初中数学《分式》单元教学设计以及思维导图
人教版八年级上册数学第十五章 《分式》全章教学设计
![人教版八年级上册数学第十五章 《分式》全章教学设计](https://img.taocdn.com/s3/m/4a0a3a7ee418964bcf84b9d528ea81c759f52e4a.png)
人教版八年级上册数学第十五章《分式》全章教学设计第十五章分式15.1.1 从分数到分式在实际问题中,我们常常需要描述不同量之间的关系。
为了更好地描述这种关系,我们引入了分式的概念,并建立了数学模型。
学生需要理解分式的概念,并掌握分式有意义的条件和值为零的条件。
重点:理解分式有意义的条件和值为零的条件。
难点:熟练地求出分式有意义的条件和值为零的条件。
一、复引入1.整式、单项式和多项式的概念。
2.判断下列各式中,哪些是整式,哪些不是整式。
8m + nab + aba + b233x - 4.2①。
1 + x + y。
2/2.2/2^2.33/2x + 2x + 1a + b2x二、探究新知1.分式的定义1) 通过一个实际问题,我们可以得到以下分式:30 + v)/(30 - v) 和 90/(30 + v) = 60/(30 - v)观察这些式子,我们可以发现它们都像分数一样,都是A/B的形式。
分数的分子A和分母B都是整数,而这些式子中的A,B都是整式,并且B中都含有字母。
归纳:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
2) 为了使分式有意义,分式中的分母应满足B≠0的条件。
例如,对于分式2x/(1x + y),分母1x + y不能为0,即x≠ -y。
学生可以自学教材中的例1和思考题,巩固理解分式有意义的条件。
2.分式的值为零的条件对于分式A/B,当A=0时,分式的值为0.而当B=0时,分式无意义。
学生需要熟练地求出分式有意义的条件和值为零的条件。
巩固练:教材第129页练第2和第3题。
3.补充例题:当分式的分子为零时,分式的值为多少?分析:当分式的分子为零时,分式的值为0,因为分子为零,分式的值就是0/分母,即0.答案:分式的值为0的条件是分子为零。
三、归纳总结1.分式是分数的推广,分式由分子和分母组成。
2.当分式的分母不为零时,分式有意义;当分式的分母为零时,分式无意义。
人教版八年级数学上册课件第15章《分式》教材分析课件(32张)
![人教版八年级数学上册课件第15章《分式》教材分析课件(32张)](https://img.taocdn.com/s3/m/d075a159561252d380eb6eca.png)
8、分式计算化简的最后结果中既有乘积式, 也有多项式的和的形式,可以根据具体情况决 定。 9、对一些较高难度的分式计算,可根据各学校 学生实际情况适当补充。 10、对于负整数指数幂教学建议。 11、重视能力培养和数学思想方法渗透。
十、课时内容安排
15.1 分式(分式的概念、基本性质、约分 及通分) 本节要联系分数有关知识展开教学。
第十五章 分式
一、本章的地位与作用 二、本章主要内容、重难点及数学思想 三、课程学习目标 四、数学课程标准对本章的要求 五、中考说明中的考试要求 六、新旧教材对比
七、本章知识结构图 八、课时安排 九、教学建议 十、课堂内容安排 十一、中考试题
三、课程学习目标
1、以描述实际问题中的数量关系为背景, 抽象出分式的概念,体会分式是刻画 现实世界中数量关系的一类代数式. 2、类比分数的基本性质,了解分式的基 本性质,掌握分式的约分和通分法则.
15.2 分式的运算
类比分数的运算学习,使学生明确分式 的运算,可以与分数、有理数的运算相联 系。
1、分式的乘除
(1)注意优化运算的过程 ①依据分式符号变号法则,确定好整个运算符号. ②进行分式的乘法时,要注意利用约分的方法, 再相乘 (2)分子、分母是多项式时,先进行因式分解,然 后计算 (3)对运算结果的要求(最简分式) (4)掌握运算的一般步骤(养成观察、决策、反思 的习惯) (5)含有乘除混合运算时,要注意运算顺序,要先 统一为乘法运算.
幂的
了解整数指幂的意义和基
能用幂的性质解决简单问
五、中考说明中的考试要求
六、新旧教材对比
总体上新教材比旧教材加重了 分式混合运算
九、教学建议
(一)参考教参P246—P250 (二)具体教学建议
沪教版(上海)-初中数学七年级、八年级、九年级数学全册章节知识点结构思维导图集
![沪教版(上海)-初中数学七年级、八年级、九年级数学全册章节知识点结构思维导图集](https://img.taocdn.com/s3/m/84cd699afad6195f312ba6c4.png)
- 14 -
第二十六章 二次函数的章节知识点结构思维导图 第二十七章 圆与正多边形的章节知识点结构思维导图
- 15 -
第二十八章 统计初步的章节知识点结构思维导图
- 16 -
-7-
第十四章 三角形的章节知识点结构思维导图 第十五章 平面直角坐标系的章节知识点结构思维导图
-8-
上海市(沪教版)八年级数学全册章节思维导图 共八个章节
第十六章 二次根式的章节知识点结构思维导图
-9-
第十七章 一元二次方程的章节知识点结构思维导图
- 10 -
第十八章 正比例函数和反比例函数的章节知识点结构思维导图 第十九章 几何证明的章节知识点结构思维导图
-3-
第七章 线段与角的画法的章节知识点结构思维导图 第八章 长方体的再认识的章节知识点结构思维导图
-4-
上海市(沪教版)七年级数学全册章节思维导图 共七章
第九章 整式的章节知识点结构思维导图
-5-
第十章 分式的章节知识点结构思维导图 第十一章 图形的运动的章节知识点结构思维导图
-6-
第十二章 实数的章节知识点结构思维导图 第十三章 相交线 平行线的章节知识点结构思维导图
- 11 -
第二十章 一次函数的章节知识点结构思维导图 第二十一章 代数方程的章节知识点结构思维导图
- 12 -
第二十二章 四边形的章节知识点结构思维导图 第二十三章 概率初步的章节知识点结构思维导图
- 13 -
上海市(沪教版)ቤተ መጻሕፍቲ ባይዱ年级数学全册章节思维导图 共五章
第二十四章 相似三角形的章节知识点结构思维导图
上海市(沪教版)初中数学全册思维导图集 共二十八章
2020人教版八上数学思维导图(史上最新最全)
![2020人教版八上数学思维导图(史上最新最全)](https://img.taocdn.com/s3/m/dd2c63daaf1ffc4ffe47acc0.png)
整章内容预览,梳理知识脉络,学习记忆好帮手,复习补漏好工具 目录
精心原创,谢绝盗图 关注公众号“数学资料库”,更多优质内容免费领。
第十一章 三角形
精心原创,谢绝盗图 关注公众号“数学资料库”,更多优质内容免费领。
第十二章 全等三角形
精心原创,谢绝盗图 关注公众号“数学资料库”,更多优质内容免费领。
第十三章 轴对称
精心原创,谢绝盗图 关注公众号“数学资料库”,更多优质内容免费领。
第十四章 整式的公众号“数学资料库”,更多优质内容免费领。
第十五章 分式
精心原创,谢绝盗图 关注公众号“数学资料库”,更多优质内容免费领。
精心原创,谢绝盗图 关注公众号“数学资料库”,更多优质内容免费领。
初中数学《分式方程》单元教学设计以及思维导图
![初中数学《分式方程》单元教学设计以及思维导图](https://img.taocdn.com/s3/m/dc9f65d38ad63186bceb19e8b8f67c1cfad6ee20.png)
分式方程适用年级八年级所需时间4课时主题单元学习概述分式方程(可化为一元一次方程)是在学习了等式基本性质和一元一次方程及分式等知识后进行学习,学生已有一定的学习经验和方法,在教学中采用探究讨论点拨的方法。
本节分二个专题:专题一,应用‘转换法’数学思想解分式方程;专题二,构建‘分式方程’数学模型解决实际问题。
主题单元规划思维导图主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单元学习中所要达到的主要目标)知识与技能:1.经历从现实生活中抽象出数及简单数量关系的过程。
.探索给定事物中隐含的规律,会用方程表示简单的数量关系;2.知道分式方程的概念,明白‘转换法’这一基本数学思想;3.能熟练解简单的方式方程。
过程与方法:1.通过对现实生活中有关的数字信息作出合理的解释,用构建数学模型的方法描述并解决现实世界中的简单问;2.通过对分式方程的研究,初步学会与他人合作,体会在解决问题中研究性学习的基本过程。
情感态度与价值观:体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。
对应课标(说明:学科课程标准对本单元学习的要求)1.能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数学模型。
2.经历用观察、画图或计算器等手段估计方程解的过程。
3.会解可化为一元一次方程的分式方程(方程中的分式不超过两个)。
主题单元问题设计1.如何用数学模型描述解决日常生活中的实际问题?2. 2.解方程采取的策略和应用的数学思想有哪些?专题划分专题一:应用‘转换法’数学思想解分式方程。
( 2 课时)专题二:构建‘分式方程’数学模型解决实际问题。
(2课时)专题一利用‘去分母’将分式方程转换成整式方程解方程解分式方程所需课时2课时专题学习目标(说明:描述学生在本专题学习中所要达到的学习目标,注意与主题单元的学习目标呼应)1.知道分式方程的概念;2.了解分式方程与整式方程的区别与联系;3.初步了解‘转换法’解分式方程的数学思想,明白运用的理论依据及运用此依据的前提和会产生的后果,为检验留下伏笔;4.熟练的解简单的方式方程。
八年级数学思维导图
![八年级数学思维导图](https://img.taocdn.com/s3/m/4eb94d5930b765ce0508763231126edb6f1a7699.png)
八年级数学思维导图
第十一章三角形
有关概念三角形的定义
第十三章轴对称
第十四章整式的乘法与因式分解
第十五章分式
第十六章二次根式
二次根式
定义:式子(a ≥0)叫做二次根式
(a ≥0)是一个非负数
(a ≥0)
运算二次根式的乘法二次根式的除法
二次根式的混合运算二次根式的加减
二次根式加减是,可以先将二次根式化成最简二次根式,再合并同类二次根式
满足下列两个特点的二次根式,叫最简二次根式.
(1)被开方数不含分母,分母
中不含二次根式;
(2)被开方数中不含开得尽方
的因数或因式.
最简二次根式
性质
(a ≥0,b ≥0)(a ≥0,b >0)
(a ≥0,b >0)
第十七章勾股定理
第十八章平行四边形
第十九章一次函数
第二十章数据的分析上一页下一页。
初中数学《分式的运算》单元教学设计以及思维导图
![初中数学《分式的运算》单元教学设计以及思维导图](https://img.taocdn.com/s3/m/d36cfce8900ef12d2af90242a8956bec0875a554.png)
分式的运算适用年八年级级所需时课内3课时间主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要的学习方式和预期的学习成果,字数300-500) 《分式》是继“整式”之后研究的另一类代数式,引入了一种新的代数式,就要研究它的运算,《分式的运算》一单元是在学习了分式的概念,基本性质,以及通分约分之后要研究的一部分内容。
本单元分为三个专题:专题一分式的乘除,专题二分式的加减,专题三整数指数幂。
它们都是分式运算的重要组成部分,其中整数指数幂将指数的讨论范围从正整数扩大到全体正整数,给运算带来便利。
本单元学习的重点是讨论分式的四则运算法则,并进行分式的四则混合运算;难点是分式的混合运算。
本单元主要的学习方式是类比的方法,引领学生经历从特殊到一般,从具体到抽象的过程。
分式的四则运算法则是对分数的四则运算法则的抽象,两者本质不同,教学中可以从回顾分数运算法则的角度,引申到分式的运算法则,让学生温故而知新,体现由数到式的数、从具体到抽象的过程。
整数指数幂的学习,指数的范围被扩大,使原来的性质得到更广泛的应用,并且可以用科学计数法表示比1小的数。
通过本单元的学习,学生可以熟练地掌握分式的四则运算法则并能进行简单的分式加、减、乘、除运算.将指数的范围从正整数扩大到全体整数,了解整数指数幂的运算性质;能用科学记数法表示小于1的正数.主题单元规划思维导图主题单元学习目标知识与技能:1.历届并掌握分式的加、减、乘、除运算,会进行简单的分式的加、减、乘、除运算.2.会运用法则解决一些与分式有关的实际问题,具有一定的代数化归能力.3.会用同底数幂的除法性质进行运算,理解整数指数幂与负整数指数幂的意义并熟练的运用其进行计算,会用科学记数法表示绝对值小于1的数.过程与方法:1.经历探索分式的乘、除运算法则的过程,体会因式分解在分式乘除运算中的作用,发挥有条理的思考与语言表达能力.2.经历探索分式的加减运算法则的过程,进一步运用类比的数学思想学习分式的加减法法则,理解其算理.3.在进一步体会幂的意义的过程中,发展学生的推理能力和表达能力,能熟练灵活的运用法则进行同底数幂的除法运算,培养学生的抽象思维能力.情感态度与价值观:1.渗透类比转化的的思想,培养学生的观察、类比、归纳能力和小组交流合作的情感,进一步体会数学的实际价值.2.在活动中培养学生乐于探究、合作学习的良好学习习惯,培养学生“用数学”的意识和能力.3.渗透公式正向运用与逆向运用的辩证统一的数学思维观点,通过由特殊到一般,再由一般到特殊的认识活动,对学生渗透辩证唯物主义观点,感受数学的应用价值,体会数学与社会生活的联系,提高数学素养.对应课标(说明:学科课程标准对本单元学习的要求)知识与技能:类比分数的学习,探究分式的四则运算法则,掌握四则运算法则,并能进行简单的加、减、乘、除混合运算,能解决一些与分式有关的简单的实际问题。
人教版初中数学八年级上册上册第十五章《分式》第一节《分式》教案
![人教版初中数学八年级上册上册第十五章《分式》第一节《分式》教案](https://img.taocdn.com/s3/m/cb6ec8dc03d276a20029bd64783e0912a2167ceb.png)
-约分与通分的技巧:学生在约分和通分时,往往不能找到最简公分母,需要教授寻找公分母的技巧和方法。
-分式的混合运算:学生在面对分式的混合运算时,难以掌握运算顺序和法则,需要通过典型例题和练习逐步突破。
-分式在实际问题中的应用:学生可能不知道如何将实际问题转化为分式问题,需要通过案例分析,引导学生建立数学模型。
举例:难点在于分式的混合运算,教师应通过以下步骤帮助学生克服难点:
a.通过对比整式的运算顺序,引导学生理解分式混合运算的顺序。
b.通过具体例题,展示分式混合运算的步骤和技巧。
c.设计不同难度的练习题,让学生逐步适应并掌握分式混合运算。
d.在解题过程中,强调分式约分与通分的应用,使运算过程简化。
四、教学流程
五、教学反思
在本次教学活动中,我教授了人教版初中数学八年级上册第十五章《分式》的第一节《分式》。回顾整个教学过程,我认为有几个地方值得反思和改进。
首先,关于导入新课环节,我通过提出与分式相关的生活中的问题来激发学生的兴趣,这是一个较好的切入点。但在实际操作中,我发现部分学生可能并没有完全理解问题的实质,导致后续学习过程中对分式的理解不够深入。因此,在以后的教学中,我需要更加关注学生的反应,适时调整问题的难度,确保学生们能够更好地进入学习状态。
本节课的核心素养目标主要包括:
1.培养学生的数学抽象能力,通过引入分式的概念,让学生理解数学表达形式的简洁性与严谨性;
2.提高学生的逻辑推理能力,在学习分式的性质与运算法则中,使学生掌握逻辑推理方法,形成严密的数学思维;
3.培养学生的数学建模素养,让学生在实际问题中运用分式知识建立数学模型,提高解决实际问题的能力;
初一数学章节思维导图(全)
![初一数学章节思维导图(全)](https://img.taocdn.com/s3/m/7afb8f509b89680202d8251f.png)
沪科版初中数学-全章思维导图
5
沪科版初中数学-全章思维导图
• 第 7 章 一元一次不等式与不等式组 • 第 8 章 整式乘法与因式分解
6
• 第 9 章 分式
沪科版初中数学-全章思维导图
• 第 10 章 相交线、平行线和平移
7
初一上·第一学期 • 第 1 章 有理数
沪科版初中数学-全章思维导图
1
沪科版初中数学-全章思维导图
• 第 2 章 整式加减
沪科版初中数学-全章思维导图
• 第 3 章 一次方程与方程组
3
沪科版初中数学-全章思维导图
• 第 4 章 直线与角
• 第 5 章 数据的收集与整理
4
七年级下-第二学期 • 第 6 章 实数
初中数学《因式分解》单元教学设计以及思维导图
![初中数学《因式分解》单元教学设计以及思维导图](https://img.taocdn.com/s3/m/8836e88ec1c708a1284a44ac.png)
因式分解学习难点:让学生识别多项式的公因式。
准确找出公因式,并能正确进行分解因式。
教学方法:独立思考与合作交流单元与主题的关系:本单元是解决主题的一种方法三、运用公式法学习重点:让学生掌握运用平方差公式分解因式使学生会用完全平方公式分解因式,让学生掌握多步骤、多方法分解因式方法。
学习难点:将某些单项式化为平方形式,再用平方差公式分解因式;培养学生多步骤分解因式的能力,让学生学会观察多项式的特点,恰当地安排步骤,恰当地选用不同方法分解因式。
教学方法:练习法,课堂讨论启发法。
单元与主题的关系:本单元是解决主题的另一种方法,并且综合运用各种方法来解决主题。
主题单元规划思维导图第1课时活动一:算一算活动内容:计算:(1)学生回答:你是用什么方法计算的?这个式子的各项有相同的因数吗?活动目的:引入这一步的目的旨在让学生通过乘法分配律的逆运算(因数分解)这一特殊算法,使学生通过类比的思想方法很自然地过渡到正确理解提公因式法的概念上,从而为提公因式法的掌握扫清障碍.活动二:想一想活动内容:多项式ab+ac中,各项有相同的因式吗?多项式x2+4x 呢?多项式mb2+nb–b呢?结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.活动目的:在学生能顺利地寻找数的简便运算中的公因数之后,再深一步引导学生采用类比的方法由寻找相同的因数过渡到在多项式中寻找相同的因式.活动三:议一议活动内容:多项式2x2y+6x3y2中各项的公因式是什么?结论:(1)各项系数是整数,系数的最大公约数是公因式的系数;(2)各项都含有的字母的最低次幂的积是公因式的字母部分;(3)公因式的系数与公因式字母部分的积是这个多项式的公因式.通过观察,推导分解因式与整式乘法的关系,让学生感受事物间的因果联系.专题问题设计1. 平方差公式的特点。
2. 完全平方公式的特点。
3. 运用整体法,及两种公式综合运用解题。
所需教学环境和教学资源电子白板学习活动设计第1课时活动一:练一练活动内容:填空:(1)(x+3)(x–3)= ;(2)(4x+y)(4x–y)= ;(3)(1+2x)(1–2x)= ;(4)(3m+2n)(3m–2n)= .根据上面式子填空:(1)9m2–4n2= ;(2)16x2–y2= ;(3)x2–9= ;(4)1–4x2= .活动目的:学生通过观察、对比,把整式乘法中的平方差公式进行逆向运用,发展学生的观察能力与逆向思维能力.注意事项:由于学生对乘法公式中的平方差公式比较熟悉,学生通过观察与对比,能很快得出第一组式子与第二组式子之间的对应关系.活动二:想一想活动内容:观察上述第二组式子的左边有什么共同特征?把它们写成乘积形式以后又有什么共同特征?结论:a2–b2=(a+b)(a–b)活动目的:引导学生从第一环节的感性认识上升到理性认识,通过自己的归纳能找到因式分解中平方差公式的特征.注意事项:学生对平方差公式的正确使用掌握的比较快,但用语言叙述第二组式子的左右两边的共同特征有一定的困难,必须在老师的指导下才能完成.活动三:做一做活动内容:把下列各式因式分解:(1)25–16x2 (2)9a2–活动目的:培养学生对平方差公式的应用能力.注意事项:学生对含有分数的平方差公式应用起来有一定的困难,有的学生由于受解方程的影响,习惯首先去分母,再因式分解,这是很多学生经常犯的一个错误.活动四:议一议活动内容:的完全平方公式.注意事项:由于有了七年级的整式乘法的学习基础,同时对照口诀,大多数学生能顺利识别完全平方式,但少部分同学由于对完全平方公式的特征的理解模糊,不能很好地掌握完全平方公式,这需要老师更加耐心地引导和启发.活动三:试一试活动内容:把下列各式因式分解:(1)x2–4x+4 (2)9a2+6ab+b2(3)m2–(4)活动目的:(1)培养学生对平方差公式的应用能力;(2)让学生理解在完全平方公式中的a与b不仅可以表示单项式,也可以表示多项式.注意事项:学生对第(3)小题含有分数的完全平方公式应用起来有一定的困难,有的学生由于受解方程的影响,习惯首先去分母,再因式分解,这是很多学生经常犯的一个错误.活动四:想一想活动内容:将下列各式因式分解:(1)3ax2+6axy+3ay2 (2)–x2–4y2+4xy活动目的:使学生清楚地了解提公因式法(包括提取负号)是分解因式首先考虑的方法,再考虑用完全平方公式分解因式.注意事项:在综合应用提公因式法和公式法分解因式时,一般按以下两步完成:(1)有公因式,先提公因式;(2)再用公式法进行因式分解. 活动五:反馈练习活动内容:1、判断正误:(1)x2+y2=(x+y)2 ( )(2)x2–y2= (x–y)2 ( )(3)x2–2xy–y2= (x–y)2 ( )(4)–x2–2xy–y2=–(x+y)2 ( )2、下列多项式中,哪些是完全平方式?请把是完全平方式的多项式分解因式:(1)x2–x+ (2)9a2b2–3ab+1(3)(4)3、把下列各式因式分解:(1)m2–12mn+36n2 (2)16a4+24a2b2+9b4(3)–2xy–x2–y2 (4)4–12(x–y)+9(x–y)2活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的特征是否清楚,对完全平方公式分解因式的运用是否得当,因式分解的步骤是否真正了解,以便教师能及时地进行查缺补漏.注意事项:当完全平方公式中的a与b表示两个或两个以上字母时,学生运用起来有一定的困难,此时,教师应结合完全平方公式的特征给学生以有效的学法指导.活动六:学生反思。
八年级下数学思维导图
![八年级下数学思维导图](https://img.taocdn.com/s3/m/8d3994d185254b35eefdc8d376eeaeaad1f31669.png)
八年级下数学思维导图汇总勾股定理知识点一.知识框架二知识概念1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。
,那么这个三角形是直角三角形。
2.定理:经过证明被确认正确的命题叫做定理。
3.我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)勾股定理是直角三角形具备的重要性质。
本章要求学生在理解勾股定理的前提下,学会利用这个定理解决实际问题。
可以通过自主学习的发展体验获取数学知识的感受运用思维导图梳理数学知识一、树形思维导图因为在最初指导学生认识思维导图的时候,我给学生展示的就是树形图。
所以学生运用树形图对数学知识进行梳理比较熟练。
学生在生活中早已认识了树的形状,对树干、树枝、树叶及分枝的感知非常清晰,也就很容易的联想到树干、树枝与主题、分主题的逻辑关系。
所以学生运用树形图的时候比较多,也绘制的比较好。
如图1是苏科版数学八年级下册第10章分式的树形思维导图.树形图的优点是主干分支非常明确,但画起来比较麻烦。
为了更简单的运用思维导图,后来我们发动学生研究更简单的思维导图形式,大家确认就把树干简化为一个圆、椭圆或正方形等简单易画的图形,如图2:学生把树干简化成一个圆环,涂上不同颜色,画上一个指针,这是苏科版数学八年级下册第8章第二节数学实验室中的转盘模型变形图,学生的这一构想即贴近课本又有一定的创造性。
二、箭头或框架式思维导图箭头或框架样式的思维导图,老师在日常备课或给学生做知识梳理的时候会经常使用,非常简洁明了,而且容易绘制。
只是以前我们没有把它作为一种学习方法并上升到理论高度去重视。
这种结构图实际上就是一种很简单好用的思维导图,特别适合在课堂中应用。
在具体的运用中我们要先总结出本节课的主题,用一个关键词表示。
然后直接用箭头往下分支出二级、三级等主题,也是常见的框架结构图,学生运用起来非常简单容易上手。
初中数学 数与式 知识点 考点 思维导图 实数及其运算 整式 分式 二次根式
![初中数学 数与式 知识点 考点 思维导图 实数及其运算 整式 分式 二次根式](https://img.taocdn.com/s3/m/e0abebfe988fcc22bcd126fff705cc1755275fcc.png)
分式的加减法/ 异分母的分式相加减,先通分,变成同分母的分
4、参数法∶当已经条件形如工-上=三,所要求值的代数式
是一个含x,y,z,a,b,c,而又不易化简的分式
时,通常设 艺-为=三*(k就是我们所说的参数),
分式
\式,然后相加减,b即 4d± 二b=dad ,bbdc_ adb±dbc
运算顺序
作商法 =1ea=b(a>0,b>0)
<1ea<b
(4) (ab)c=a(bc); n(5)a(b+c)=ab+ac
分级∶加减是一级运算,乘除是二级运算,乘方和开方是三级运算.
三级运算的顺序是三、二、一、(如果有括号,先算括号内的;如
果没有括号,在同一级运算中,要从左至右进行运算,无论何种
运算,都要注意先定符号后运算.)
学习误区
合并同类项
系数相加,所得的结果作为合并后的系数,字母和字母的指数 _不变叫做合并同类项.
整式的加减 就是合并同类项,遇到括号,一般先去掉括号,去 括号的方法是∶+(a+b-c)=a+b-c;-(a+b-c)=-a-b+c.
知能提升
整式有关概念
总并华结 梳知理识
整式 幂的运算法则 的运算 整式的乘法
中A,B,M/都是整式,特别要注意整式M的值不等于零.
2、分式的分子、分母与分式本身的符号,改变其中的任何
两个,分式的值不变如--=-为=号,再如一ba
知能提升
分式的概念
并总华结
知识
梳理
式子表述 告A部告告(u20,如为整式)
基本性质
同分母的分式相加减,分母不变,把分子相加减,
即号±8a±o,
3、分式有意义的条件是分母不为0;分式无意义的条件是
八年级数学上册《分式》教案、教学设计
![八年级数学上册《分式》教案、教学设计](https://img.taocdn.com/s3/m/60191c683868011ca300a6c30c2259010202f3d2.png)
为了巩固所学知识,我会安排一定量的课堂练习。这些练习题会从易到难,涵盖分式的定义、性质和运算等多个方面。我会要求学生在规定时间内独立完成,并鼓励他们在解题过程中尝试不同的方法。
在学生完成练习后,我会对部分题目进行讲解,指出解题中的常见错误和需要注意的地方。同时,我会表扬那些解题思路清晰、方法巧妙的学生,激励他们在今后的学习中继续努力。
-关注学生的个体差异,给予每个学生个性化的指导和鼓励,提高学生的自信心。
-定期进行教学反思,根据学生的学习情况调整教学策略,以提高教学效果。
4.教学拓展设想:
-引导学生探索分式与整式之间的关系,理解数学知识之间的内在联系。
-鼓励学生参加数学竞赛、研究性学习等活动,提升学生的数学素养和创新能力。
四、教学内容与过程五、作业布置为了巩固学生对分式知识的掌握,提高学生的实际应用能力,我设计了以下几项作业:
1.基础知识巩固题:完成课本中相关的练习题,重点在于分式的定义、性质和基本运算。通过这些题目,让学生对分式的概念有更深入的理解,熟练掌握分式的运算规则。
2.提高题:布置一些具有一定难度的分式运算题目,包括乘除、加减以及分式方程的求解。这些题目旨在提高学生的运算技巧,培养学生的逻辑思维能力。
(二)过程与方法
1.采用问题驱动的教学方法,引导学生主动探究分式的性质和运算规律,培养学生的自主学习能力。
2.设计丰富的例题和练习题,让学生在解答过程中,巩固所学知识,提高运算技巧。
3.通过小组合作学习,培养学生的团队协作能力和沟通能力,共同探究分式的解题方法。
4.利用数形结合的方法,让学生直观地理解分式的意义,提高学生的直观思维能力。
3.实际应用题:设计一些与生活实际相关的分式问题,让学生运用所学的分式知识解决。例如,计算购物打折后的价格、分配物品等。通过解决这些问题,让学生体会数学在生活中的应用,提高学生的应用意识。
初中数学《分式》单元教学设计以及思维导图
![初中数学《分式》单元教学设计以及思维导图](https://img.taocdn.com/s3/m/4a164822cf84b9d528ea7a7d.png)
…………………………分式适用年级八年级所需时间课内八课时主题单元学习概述1.本章是继整式之后对代数式的进一步的研究。
2.分式是对分数的进一步抽象------字母的意义3.分数的讨论框架的继承------小学时分数都研究哪些性质?4.从实际意义或者问题解决上,分式也是分数的实际意义的抽象------列方程解应用题5.需要了解学生对于小学分数的了解情况,特别是是否还记得分数的性质框架6.分式的基础是分数、整式的四则运算、多项式的因式分解、一元一次方程等知识。
同时它是今后进一步学习函数、一元二次方程的基础。
主题单元规划思维导图主题单元学习目标知识与技能:1.了解分式的概念,明确分式和整式的区别;2.掌握分式的基本性质和分式的约分;3.分式的乘除运算法则;4.经历探索分式加减运算法则,理解其算理;5.异分母分式加减法的法则及分式的通分;6.通过对实际问题的分析,感受分式方程是刻画现实世界的有效模型,归纳分式方程的概念;7.经历探索分式方程解法的过程,会解可化为一元一次方程的分式方程,会检验根的合理性;8.用分式方程的数学模型反映现实情境中的实际问题.过程与方法:1.体会分式的意义,进一步发展符号感,掌握分式的符号法则;2.会进行简单的分式的乘除法运算;3.会进行简单分式的加减运算,具有一定的代数化归能力;4.经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养学习学习中转化未知问题为已知问题的能力;5.经历“求解-解释解的合理性”的过程,发展学生分析问题、解决问题的能力,培养学生的应用意识;6.用分式方程来解决现实情境中的问题.情感态度与价值观:1.经历分式探索,体会并掌握有效的数学转化思想;2.能解决一些简单的实际问题,进一步体会分式的模型思想;3.在学生已有数学经验的基础上,探求新知,从而获得成功的快乐,提高学生“用数学”意识;4.在活动中培养学生乐于探究合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值;5.在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值;6.经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣.对应课标1.抽象出分式概念;2.类比分数的基本性质,了解分式的基本性质;掌握分式的约分和通分法则;3.类比分数的四则运算法则,探究分式的四则运算,归纳并掌握这些运算法则;4.结合分式的运算,将指数的讨论范围从正整数扩大到全体整数,构建和发展相联系的知识体系;5.结合分析和解决实际问题,讨论可化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想;利用分式方程解决实际问题,体会建模思想.主题单元问题设计1.什么叫分式?及其分式的意义.2.如何进行分式的乘除,加减运算?3.解分式方程的步骤是什么?4.解分式方程需要注意什么?专题划分专题一:相关概念(三课时)专题二:探究性质,运算法则(四课时)专题三:实际应用(一课时)专题一相关概念所需课时课内三课时专题学习目标知识技能:1.了解分式的概念,明确分式和整式的区别;2.经历分式的约分及其通分;3.认识和了解分式方程的概念及增根;过程与方法:1.体会分式的意义,进一步发展符号感,掌握分式的符号法则;2.会进行简单的分式的乘除法运算;3.会进行简单分式的加减运算,具有一定的代数化归能力;4.经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养学习学习中转化未知问题为已知问题的能力;情感态度与价值观:1.经历分式探索,体会并掌握有效的数学转化思想;2.能解决一些简单的实际问题,进一步体会分式的模型思想.专题问题设计1.怎样给分式,分式方程及增根下定义?2.分式的意义是什么?3.分式如何来约分?所需教学环境和教学资源分式、分式方程课件,纸笔等学习活动设计第一课时:分式活动一:预习作业1. 分式的概念: .2. 分式有意义的条件: .活动二:引例问题情景:面对目前严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成原计划任务,原计划每月固沙造林多少公顷?(1)这一问题中有哪些等量关系?(2)如果设原计划每月固沙造林x公顷,那么原计划完成一期工程需要个月,实际完成一期工程用了个月。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式适用年级八年级所需时间课内八课时主题单元学习概述1.本章是继整式之后对代数式的进一步的研究。
2.分式是对分数的进一步抽象------字母的意义3.分数的讨论框架的继承------小学时分数都研究哪些性质?4.从实际意义或者问题解决上,分式也是分数的实际意义的抽象------列方程解应用题5.需要了解学生对于小学分数的了解情况,特别是是否还记得分数的性质框架6.分式的基础是分数、整式的四则运算、多项式的因式分解、一元一次方程等知识。
同时它是今后进一步学习函数、一元二次方程的基础。
主题单元规划思维导图主题单元学习目标知识与技能:1.了解分式的概念,明确分式和整式的区别;2.掌握分式的基本性质和分式的约分;3.分式的乘除运算法则;4.经历探索分式加减运算法则,理解其算理;5.异分母分式加减法的法则及分式的通分;6.通过对实际问题的分析,感受分式方程是刻画现实世界的有效模型,归纳分式方程的概念;7.经历探索分式方程解法的过程,会解可化为一元一次方程的分式方程,会检验根的合理性;8.用分式方程的数学模型反映现实情境中的实际问题.过程与方法:1.体会分式的意义,进一步发展符号感,掌握分式的符号法则;2.会进行简单的分式的乘除法运算;3.会进行简单分式的加减运算,具有一定的代数化归能力;4.经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养学习学习中转化未知问题为已知问题的能力;5.经历“求解-解释解的合理性”的过程,发展学生分析问题、解决问题的能力,培养学生的应用意识;6.用分式方程来解决现实情境中的问题.情感态度与价值观:1.经历分式探索,体会并掌握有效的数学转化思想;2.能解决一些简单的实际问题,进一步体会分式的模型思想;3.在学生已有数学经验的基础上,探求新知,从而获得成功的快乐,提高学生“用数学”意识;4.在活动中培养学生乐于探究合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值;5.在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值;6.经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣.对应课标1.抽象出分式概念;2.类比分数的基本性质,了解分式的基本性质;掌握分式的约分和通分法则;3.类比分数的四则运算法则,探究分式的四则运算,归纳并掌握这些运算法则;4.结合分式的运算,将指数的讨论范围从正整数扩大到全体整数,构建和发展相联系的知识体系;5.结合分析和解决实际问题,讨论可化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想;利用分式方程解决实际问题,体会建模思想.主题单元问题设计1.什么叫分式?及其分式的意义.2.如何进行分式的乘除,加减运算?3.解分式方程的步骤是什么?4.解分式方程需要注意什么?专题划分专题一:相关概念(三课时)专题二:探究性质,运算法则(四课时)专题三:实际应用(一课时)专题一相关概念所需课时课内三课时专题学习目标知识技能:1.了解分式的概念,明确分式和整式的区别;2.经历分式的约分及其通分;3.认识和了解分式方程的概念及增根;过程与方法:1.体会分式的意义,进一步发展符号感,掌握分式的符号法则;2.会进行简单的分式的乘除法运算;3.会进行简单分式的加减运算,具有一定的代数化归能力;4.经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养学习学习中转化未知问题为已知问题的能力;情感态度与价值观:1.经历分式探索,体会并掌握有效的数学转化思想;2.能解决一些简单的实际问题,进一步体会分式的模型思想.专题问题设计1.怎样给分式,分式方程及增根下定义?2.分式的意义是什么?3.分式如何来约分?所需教学环境和教学资源分式、分式方程课件,纸笔等学习活动设计第一课时:分式活动一:预习作业1. 分式的概念: .2. 分式有意义的条件: .活动二:引例问题情景:面对目前严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成原计划任务,原计划每月固沙造林多少公顷?(1)这一问题中有哪些等量关系?(2)如果设原计划每月固沙造林x公顷,那么原计划完成一期工程需要个月,实际完成一期工程用了个月。
根据题意,可得方程:.问题情景(2):正n边形的每个内角为度。
问题情景(3):新华书店库存一批图书,其中一种图书的原价是每册a元,]现降价x元销售,当这种图书的库存全部售出时,其销售额为b元.降价销售开始时,新华书店这种图书的库存量是多少?小结:分式的概念:分式有意义的条件:分式无意义的条件:活动三:典型例题例1:下列各式中,哪些是整式?哪些是分式?例2:根据要求,解答下列各题(1)当x为何值时,分式无意义?(2)当x为何值时,分式有意义?(3)x为何值时,分式的值为0?第二课时:分式(二)活动一:预习作业请同学们预习作业教材P68~P70的内容,在学习过程中请弄清以下几个问题:1.分式的基本性质: .2.什么叫分式的约分?根据是什么?3.什么是最简分式?[来源:Z#xx#k.C om]4.分式的符号法则?活动二:引例问题:的依据是什么?你认为分式与相等吗?与呢?引出分式的基本性质并用式子表示:活动三:典型例题例1.下列等式的右边是怎样从左边得到的?[来源(1)(2)例2、化简下列分式:(1)(2)小结:1.分式的约分2.注意事项:在应用分式的基本性质时,分式的分子与分母应同时乘以或除以同一个公因式。
3.不改变分式的值,使下列分式的分子与分母的最高次项的系数是整数:4.不改变分式的值,把分式分子和分母的系数化为整数:第三课时:分式方程(一)活动一:认识分式方程问题1:某市从今年1月1日起调整居民用水价格,每立方米水费上涨0.4元.小丽家去年12月的水费是15元,而今年7月份的水费是25元.如果设去年每立方米水费为x元.那么今年每立方米水费为元。
小丽家去年12月的用水量是立方米.今年7月份的用水量是立方米.问题2:有两快面积相同的小麦实验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000 ㎏和15000 ㎏,已知第一块的小麦实验田每公顷的产量比第二块少3000㎏,如何设未知数列方程?问:(1)如果设第一块小麦实验田的每公顷的产量为 x ㎏,那么第二块实验田每公顷的产量为㎏.(2)第一块试验田有公顷?第二块试验田有公顷? X|k|b|1.c|o|m(3)你能发现这个问题中的等量关系吗? K](4)你能根据面积相等列出方程吗?题问3:从甲地到乙地有两条路可以走:一条全长600 km普通公路,另一条是全长 480km 的高速公路,某客车在高速公路上行驶的平均速度比普通公路上快45km/h,由高速公路从甲地到乙地的所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间?(1).你能发现这个问题中的等量关系吗?(2).你能根据等量关系列出分式方程吗?比较左右两边的方程, 有什么不同?活动二:总结分母中含有的方程叫做分式方程评价要点1.分式及分式方程概念的探索过程2.分式通分的的探索过程专题二探究性质,运算法则所需课时课内四课时专题学习目标知识技能:1.分式的乘除运算法则;2.经历探索分式加减运算法则,理解其算理;3.异分母分式加减法的法则及分式的通分;4.经历探索分式方程解法的过程,会解可化为一元一次方程的分式方程,会检验根的合理性;过程与方法:1.会进行简单的分式的乘除法运算;2.经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养学习学习中转化未知问题为已知问题的能力;3.会进行简单分式的加减运算,具有一定的代数化归能力;情感态度与价值观:1.在学生已有数学经验的基础上,探求新知,从而获得成功的快乐,提高学生“用数学”意识;2.在活动中培养学生乐于探究合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值专题问题设计1.分式的基本性质内容是什么?2.分式乘除,加减运算的依据是什么?3.如何进行分式通分?4.解分式方程需要注意什么?所需教学环境和教学资源分式、分式方程课件,纸笔等学习活动设计第一课时:分式的乘除法活动一:自主探究阅读课本74-76页,回答下列问题:1、分式乘除法的法则是什么?2、尝试用数学符号语言表示分式的乘除法法则。
3、完成教材中的“做一做”,谈谈你的感想。
活动二:学习研讨计算(1)(2)(3)(4)合作完成:(1)尝试给上面的4小题分类?(2)说一说计算过程中每一步的依据是什么?(3)在第(3)小题中2xy2是如何参与计算的?(4)在第(2)(4)小题中分子分母中出现了多项式,一般情况下,我们先,以便约分。
(5)在第(2)小题中是分式的混合运算,此类题要特别注意.第二课时:分式的加减法(一)活动一:创设情景,导出问题从甲地到乙地有两条路,每条路都是3km,其中第一条是平路,第二条有1km的上坡路、2km的下坡路,小丽在上坡路上的骑车速度为vkm/h,在平路上的骑车速度为2vkm/h,在下坡路上的骑车速度为3vkm/h,那么(1)当走第二条路时,她从甲地到乙地需要多长时间?(2)她走哪条路花费时间少?少用多长时间?活动二:探索交流,发现规律讨论:(1)同分母的分数如何加减?(2)你认为应等于什么?(3)猜一猜,同分母的分式应该如何加减?归纳:与同分母分数加减法的法则类似,同分母的分式加减法的法则是。
第三课时:分式的加减法(二)活动一:探索交流,发现规律做一做:尝试完成下列各题:与异分母分数加减法的法则类似,异分母的分式加减法的法则是:异分母的分式相加减,先,化为的分式,然后再按同分母分式的加减法法则进行计算。
活动二:典型例题例2第四课时:分式方程(二)活动一:讲授新知你能设法求出分式方程的解吗?解方程解:方程两边都乘以6,得3(3x-1)=12-(x-2)解这个方程,得x=活动二:典型例题例1.解方程:解:方程两边都乘以2x,得960-600=90 x解这个方程,得x = 4检验:将x=4代入原方程,得左边=45=右边所以,x=4是原方程的根。
例2. 解方程(学生照例1自主完成)解:检验:在这里,x=2不是原方程的根,因为它使得原分式方程的分母为零,我们称它为原方程的增根。
产生增根的原因是,我们在方程的两边同乘了一个可能使分母为零的整式。
因为解分式方程可能产生增根,所以解分式方程必须检验。
K]总结:想一想解分式方程一般需要经过哪几个步骤?评价要点1.分式及分式方程概念的探索过程2.分式通分的的探索过程3.在探索过程中小组合作的能力专题三实际应用所需课时课内一课时专题学习目标知识与技能:用分式方程的数学模型反映现实情境中的实际问题.过程与方法:用分式方程来解决现实情境中的问题.情感态度与价值观:经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣.专题问题设计1.如何根据题意,列分式方程解决实际问题?2.利用分式方程解决实际应用问题的步骤是什么?应注意哪些问题?所需教学环境和教学资源分式、分式方程课件,纸笔等学习活动设计第一课时:分式方程(三)活动一:自主探究阅读课本92-92页,回答以下问题:1.列分式方程解实际问题的一般步骤是什么?2.列分式方程解实际问题的关键是什么?3.课本中的两个问题都是将实际问题转化为数学问题,经历一个建立数学模型的过程,这体现了数学中的什么思想?4. 谈谈你在阅读课本中的感想.活动二:合作探究2010年4月14日,青海省玉树地区发生7.1级强烈地震,人民群众生命财产遭受严重损失为帮助灾区人民重建家园,兰州某中学师生自愿捐款。