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛---04000100301403001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛--00000040001403001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛00000040000003000001→⎪⎪⎪⎪⎪⎭⎫⎝⎛000000010000010000012.用初等变换判定下列矩阵是否可逆,如可逆,求出它们的逆矩阵:①⎪⎪⎪⎭⎫ ⎝⎛-----134112112 ②⎪⎪⎪⎭⎫⎝⎛----153132543 解 ①⎪⎪⎪⎭⎫ ⎝⎛-----100134010112001112→⎪⎪⎪⎭⎫ ⎝⎛---102110011200001112→→⎪⎪⎪⎭⎫ ⎝⎛---011200102110001112→⎪⎪⎪⎭⎫ ⎝⎛--02/12/110012/12/301002/12/1012→ →⎪⎪⎪⎭⎫ ⎝⎛-02/12/110012/12/3010112002→⎪⎪⎪⎭⎫ ⎝⎛-02/12/110012/12/30102/12/11001 所给矩阵可逆,其逆阵为⎪⎪⎪⎭⎫ ⎝⎛-02/12/112/12/32/12/11②⎪⎪⎪⎭⎫ ⎝⎛----100153010132001543→⎪⎪⎪⎭⎫⎝⎛-------101610013/23/73/10001543→⎪⎪⎪⎭⎫ ⎝⎛---131100032710001543→⎪⎪⎪⎭⎫ ⎝⎛------13110071850105154043 →⎪⎪⎪⎭⎫ ⎝⎛-----1311007185010338724003→⎪⎪⎪⎭⎫ ⎝⎛-----131100718501011298001 所给矩阵可逆,其逆阵为⎪⎪⎪⎭⎫⎝⎛-----1317185112982.解下列矩阵方程:①⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-11111152X ②⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--101111201021121101X ③⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--234311*********X解 ①⎪⎪⎭⎫⎝⎛---11111152→⎪⎪⎭⎫ ⎝⎛---11521111→⎪⎪⎭⎫⎝⎛---33701111 →⎪⎪⎭⎫⎝⎛--7/37/3107/47/401 由此得⎪⎪⎭⎫ ⎝⎛--=7/37/37/47/4X ②⎪⎪⎪⎭⎫ ⎝⎛---101021111121201101→⎪⎪⎪⎭⎫ ⎝⎛---302120112220201101 →⎪⎪⎪⎭⎫ ⎝⎛----414300112220201101→⎪⎪⎪⎭⎫ ⎝⎛--3/43/13/41006/56/13/10103/23/13/1001 由此得⎪⎪⎪⎭⎫⎝⎛--=3/43/13/46/56/13/13/23/13/1X ③对等式两端分别转置得⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--233141*********T X 因为⎪⎪⎪⎭⎫ ⎝⎛---231013111141122→⎪⎪⎪⎭⎫ ⎝⎛---231014112231111→⎪⎪⎪⎭⎫ ⎝⎛---520102330031111 →⎪⎪⎪⎭⎫ ⎝⎛---233005201031111→⎪⎪⎪⎭⎫ ⎝⎛-3/21100520103/70011→⎪⎪⎪⎭⎫⎝⎛---3/21100520103/82001 所以⎪⎪⎪⎭⎫⎝⎛---=3/21523/82TX⎪⎪⎭⎫ ⎝⎛---=3/253/8122X4.设⎪⎪⎪⎭⎫ ⎝⎛=011110001A ,⎪⎪⎪⎭⎫⎝⎛-=110020102B ,又X 是可逆矩阵,并且满足矩阵方程AX 2B=XB ,求矩阵X .解 (B,E)=⎪⎪⎪⎭⎫ ⎝⎛-100110010020001102→⎪⎪⎪⎭⎫⎝⎛-10011002/10010001102→⎪⎪⎪⎭⎫ ⎝⎛-12/1010002/10010001102→⎪⎪⎪⎭⎫ ⎝⎛---12/1010002/1001012/11002 →⎪⎪⎪⎭⎫ ⎝⎛---12/1010002/100102/14/12/1001 从以上看出B 可逆,对AX 2B=XB 两边右乘B -1得AX 2=X .已知X 可逆,对AX 2=X 两边右乘B -1得AX=E .又(A,E)=⎪⎪⎪⎭⎫ ⎝⎛100011010110001001→⎪⎪⎪⎭⎫ ⎝⎛-101010010110001001→⎪⎪⎪⎭⎫ ⎝⎛--101010111100001001→⎪⎪⎪⎭⎫ ⎝⎛--111100101010001001 所以 X=⎪⎪⎪⎭⎫⎝⎛--1111010015.①证明:B 与A 行等价⇔存在可逆矩阵P ,使B=PA .②证明:B 与A 等价⇔存在可逆矩阵P 与Q ,使B=PAQ .证 若B 与A 行等价,即A 可经有限次初等行变换得到B ,而对矩阵A 每做一次初等行变换,相当于对它左乘一个初等方阵,假设对A 依次左乘初等方阵P 1,P 2,…,P K ,使P k …P 2P 1A=B令P=P k …P 2P 1,则P 是可逆矩阵,且B=PA .反之,若存在可逆矩阵P ,使B=PA ,因为可逆矩阵P 可以写成一系列初等方阵P 1,P 2, …,P k的乘积,即P=P 1P 2…P k ,从而有B=P 1P 2…P k A ,说明A 可经有限次初等行变换得到B ,即B 与A 行等价.② 若B 与A 等价,即对A 经过有限次初等变换得到B .而对矩阵A 每做一次初等行变换,相当于对它左乘一个初等方阵;对矩阵A 每做一次初等列变换,相当于对它右乘一个初等方阵.假设对A 左乘的初等方阵依次为P 1,P 2,…,P s ,对A 右乘的初等方阵依次为Q 1,Q 2,…,Q t ,使P s …P 2P 1AQ 1Q 2…Q t =B令P=P s …P 2P 1,Q=Q 1Q 2…Q t ,则P ,Q 都是可逆矩阵,且B=PAQ .反之,若存在可逆矩阵P 和Q ,使B=PAQ ,因为可逆矩阵P 和Q 均可以写成一系列初等方阵的乘积,设P=P 1P 2 …P s ,Q=Q 1Q 2…Q t ,这里P i ,Q i 都是初等方阵,从而有B=P 1P 2…P k A Q 1Q 2…Q t ,说明A 可经有限次初等行变换和初等列变换得到B ,即B 与A 等价. 6*.设A 是s ×n 矩阵,B 是s ×m 矩阵,B 的第i 列构成的s ×1矩阵是βj (j=1,2,…,m ).证明:矩阵方程AX=B 有解的充分必要条件是:AX=βj (j=1,2,…,m )都有解.证 先证必要性.如果矩阵方程AX=B 有解,设X *是它的解,则X *是n ×m 矩阵,记X *的第j 列为X *j ,根据矩阵先相乘的规则知,A 与X *j 相乘的结果是βj ,即X *j 是AX=βj 的解(j=1,2,…,m ).再证充分性.若AX=βj (j=1,2,…,m )都有解,设X *j 是AX=βj 的解,这里X *j 是n ×1矩阵,令X *=(X *1, X *2,…,X *m ),则X *是n ×m 矩阵,且X *是矩阵方程AX=B 的解. 7*.设A=(a ij )是n ×n 矩阵.①证明:如果P n (h(2))A=AP n (h(2)),则a hj =0,j=1,2,…,h-1,h+1,…,n ;并且a ih =0,i=1,2,…,h-1,h+1,…,n .②设B=diag(b 1, b 2,…, b n )是一个对角矩阵,设l ≠k .证明:如果P n (l,k)B=BP n (l,k),b l =b k .③证明:如果矩阵A 与所有的n ×n 矩阵都可交换,则A 是一个数量矩阵.证 ①如果P n (h(2))A=AP n (h(2)),则A 是n ×n 矩阵,等式左边的P n (h(2))A 表示将矩阵A 的第h 行每个元素乘以2得到的矩阵;等式右端的AP n (h(2))表示将A 的第h 列每个元素乘以2得到的矩阵.从等式可知2a hj = a hj (j=1,2,…,h-1,h+1,…,n ),a ih =2a ih (i=1,2,…,h-1,h+1,…,n ),从而得a hj =0,j=1,2,…,h-1,h+1,…,n ;并且a ih =0,i=1,2,…,h-1,h+1,…,n .②如果P n (l,k)B=BP n (l,k),则B 是n ×n 矩阵,等式左边的P n (l,k)B 表示将矩阵B 的第l 行和第k 行交换位置;等式右端的BP n (l,k) 表示将矩阵B 的第l 列和第k 列交换位置.由于B=diag(b 1, b 2,…, b n )是一个对角矩阵,且l ≠k ,不妨设l<k ,则有P n (l,k)B=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n l k b b b b 001=BP n (l,k)=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛n k lb b b b001比较对应元素,可知b l =b k .③如果矩阵A 与所有的n ×n 矩阵都可交换,在①中分别令h=1,2,…,n ,可知A 除对角线上元素以外其它元素都是零,即A 可写成diag(b 1, b 2,…, b n );在②可令l=1,分别令k=2,…,n ,可知A 的对角线上元素都相等.习题2.41.设A=⎪⎪⎭⎫ ⎝⎛421A A A ,其中A 1是s ×s 矩阵,A 2是s ×t 矩阵,A 4是t ×t 矩阵.求A 3. 解 A 2=⎪⎪⎭⎫ ⎝⎛421A A A ⎪⎪⎭⎫ ⎝⎛4210A A A =⎪⎪⎭⎫⎝⎛+244221210A A A A A A A 3=⎪⎪⎭⎫ ⎝⎛4210A A A ⎪⎪⎭⎫ ⎝⎛+244221210A A A A A A =⎪⎪⎭⎫ ⎝⎛++34242421221310A A A A A A A A A2.①设G=⎪⎪⎭⎫⎝⎛000rE 是m ×n 矩阵,证明:存在矩阵B ,使得GBG=G . ②设A 是m ×n 矩阵,证明:存在矩阵B ,使得ABA=A .证 ①构造n ×m 矩阵B 为B=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r m r n rr n r m r rE ,则GBG=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r m r n r r n r m r rE ⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE=⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE =G②设矩阵A 的秩为r ,则可经过有限次初等变换使A 变为⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE 的形式,即存在可逆的n ×n 矩阵P 和可逆的m ×m 矩阵Q 使PAQ=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m r r m r n r r E =D ,即A=P -1DQ -1.定义n ×m 矩阵B 如下:B=QCP ,其中C=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r m r n rr n r m r rE .则有ABA=(P -1DQ -1)(QCP)(P -1DQ -1)= P -1DCDQ -1=P -1⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m r r m r n r r E ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r m r n r r n r m r rE ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE Q -1= P -1⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE Q -1=A3*.设A=⎪⎪⎭⎫⎝⎛4210A A A ,其中A 1是s ×s 矩阵,A 2是s ×t 矩阵,A 4是t ×t 矩阵.证明:如果A 1,A 4都是可逆的,则A 也是可逆的,进一步,求A 的逆矩阵.证 如果A 1,A 4都是可逆的,令B=⎪⎪⎭⎫ ⎝⎛--142110A B A ,其中A 1-1,A 4-1分别是A 1,A 4的逆阵,B 2是s ×t 矩阵.令AB=E ,即有⎪⎪⎭⎫ ⎝⎛421A A A ⎪⎪⎭⎫ ⎝⎛--142110A B A =⎪⎪⎭⎫ ⎝⎛+-t s E A A B A E 014221=⎪⎪⎭⎫⎝⎛t s E E 00, 从而 A 1B 2+ A 2A 4-1=0,由此得B 2=-A 1-1A 2A 4-1.说明A 也是可逆的,且A -1=⎪⎪⎭⎫⎝⎛-----1414211110A A A A A。

最新高代第二章-行列式精品文档

最新高代第二章-行列式精品文档
2计算行列式按一行列展开行列式选取零元素较多的行列利用行列式的性质将其元素尽可能多地化为零然后再按这一行列展开如果行列式的元素之间有某种规律则需根据不同情况采取不同方法加以计算行列式行列式的计算递推关系式
高代第二章-行列式
行列式
主要内容:
➢ n 阶行列式的定义 ➢ 行列式的性质 ➢ 行列式按行(列)展开 ➢ 行列式的计算 ➢ 克拉默(Cramer)法则
行列式
性质1 行列互换,行列式不变,即 D=DT
§4 行列式的性质
a11 a12 … a1n
a11 a21 … an1
a 21 a 22 … a 2 n a12 a22 … an 2
… … …… … … … …
an1 an2 … ann
a1n a2n … ann

行列式有关对行成立的性质,对列也成立。
a 3 1 a 3 2 a 3 3 a 1 2 a 2 1 a 3 3 a 1 1 a 2 3 a 3 2 ( 1 )(j1j2j3)a 1j1a 2j2a 3j3 j1j2j3
(1)三阶行列式由6项组成; (2)每一项是3个元素的乘积,而且这3个元素位于不同的行和列; (3)任意项中三个元素都含有2个下标,第一个下标表示元素所在的行,
例如:由1,2,3可以组成6个3级排列
123,132,213,231,312,321 自然排列
行列式 ● 逆序数
§2 排列
定义:在一个排列中,如果一对数的前后位置与大小顺序相反,即大数 排在小数的前面,则称它们为一个逆序。一个排列中所有逆序的总数称
为该排列的逆序数。把排列 i1i2 … in 的逆序数记为:(i1i2… in)
行列式
§5 行列式按一行(列)展开
§5 行列式按一行(列)展开

高等代数 习题及参考答案

高等代数 习题及参考答案
17.求 值,使 有重根。
解易知 有三重根 时, 。若令
,比较两端系数,得
由(1),(3)得 ,解得 的三个根为 ,将 的三个根分别代入(1),得 。再将它们代入(2),得 的三个根 。
当 时 有3重根 ;当 时, 有2重根 。
18.求多项式 有重根的条件。
解令 ,则 ,显然当 时,只有当 才有三重根。
3) 。
解利用剩余除法试根,可得
1)有一个有理根2。
2)有两个有理根 (即有2重有理根 )。
3)有五个有理根 (即一个单有理根3和一个4重有理根 )。
28.下列多项式在有理数域上是否可约?
1) ;
2) ;
3) ;
4) 为奇素数;
5) 为整数。
解1)因为 都不是它的根,所以 在有理数域里不可约。
2)利用艾森斯坦判别法,取 ,则此多项式在有理数域上不可约。
指数组
对应 的方幂乘积
4 2 0
4 1 1
3 3 0
3 2 1
2 2 2
原式= (1)
只要令 ,则原式左边 。另一方面,有 ,
代入(1)式,得 。再令 ,得 。
令 ,得
(2)
令 得
(3)
由(2),(3)解得 。因此
原式 。
4)原式=
指数组
对应 的方幂乘积
2 2 0 0
2 1 1 0
1 1 1 1
设原式
高等代数
第一章多项式
1.用 除 ,求商 与余式 :
1) ;
2) 。
解1)由带余除法,可得 ;
2)同理可得 。
2. 适合什么条件时,有
1) ,
2) 。
解1)由假设,所得余式为0,即 ,

高等代数作业 第二章行列式答案

高等代数作业 第二章行列式答案

高等代数第四次作业第二章 行列式 §1—§4一、填空题1.填上适当的数字,使72__43__1为奇排列、 6,52.四阶行列式44⨯=ija D 中,含24a 且带负号的项为_____、 112433421224314313243241,,a a a a a a a a a a a a3.设.212222111211d a a a a a a a a a nnn n n n =ΛΛΛΛΛΛΛ则._____122122211121=n n nnn na a a a a a a a a ΛΛΛΛΛΛΛ(1)2(1)n n d -- 4.行列式11111111---x 的展开式中, x 的系数就是_____、 2 二、判断题1、 若行列式中有两行对应元素互为相反数,则行列式的值为0 ( )√2、 设d =nnn n n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211则121112222121n n n nn n a a a a a a a a a L L L L L L L =d ( )×3、 设d =nnn n n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211则d a a a a a a a a a nnn n n n-=112112122221ΛΛΛΛΛΛΛΛ( )×4、 abcd zz z dy y c x b a =000000( ) √ 5、abcd dcx b y x a z y x-=000000 ( )× 6、0000000=yxh gf e d c b a ( )√7、 如果行列式D 的元素都就是整数,则D 的值也就是整数。

( )√ 8、 如果行列D 的元素都就是自然数,则D 的值也就是自然数。

( )×9、n na a a a a a ΛN 2121= ( )×10、 01000200010ΛΛΛΛΛΛΛΛΛnn -=n ! ( )× 三、选择题1.行列式01110212=-k k 的充分必要条件就是 ( ) D(A)2=k (B)2-=k (C)3=k (D)2-=k 或 3 2.方程093142112=x x 根的个数就是( )C (A)0 (B)1 (C)2 (D)3 3.下列构成六阶行列式展开式的各项中,取“+”的有 ( )A(A)665144322315a a a a a a (B)655344322611a a a a a a (C)346542165321a a a a a a (D)513312446526a a a a a a4、 n 阶行列式的展开式中,取“–”号的项有( )项 A(A)2!n (B)22n (C)2n (D)2)1(-n n5.若(145)11243455(1)k l k l a a a a a τ-就是五阶行列式的一项,则l k ,的值及该项的符号为( )B (A)3,2==l k ,符号为正; (B)3,2==l k ,符号为负; (C)3,1k l ==,符号为正; (D)1,3k l ==,符号为负6.如果0333231232221131211≠==M a a a a a a a a a D ,则3332312322211312111222222222a a a a a a a a a D = = ( )C(A)2 M (B)-2 M (C)8 M (D)-8 M 7.如果1333231232221131211==a a a a a a a a a D ,3332313123222121131211111232423242324a a a a a a a a a a a a D ---= ,则=1D ( )C(A)8 (B)12- (C)24- (D)24 四、计算题 1. 计算3214214314324321解:3214214314324321321421431432111110=123012101210111110------=440004001210111110---=400004001210111110---==1602、 计算3111131111311113、 解:3111131111311113=31111311113111116•=20000200002011116•=.48263=⨯高等代数第五次作业第二章 行列式 §5—§7一、填空题1、 设ij ij A M ,分别就是行列式D 中元素ij a 的余子式,代数余子式,则._____1,1,=+++i i i i A M 02、 122305403-- 中元素3的代数余子式就是 、6-3、 设行列式4321630211118751=D ,设j j A M 44,分布就是元素j a 4的余子式与代数余子式,则44434241A A A A +++ = ,44434241M M M M +++= 、0,66- 4、 若方程组⎪⎩⎪⎨⎧=+-=++=+02020z y kx z ky x z kx仅有零解,则k 、 2≠5、 含有n 个变量,n 个方程的齐次线性方程组,当系数行列式D 时仅有零解、 0≠ 二、判断题1、 若n 级行列试D 中等于零的元素的个数大于2n n -,则D=0 ( )√2、222)(00000000a b b a a b b a ab -= ( )√ 3、222)(00000000b a a b b a a b b a -= ( )√4、0=d b a c d b c a b d c a b d a c ( )√ 5、483111131111311113= ( )√ 6、)(000000hx gy a yh fdx g e c b a -= ( )× 7、0107310111187654321=--- ( )√三、选择题1、 行列式102211321的代数余子式13A 的值就是( )D(A)3 (B)1- (C)1 (D)2-2.下列n (n >2)阶行列式的值必为零的就是 ( )D(A)行列式主对角线上的元素全为零 (B)行列式主对角线上有一个元素为零 (C)行列式零元素的个数多于n 个 (D)行列式非零元素的个数小于n 个3.若111111111111101)(-------=x x f ,则)(x f 中x 的一次项系数就是( )D(A)1 (B)1- (C)4 (D)4-4.4阶行列式4433221100000000a b a b b a b a 的值等于( )D(A)43214321b b b b a a a a - (B)))((43432121b b a a b b a a -- (C)43214321b b b b a a a a + (D)))((41413232b b a a b b a a -- 5.如果122211211=a a a a ,则方程组 ⎩⎨⎧=+-=+-022221211212111b x a x a b x a x a 的解就是( )B(A)2221211a b a b x =,2211112b a b a x = (B)2221211a b a b x -=,2211112b a b a x = (C)2221211a b a b x ----=,2211112b a b a x ----=(D)2221211a b a b x ----=,2211112b a b a x -----=6、 三阶行列式第3行的元素为4,3,2对应的余子式分别为2,3,4,那么该行列式的值等于( )B(A)3 (B)7 (C)–3 (D)-77.如果方程组 ⎪⎩⎪⎨⎧=--=+=-+050403z y kx z y z ky x 有非零解,则 k =( )C(A)0 (B)1 (C)-1 (D)3 四、计算题1、 计算D=100110011001aa aa---解:方法1:100110011001aa a a ---21r r ↔=aa a a 100110001011---21r ar +=aaa a a 101100100112--+-32r r ↔=aa a a a 100101100112-+--232(1)r a r ++=aa a a a a 100120011001123-++--=aa a a 11223-++=.13)1()2(2423++=+++a a a a a a方法2:将行列式按第一行展开,有:1001101101a aa a---=1011011010101a a a aa a-----=1]01111[2++---•a aaa a a=1])1([22++++a a a a a .1324++=a a2、 计算12125431432321-=n n n D n ΛM M M M ΛΛΛ解:12125431432321-n n n ΛM M M M ΛΛΛ121)1(254)1(143)1(32)1(21212121-++++=n n n n n n n n n n ΛM M M M ΛΛΛ121125411431321)1(21-+=n n n n ΛM MM M ΛΛΛ11101111110321)1(21ΛMMM M ΛΛΛn nnn n --+=111111111)1(21ΛM M MΛΛn n n n n ---+=)1()1(0000111)1(121212)1(+-=---+=--n n n n n n n n n ΛM M MΛΛ3、 计算6427811694143211111解:6427811694143211111)34)(24)(23)(14)(13)(12(------=12=4、 计算=n D 12111111111na a a +++L L M M M L 解:=n D 12111111111na a a +++LL M M M Lna a a ΛM M M ΛΛ1101101121++=12111111+111a a ++LLM M ML1211--+=n n n a a a D a Λ).11(121∑=+=ni in a a a a Λ 5、 解方程:22x 9132513232x 213211--=0、解:22x 9132513232x 213211--=223310131000103211x x -----=223310131000103211)1(x x ----•-=223300130000103211)1(x x ----•-=224000130000103211)1(x x ---•-=223(1)(4)x x ---.2,1±±=∴x五、证明题1.证明:0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c cb b b b a a a a 证明:()()()()()()()()()()()()43433232212222222222222222222222221232123252122123212325212221232521221232123252122123c c c c c c c c c c a a a a a a a a a a bb b b b b b b b bc c c c c c c c c cd d d d d d d d d d -----++++++++++++++++++++++++++++ 40推论2.设111,12,11,111211ΛΛM M M Λn n n n n a a a a a a D ---=,求证:n D D D D +++=Λ21,其中k D ()1,2,,k n =L 为将D 中第k 列元素换成121,,,,1n x x x -L 后所得的新行列式。

高等代数(王萼芳石生明著)课后答案高等教育出版社

高等代数(王萼芳石生明著)课后答案高等教育出版社
3不可约4不可约5不可约第二章行列式习题解答1均为偶排列21i8k32i3k63第4页共27页4281因为1都不是它的根所以x在有理数域里不可约4当n4k4k1时为偶排列当n4k24k3时为奇排列526正号71nnk11233244aaaa12233441aaaa2n14233142aaaa81原式9解行列式展开得一般项可表示为个下标中至少有一个要取345列中一个数从而任何一个展开式中至少要包含一个零元素故所给行列式中每一项的乘积必为0因此行列式只为零
高等代数习题答案(一至四章)
第一章多项式习题解答
1、(1)由带余除法,得
(2) ,
2、(1) ,(2)由 得 或 。
3、(1)
(2)q(x)= ,
4、(1)有综合除法:
(2)
(3)
5、(1)x+1(2)1(3)
6、(1)u(x)=-x-1,v(x)=x+2(2) ,
(3)u(x)=-x-1,
7、 或
8、思路:根具定义证明
证:易见d(x)是f(x)与g(x)的公因式。另设 是f(x)与g(x)的任意公因式,下证 。
由于d(x)是f(x)与g(x)的一个组合,这就是说存在多项式s(x)与t(x),使
d(x)=s(x)f(x)+t(x)g(x)。从而 , ,可得 。即证。
9、证:因为存在多项式u(x),v(x)使(f(x),g(x))=u(x)f(x)+v(x)g(x),所以
(f(x),g(x))h(x)=u(x)f(x)h(x)+v(x)g(x)h(x),上式说明(f(x),g(x))h(x)是f(x)h(x)与g(x)h(x)的一个组合。
另一方面,由 知 。同理可得
从而 是 与 的一个最大公因式,又因为 的首相系数为1,所以 。

高等代数2

高等代数2


a11 a12 La1n
a21 a22 La2n LLLLL an1 an2 Lann
= ∑ (−1) a a La τ (i1i2Lin )+τ ( j1 j2L jn )
i1 j1 i2 j2
in jn
i1j1i2jL2 Lin jn
第 4 页 共 11 页
高等代数第二章 行列式
§2.4 行列式的性质与计算
一般用 i ↔ j 写在等号上面表示交换第 i 行与第 j 行; 写在等号下面表示交换第 i 列与 第 j 列。
方法提示:计算行列式的基本方法——化行列式为三角形行列式。
0 1 1 −1 例 1 计算四阶行列式 1 0 2 1 。
−1 1 2 0 −2 0 1 1
(答案:1)
例 2 计算 n 阶行列式
高等代数第二章 行列式
第二章 行列式
§2.1 引言
高等代数的另一个重要概念是行列式。 它是一个形式化运算或表示数字运算结果的符 号形式。下面我们从简单的解方程组问题引进二阶和三阶行列式概念,再通过其定义中所涉
及的排列性质,找出规律,用来定义一般的 n 阶行列式。
设有一个二元线性方程组
⎧⎨⎩ aa1211xx11
(答案: a1a2a3 Lan−1an ⎜⎜⎝⎛1 +
1 a1
+
1 a2
+
1 a3
+L+
1 an−1
+
1 an
⎟⎟⎠⎞ )
第 6 页 共 11 页
高等代数第二章 行列式
二、 行列式按某行(列)展开
一般来说,低阶行列式的计算较高阶行列式要简单。 因此,我们自然要考虑能否用较 低阶行列式来表示高阶行列式的问题。为了研究这个问题,先引进行列式元素的余子式和代 数余子式的概念。

高等代数__课后答案__高等教育出版社

高等代数__课后答案__高等教育出版社

高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。

3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。

另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。

由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。

从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。

北京大学数学系《高等代数》课后习题详解(行列式)【圣才出品】

北京大学数学系《高等代数》课后习题详解(行列式)【圣才出品】
00 00
010
0
002
0
(2)
000
n 1
n00
0
0 0
(3)
n 1 0
010 200
000 00n
解:(1)
n(n1)
原行列式=(1) (n , n1 , , 2 , 1) n! (1) 2 n!
(2)(-1)n-1n!
( n 1)( n 2 )
(3) (1) 2 n!
(1) ( j1 jn )
(1) ( j1 jn ) l k 0
j1 jn
j1 jn
故 l=k,即奇偶排列各占一半.
12.设
1 x x2
x n 1
P(x) 1 a1 a12
a1n1
1 an1 an21
其中 a1,a2,…,an-1 是互丌相同的数.
a n 1 n1
10.由行列式定义计算
2x x 1 2 1 x 1 1 f (x) 3 2x 1 1 11 x
中 x4 不 x3 的系数,并说明理由.
解:f(x)的展开式中 x 的 4 次项只有一项:2x∙x∙x∙x,故 x4 的系数为 2;x 的 3 次项
也只有一项(-1)r(2134)x∙1∙x∙x,故 x3 的系数为-1.
5.如果排列 x1x2…xn-1xn 的逆序数为 k,排列 xnxn-1…x2x1 的逆序数是多少? 解:(1/2)n(n-1)-k.
6.在 6 级行列式中,a23a31a42a56a14a65;a32a43a14a51a66a25 这两项应带有什么符号? 解:a23a31a42a56a14a65 带正号;a32a43a14a51a66a25 带正号.
7.写出 4 级行列式中所有带有负号并且包含因子 a23 的项.

高等代数第二章课后习题

高等代数第二章课后习题

第二章 行列式
第二章 行列式
第二章 行列式
第二章 行列式
第二章 行列式
x1-m
x2

xn
x1
x2-m … xn
3)
.
.
.
.
. .
.
.
.
x1
x2

xn-m
第二章 行列式
第 章 行列式
2
1
第二章 行列式
5x1+6x2=1 x1+5x2+6x3=0 4) x2+5x3+6x4=0 x3+5x4+6x5=0
x4+5x5=1
2
第 章 行列式 3
ห้องสมุดไป่ตู้
a a ...a 2
n-1
n-1
n-1 n-1
其中 a1,a2,...,an-1 是互不相同的数. 1) 由行列式定义说明,p(x)是一个 n-1 次多项式;
2)由行列式性质,求 p(x)的根 .
4
1.计算下面的行列式:
第二章 行列式
246 427 327
1)
1014 543 443 ;
-342 721 621
1
第 章 行列式 2
第二章 行列式
6.由行列式定义计算
2x x 1 2
f(x)= 1 3
x 1 -1 2x 1
1 11 x
中 x4 与 x3 的系数,并说明理由.
3
第二章 行列式
证明奇偶排列各半.
8.设
1
P(x)=
1 .
.
.
1
x
x2...xn-1
a1 a12 ...a1n-1 . .. . .. . ..
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等代数第四次作业第二章 行列式 §1—§4一、填空题1.填上适当的数字,使72__43__1为奇排列. 6,52.四阶行列式44⨯=ija D 中,含24a 且带负号的项为_____. 112433421224314313243241,,a a a a a a a a a a a a3.设.212222111211d a a a a a a a a a nnn n n n =ΛΛΛΛΛΛΛ则._____122122211121=n n nnn na a a a a a a a a ΛΛΛΛΛΛΛ(1)2(1)n n d -- 4.行列式11111111---x 的展开式中, x 的系数是_____. 2 二、判断题1. 若行列式中有两行对应元素互为相反数,则行列式的值为0 ( )√2. 设d =nn n n n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211则121112222121n n n nn n a a a a a a a a a L L L L L L L =d ( )×3. 设d =nnn n n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211则d a a a a a a a a a nnn n n n-=112112122221ΛΛΛΛΛΛΛΛ( )×4.abcd zzz dy y c x b a =000000 ( ) √ 5.abcd dcx b y x a z y x-=000000 ( )× 6.0000000=yxh gf e d c b a ( )√7. 如果行列式D 的元素都是整数,则D 的值也是整数。

( )√ 8. 如果行列D 的元素都是自然数,则D 的值也是自然数。

( )×9.n na a a a a a ΛN 2121= ( )× 10. 0100002000010ΛΛΛΛΛΛΛΛΛnn -=n ! ( )×三、选择题1.行列式01110212=-k k 的充分必要条件是 ( ) D(A )2=k (B )2-=k (C )3=k (D )2-=k 或 32.方程093142112=x x 根的个数是( )C (A )0 (B )1 (C )2 (D )3 3.下列构成六阶行列式展开式的各项中,取“+”的有 ( )A(A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )513312446526a a a a a a 4. n 阶行列式的展开式中,取“–”号的项有( )项 A(A )2!n (B )22n (C )2n (D )2)1(-n n5.若(145)11243455(1)k l k l a a a a a τ-是五阶行列式的一项,则l k ,的值及该项的符号为( )B (A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )3,1k l ==,符号为正; (D )1,3k l ==,符号为负6.如果0333231232221131211≠==M a a a a a a a a a D ,则3332312322211312111222222222a a a a a a a a a D = = ( )C(A )2 M (B )-2 M (C )8 M (D )-8 M 7.如果1333231232221131211==a a a a a a a a a D ,3332313123222121131211111232423242324a a a a a a a a a a a a D ---= ,则=1D ( )C(A )8 (B )12- (C )24- (D )24四、计算题1. 计算3214214314324321解:3214214314324321321421431432111110=123012101210111110------=440004001210111110---=400004001210111110---==1602. 计算3111131111311113.解:3111131111311113=31111311113111116•=20000200002011116•=.48263=⨯高等代数第五次作业第二章 行列式 §5—§7一、填空题1. 设ij ij A M ,分别是行列式D 中元素ij a 的余子式,代数余子式,则._____1,1,=+++i i i i A M 02. 122305403-- 中元素3的代数余子式是 .6-3. 设行列式4321630211118751=D ,设j j A M 44,分布是元素j a 4的余子式和代数余子式,则44434241A A A A +++ = ,44434241M M M M +++= .0,66- 4. 若方程组⎪⎩⎪⎨⎧=+-=++=+02020z y kx z ky x z kx仅有零解,则k . 2≠5. 含有n 个变量,n 个方程的齐次线性方程组,当系数行列式D 时仅有零解. 0≠ 二、判断题1. 若n 级行列试D 中等于零的元素的个数大于2n n -,则D=0 ( )√2.222)(00000000a b b a a b b a ab -= ( )√ 3.222)(00000000b a ab b a a b b a -= ( )√4.0=d b a c d b c a b d c a b d a c ( )√ 5.483111131111311113= ( )√6.)(000000hx gy a yh fdx g e c b a -= ( )× 7.0107310111187654321=--- ( )√三、选择题1. 行列式102211321的代数余子式13A 的值是( )D(A )3 (B )1- (C )1 (D )2- 2.下列n (n >2)阶行列式的值必为零的是 ( )D(A )行列式主对角线上的元素全为零 (B )行列式主对角线上有一个元素为零 (C )行列式零元素的个数多于n 个 (D )行列式非零元素的个数小于n 个 3.若111111111111101)(-------=x x f ,则)(x f 中x 的一次项系数是( )D(A )1 (B )1- (C )4 (D )4-4.4阶行列式4433221100000000a b a b b a b a 的值等于( )D(A )43214321b b b b a a a a - (B )))((43432121b b a a b b a a -- (C )43214321b b b b a a a a + (D )))((41413232b b a a b b a a -- 5.如果122211211=a a a a ,则方程组 ⎩⎨⎧=+-=+-022221211212111b x a x a b x a x a 的解是( )B(A )2221211a b a b x =,2211112b a b a x = (B )2221211a b a b x -=,2211112b a b a x =(C )2221211a b a b x ----=,2211112b a b a x ----=(D )2221211a b a b x ----=,2211112b a b a x -----=6. 三阶行列式第3行的元素为4,3,2对应的余子式分别为2,3,4,那么该行列式的值等于( )B(A )3 (B )7 (C )–3 (D )-77.如果方程组 ⎪⎩⎪⎨⎧=--=+=-+050403z y kx z y z ky x 有非零解,则 k =( )C (A )0 (B )1 (C )-1 (D )3 四、计算题1. 计算D=10011001101aa aa ---解:方法1:1001100111aa aa ---21r r ↔=aaa a 10110001011---21r ar +=aaa a a 101100100112--+-32r r ↔=aaa a a 10101100112-+--232(1)r a r ++=aa a a a a 1120011001123-++--=aa a a 11223-++=.13)1()2(2423++=+++a a a a a a方法2:将行列式按第一行展开,有:100110011001a a a a ---=1011011010101a a a a a a-----=1]01111[2++---•a aa a a a=1])1([22++++a a a a a .1324++=a a2. 计算12125431432321-=n n n D n ΛM M M M ΛΛΛ解:12125431432321-n n nΛMM M M ΛΛΛ121)1(254)1(143)1(32)1(21212121-++++=n n n n n n n n n n ΛM M M M ΛΛΛ121125411431321)1(21-+=n n n n ΛM M M M ΛΛΛ 1110111111321)1(21ΛMM M M ΛΛΛn nnn n --+=111111111)1(21ΛM M MΛΛn n n n n ---+=)1()1(0000111)1(121212)1(+-=---+=--n n n n n n n n n ΛM M MΛΛ3. 计算6427811694143211111解:6427811694143211111)34)(24)(23)(14)(13)(12(------=12=4. 计算=n D 12111111111n a a a +++L L M M M L解:=n D 12111111111na a a +++LL M M MLna a a ΛM M M ΛΛ1101101121++=12111111+111a a ++L LM M ML1211--+=n n n a a a D a Λ).11(121∑=+=n i in a a a a Λ 5. 解方程:22x 9132513232x 213211--=0.解:22x 9132513232x 213211--=223310131000103211x x -----=223310131000103211)1(x x ----•-=223300130000103211)1(x x ----•-=22400130000103211)1(x x ---•-=223(1)(4)x x ---.2,1±±=∴x五、证明题1.证明:0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c cb b b b a a a a 证明:()()()()()()()()()()()()43433232212222222222222222222222221232123252122123212325212221232521221232123252122123c c c c c c c c c c a a a a a a a a a a b b b b b b b b b b c c c c c c c c c c d d d d d d d d d d -----++++++++++++++++++++++++++++ 4推论2.设111,12,11,111211ΛΛM M M Λn n n n n a a a a a a D ---=,求证:n D D D D +++=Λ21,其中k D ()1,2,,k n =L 为将D 中第k 列元素换成121,,,,1n x x x -L 后所得的新行列式。

相关文档
最新文档