氨基酸发酵工艺
氨基酸发酵生产工艺学n2ppt课件
(二)pH的影响及其控制
作用机理:主要影响酶的活性和菌的代谢。 在氮源供应充分和微酸性条件下,谷氨酸发 酵转向谷氨酰胺发酵。 pH控制在中性或微碱性。 方法:流加尿素和氨水。
我国味精技术进展情况
制糖工艺进展:酸法水解→酶酸法水解→双酶法水解。 发酵工艺进展:亚适量生物素水平(产酸4~6g/dl)
→高生物素水平(产酸12~15g/dl)。 提取工艺进展:等电点法(少数锌盐法)→等电离交法
→低温连续等电点法(少数厂家采用)。 精制工艺进展:全粉炭脱色、硫化碱除铁→颗粒炭脱
+ 4
生物 谷氨酸 (限量) 乳酸或琥珀酸(充足) 素
pH (酸性)N-乙酰-谷氨酰胺 谷氨酸(中性或微碱性)
磷酸 (适量)谷氨酸 盐
缬氨酸
➢ 菌种扩大培养
1、斜面培养:主要产生菌是棒状杆菌属、 短杆菌属、小杆菌属、节杆菌属。
我国各工厂目前使用的菌株主要是钝齿 棒杆菌和北京棒杆菌及各种诱变株。
生长特点:适用于糖质原料,需氧, 以生物素为生长因子。
2. 不溶性盐ห้องสมุดไป่ตู้淀法
(1)锌盐法
谷氨酸+锌离子 pH6谷.3 氨酸锌沉淀 pH2.谷4 氨酸结晶
溶加液酸
(2)盐酸盐法: Glu在浓盐酸中生成并析出谷氨酸盐酸盐。
这是用盐酸水解面筋生产谷氨酸的原理。 (3)钙盐法:
高温谷氨酸钙溶解度大,与菌体等不溶性杂质 分开,降温,析出谷氨酸钙沉淀,加NaHCO3 直接得 到味精。
3、菌体生长停滞期:谷氨酸合成。
措施:提供必须的氨及pH维持在7.2-7.4。 大量通气,控制温度34-37 ℃。
发酵法工艺生产小品种氨基酸技术实施方案(一)
发酵法工艺生产小品种氨基酸技术实施方案一、实施背景随着生物技术的不断发展,利用微生物发酵法生产小品种氨基酸已成为当前及未来氨基酸产业的重要趋势。
小品种氨基酸具有特殊的生物活性及高附加值,其市场需求不断增长。
然而,传统的合成法生产小品种氨基酸存在流程长、产率低、成本高等问题,无法满足市场日益增长的需求。
因此,开发利用微生物发酵法生产小品种氨基酸的技术具有重要意义。
二、工作原理发酵法工艺生产小品种氨基酸主要依赖于特定的微生物菌种,通过控制发酵条件,如温度、pH、溶氧量等,实现微生物的高效代谢,进而产生目标氨基酸。
其主要工作原理如下:1.菌种筛选与优化:选择具有高生产能力及耐受性的微生物菌种,并通过遗传工程手段进行改造,提高其生产效率及抗逆性。
2.培养基优化:设计并优化适合微生物生长及代谢的培养基,提高目标氨基酸的产量。
3.发酵过程控制:通过实时监控发酵过程,调整发酵条件,保证微生物的高效代谢及目标氨基酸的产生。
4.分离纯化:利用物理、化学及色谱等方法,将目标氨基酸从发酵液中分离出来,得到高纯度的产品。
三、实施计划步骤1.菌种筛选与优化:挑选具有高生产能力的微生物菌种,通过遗传工程手段进行改造,提高其生产效率及抗逆性。
2.培养基优化:设计并优化适合微生物生长及代谢的培养基,提高目标氨基酸的产量。
3.发酵过程控制:通过实时监控发酵过程,调整发酵条件,保证微生物的高效代谢及目标氨基酸的产生。
4.分离纯化:利用物理、化学及色谱等方法,将目标氨基酸从发酵液中分离出来,得到高纯度的产品。
5.产品质量检测:对所得产品进行质量检测,确保其符合相关标准。
6.工业化放大:根据实验室结果,进行工业化放大研究,为后续的工业化生产提供技术支持。
四、适用范围此技术适用于生产各种小品种氨基酸,如L-脯氨酸、L-缬氨酸、L-异亮氨酸等。
不仅适用于实验室研究,也适用于工业化生产。
五、创新要点1.利用微生物发酵法生产小品种氨基酸,突破了传统合成法的限制,提高了生产效率及产率。
第4章氨基酸发酵生产工艺
• ⑵酶法转化工艺
利用酶的离体专一性反应,催化底物生产有活性 的氨基酸。
D-氨基酸和DL-氨基酸的手性拆分 工艺简便、转化率高、副产物少、容易精制。 占总量的10%左右
• ⑶全化学合成生产工艺
不受氨基酸品种的限制,理论上可生产天然氨基 酸和非天然氨基酸。
产物是DL-型外消旋体,必须拆分才得单一对映 体。
• 组成蛋白质的氨基酸有20种,多数为L-型,也是 人体能吸收利用的活性形式
• 初级代谢产物 • 根据R基团的化学结构不同,分为:15种脂肪族的, 2种芳香族的,2种杂环的,以及1种亚基氨基酸。 • 根据R基团的极性,分为:12种极性与8种非极性 • 根据酸碱性,分为:2种酸性的,3种碱性的,以及 15种中性氨基酸。 • 根据人体生理生化过程能否合成,分为:(8+2)种必 需和10种非必需氨基酸 • 应用:药品、食品、饲料、化工等
4.1.2 氨基酸的理化性质
• 无色晶体,熔点200~300℃,一般溶于水、稀酸 稀碱,不溶于乙醚、氯仿等有机溶剂,常用乙醇 沉淀氨基酸。 • 除甘氨酸外,有旋光性,测定比旋度可鉴定氨基 酸的纯度。 • 芳香族氨基酸在紫外有吸收峰,可用于鉴别、合 成、定性和定量分析中。
• 氨基酸是弱的两性电解质,在酸性环境,带正电荷; 碱性环境,带负电荷;净电荷为0时的pH值为等电 点pI。由于静电作用,等电点时,溶解度最小,容 易沉定,可用于氨基酸的制备。
氨基酸
分子量
甘氨酸
75.07
丙氨酸
89.10
缬氨酸
117.15
亮氨酸
131.18
异亮氨酸
131.18
丝氨酸
105.09
苏氨酸
119.12
半胱氨酸
氨基酸发酵工艺学
氨基酸发酵工艺学氨基酸发酵工艺学是研究氨基酸生产过程中的发酵过程和工艺参数的科学。
氨基酸是生命体中重要的有机物质,广泛应用于医药、化工、食品等领域。
通过发酵工艺学的研究,可以优化氨基酸的生产工艺,提高产量和质量,降低生产成本。
氨基酸发酵工艺学主要包括微生物的选育与改良、发酵介质的配方和优化、发酵条件的控制等环节。
首先,通过选择适合生产目标氨基酸的微生物种类进行培养,并通过基因改造等手段提高其产酸能力和抗生素产量。
其次,合理配方发酵介质,提供微生物生长和代谢所需的营养物质,如碳源、氮源、无机盐等,并优化营养物质浓度和比例,以提高产酸效率。
同时,还需要注意控制介质的pH值、温度和氧气供应等因素,以最大程度地促进微生物生长和酸产量。
此外,还需要加入抗泡剂、抗生素等辅助物质,防止发酵过程中的杂菌污染。
在发酵过程中,通过监测微生物生长曲线、消耗和产酸速率等指标来了解反应的进程和微生物代谢状态。
根据这些数据,可以调整前述的工艺参数,如发酵温度、密度、通气量、搅拌速度等,以提高产酸效率和酸产量。
在工艺的最后阶段,通过优化酸的提取、纯化和结晶工艺,以获得高纯度的氨基酸产品。
随着生物技术的发展,氨基酸发酵工艺学还涉及到基因工程、酶工程等新技术的应用。
通过选择、改造和优化微生物的代谢途径和酶系统,可以进一步提高氨基酸的产酸效率和产量,同时降低废水和废料的排放。
总之,氨基酸发酵工艺学是一门综合知识学科,涉及到微生物学、生化学、工程学等多个领域的知识。
通过深入研究和应用,可以不断改进氨基酸生产工艺,满足市场需求,推动氨基酸产业的发展。
氨基酸发酵工艺学是一门涉及微生物学、生化学、生物工程学等多学科的综合学科,旨在通过研究发酵过程和优化工艺参数,提高氨基酸的产量和质量,降低生产成本,促进氨基酸产业的发展。
在氨基酸发酵工艺学中,微生物的选育与改良是一个重要的环节。
微生物是氨基酸发酵的生产工具,不同的微生物对于氨基酸的产量和产物特性有着不同的影响。
氨基酸发酵工艺学
氨基酸发酵工艺学氨基酸发酵工艺学是一门研究氨基酸发酵过程的学科,其目的是通过深入研究氨基酸发酵过程的生化反应机理,优化发酵条件,提高氨基酸的产量和品质。
本文将从氨基酸的生物合成、发酵微生物、发酵过程控制等方面进行探讨。
一、氨基酸的生物合成氨基酸是生命体内的重要有机分子,是构成蛋白质的基本单元。
氨基酸的生物合成过程是通过一系列生化反应由简单的原料转化为复杂的有机物的过程,其中涉及到多种酶的催化作用。
氨基酸的生物合成过程可以分为两个阶段:第一阶段是核心骨架的合成,第二阶段是侧链的修饰。
核心骨架的合成是通过多种代谢途径实现的,其中最为重要的是糖酵解途径和三羧酸循环途径。
糖酵解途径是将葡萄糖分解为丙酮酸和乳酸等中间产物,再通过转化反应合成核心骨架;三羧酸循环途径则是将醋酸等有机酸转化为丙酮酸和草酸等中间产物,再通过转化反应合成核心骨架。
此外,还有其他代谢途径,如磷酸戊糖途径、戊糖酸途径等,也可以参与核心骨架的合成。
侧链的修饰是通过氨基酸转氨酶、氧化酶、脱羧酶等酶的作用实现的。
其中,氨基酸转氨酶可以将一个氨基酸的侧链转移到另一个氨基酸上,从而形成新的氨基酸;氧化酶可以将氨基酸的侧链氧化,从而形成新的侧链;脱羧酶可以将氨基酸的侧链脱羧,从而形成新的氨基酸。
通过这些修饰反应,可以合成大量不同种类的氨基酸。
二、发酵微生物氨基酸的发酵过程是由微生物完成的,这些微生物包括细菌、真菌、酵母等。
其中,最常用的氨基酸发酵微生物是大肠杆菌、蓝绿藻、突变株等。
大肠杆菌是一种广泛存在于自然界中的革兰氏阴性菌,具有很强的代谢能力和生存适应性。
在氨基酸发酵过程中,大肠杆菌可以利用多种碳源和氮源,通过调节发酵条件,产生不同种类和含量的氨基酸。
蓝绿藻是一种单细胞藻类,具有光合作用和异养作用两种代谢途径。
在光合作用条件下,蓝绿藻可以利用太阳能和CO2等无机物质合成有机物,其中包括氨基酸。
通过调节光照强度、温度、氧气含量等因素,可以提高蓝绿藻的氨基酸产量。
第十章 氨基酸发酵生产工艺学
2.饲料工业: 甲硫氨酸等必需氨基酸可用于制造动物饲料 3.医药工业: 多种复合氨基酸制剂可通过输液治疗营养或代 谢失调 苯丙氨酸与氮芥子气合成的苯丙氨酸氮芥子气 对骨髓肿瘤治疗有效,且副作用低. 4.化学工业:谷氨基钠作洗涤剂,丙氨酸制造丙 氨酸纤维.
氨基酸的生产方法
发酵法: 直接发酵法:野生菌株发酵,营养 缺陷型突变发酵,抗氨基酸结构类似物 突变株发酵,抗氨基酸结构类似物突变 株的营养缺陷型菌株发酵和营养缺陷型 回复突变株发酵. 添加前体法
酶法:利用微生物细胞或微生物产生的酶来制 造氨基酸. 提取法:蛋白质水解,从水解液中提取.胱氨 酸,半胱氨酸和酪氨酸 合成法:DL-蛋氨酸,丙氨酸,甘氨酸,苯丙 氨酸. 传统的提取法,酶法和化学合成法由于前体物 的成本高,工艺复杂,难以达到工业化生产的目 的.
生产氨基酸的大国为日本和德国. 日本的味之素,协和发酵及德国的德固 沙是世界氨基酸生产的三巨头.它们能 生产高品质的氨基酸,可直接用于输液制 , 剂的生产. 日本在美国,法国等建立了合资的氨基 酸生产厂家,生产氨基酸和天冬甜精等衍 生物.
3.1.2 载体的构建
有效的载体需要有在受体菌中可启动的 复制起始位点,这可从棒状杆菌家族内 源小质粒中获得; 载体所需的筛选标记及外源基因插入的 多克隆位点,可从常用的克隆载体中获 得.
3.1.3 基因转移手段
由于棒状杆菌是革兰氏阳性菌,CaCl2转化法对它 不适用. 通常采用的方法有:原生质体转化,转导,电转化, 接合转移. 原生质体转化的方法是较早采用的方法,由于受 到原生质体再生条件的局限,效率不高; 电转化方法由于高效,快速被广泛使用,目前它 的转化效率可达到原生质体转化法的100~1000倍. 接合转移可用于基因在亲缘关系远的物种之间的 转移,并且可将外源基因整合于染色体上,易于 稳定遗传.
第9章氨基酸发酵
化妆品生产中,胱氨酸用于护发素,丝氨 酸用于面霜中;谷氨酸、甘氨酸、丙氨酸 与脂肪酸形成的表面活性剂,具有清洗、 抗菌等功能,用于护肤品、洗发剂中。 在农业中,苯丙氨酸和丙氨酸可用于治疗 苹果疮痂病;甘氨酸可制成除草剂。赖氨 酸、蛋氨酸添加在饲料中,能加速家畜、 家禽的生长,改善肉的质量。
第9章氨基酸发酵谷氨来自酸制味
精
的
工
艺
流
第9章氨基酸发酵
(2)味精生产工艺控制:
①中和:将谷氨酸加水溶解,用碳酸钠或 氢氧化钠中和。 应使谷氨酸一钠(单钠盐)生成量最大,中和 时,应先加谷氨酸后加碱,开启搅拌,温 度控制在65℃左右(低于70℃),中和液浓度 21°Bé~24°Bé,pH 5.6~6.8,控制pH不 超过7,否则形成二钠盐。
第9章氨基酸发酵
(3)赖氨酸的精制 粗品50℃搅拌溶于去离子水,活性炭60℃ 保温脱色1h,趁热过滤,滤液冷却后5℃结 晶2天。 滤取结晶真空干燥或热风干燥,即得赖氨 酸盐酸盐成品。
第9章氨基酸发酵
9.3 其他氨基酸的发酵生产
1.苏氨酸发酵 用于饲料工业、保健食品和医药工业。目前 年产量约5万吨。 主要生产企业为日本味之素公司、德国德固 赛公司、美同ADM公司、日本协和发酵工业 公司等。它们的产量占全球份额的90%左右。 其中,日本味之素公司占据全球市场60%以 上的份额。 制备方法有化学合成法、发酵法和蛋白质水 解三种方法,其中以发酵法最为先进。 由微生物发酵生成的苏氨酸都是L-苏氨酸。
第9章氨基酸发酵
②培养基中苏氨酸、蛋氨酸的控制:赖氨 酸生产菌都是高丝氨酸缺陷型,苏氨酸和 蛋氨酸是赖氨酸生产菌的生长因子,在发 酵过程中,如果培养基中两者含量丰富, 就会只长菌,而不产或少产赖氨酸,所以 在发酵时,将苏氨酸和蛋氨酸控制在亚适 量,以提高赖氨酸产量。
天津科技大学氨基酸发酵工艺学
第四章 谷氨酸发酵控制 第三节 pH值对谷氨酸发酵的影响
一、 pH值对谷氨酸发酵的影响 二、发酵过程pH 值的变化及控制
第四章 谷氨酸发酵控制 第四节 供氧对谷氨酸发酵的影响
一、溶解氧与谷氨酸的需氧量 二、供氧对谷氨酸发酵的影响 三、供氧与其他发酵工艺条件的关系 四、氧对发酵影响的微生物生理学考察
S9114 华南理工大学 FD415 上海复旦大学 TG961 天津科技大学
第三章 谷氨酸生产菌的特征、育种及扩大培养
第三节 谷氨酸生产菌在发酵过程中的形态变化
一、种子的菌体形态
斜面和一、二级种子培养在不同培养条件下,细胞形态基本相似。斜面培养的 菌体较细小,一、二级种子比斜面菌体大而粗壮,革兰氏染色深。多为短杆至棒杆状, 有的微呈弯曲状,两端钝圆,无分枝;细胞排列呈单个、成对及"V"字形,有栅状或不规 则聚块;分裂的细胞大小为0.7~0.9*1.0~3.4um。由于生物素充足,繁殖的菌体细胞 均为谷氨酸非积累型细胞。
第一章 淀粉水解糖的制备 第二节 淀粉水解糖的制备方法
一、淀粉水解糖的生产意义和水解糖的质量要求 二、淀粉水解的方法及其比较
1、酸解法 2、酶酸法 3、酸酶法 4、双酶法
第一章 淀粉水解糖的制备
第三节 双酶法制糖工艺
淀粉双酶法制糖工艺主要包括:淀粉的液化和糖化两个步骤。 液化是利用液化酶使淀粉糊化,粘度降低,并水解到糊精和低聚糖 的程度。糖化是用糖化酶将液化产物进一步彻底水解成葡萄糖 的过程。
各种微生物在一定条件下,都有一个最适的生长温度范围。 谷氨酸产生菌的最适生长温度为30~40℃,产生谷氨酸的最适 为35~37℃。若温度过高,菌体容易衰老。生产上表现为OD值 增长慢,pH值高,耗糖慢,发酵周期长,谷氨酸生成少。应及时降 温,采用小通风,流加尿素以少量多次;必要是时可补加玉米浆,以 促进生长。适当提高温度可加快发酵速率。
氨基酸发酵工艺学要点
氨基酸发酵工艺学要点氨基酸发酵工艺学是指以微生物作为生产菌株,利用合成代谢途径合成氨基酸的工艺学。
该领域研究的主要内容包括菌种筛选与改良、培养基优化、发酵条件控制、产物回收等。
1. 菌种筛选与改良:选择合适的生产菌株是氨基酸发酵工艺成功的关键。
传统的方法是通过对不同菌株的培养并测定其产酸能力来筛选,现代技术如基因工程能够对菌株进行改良提高产酸能力。
2. 培养基优化:培养基的组成对菌株的生长和产酸能力有着重要影响。
氨基酸发酵工艺学需要确定合适的碳、氮、矿物质和微量元素的配比,并通过适当的调节pH、温度等参数来优化培养基。
3. 发酵条件控制:发酵条件的控制对产酸效果起着至关重要的作用。
温度、pH值、氧气供应和搅拌速度等因素需要进行合理控制,以提供适宜的环境条件使菌株能够高效地进行产酸。
4. 产物回收:产物回收是氨基酸发酵工艺的重要步骤。
产酸液通过离心、过滤、浓缩等工艺步骤进行分离和净化,得到纯净的氨基酸产物,可以通过结晶、干燥等工艺步骤进行后续处理。
综上所述,氨基酸发酵工艺学主要涉及菌种筛选与改良、培养基优化、发酵条件控制以及产物回收等关键要点。
只有在这些方面的科学研究和技术路线的指导下,才能实现高效、经济地生产氨基酸。
氨基酸发酵工艺学是一门综合性的学科,涉及微生物学、发酵工程学、生物化学等多个学科的知识。
其研究的目标是通过优化发酵条件和处理工艺,实现高效、经济地生产氨基酸。
在氨基酸发酵工艺中,菌种筛选与改良是非常重要的一步。
不同的微生物具有不同的代谢途径和产酸能力,选择合适的菌种对产酸效果有着至关重要的影响。
菌种筛选的传统方法是通过对不同菌株的培养,并通过测定产酸能力来评估其潜力。
然而,随着基因工程技术的发展,我们能够通过改造菌株的基因来提高其产酸能力。
通过插入外源基因或修改内源基因,可以改变菌株的代谢途径和调节酶活性,从而提高产酸效率。
培养基优化也是氨基酸发酵工艺中的重要环节。
培养基的组成对菌株的生长和产酸能力具有重要影响。
氨基酸发酵工艺学要点
氨基酸发酵工艺学要点2淀粉生产的流程原料→清理→浸泡→粗碎→胚的分离→磨碎→分离纤维→分离蛋白质→清洗→离心分离→干燥→淀粉13在谷氨酸发酵中如何控制细胞膜渗透性。
①生物素亚适量②添加表面活性剂、高级饱和脂肪酸或青霉素③选育温度敏感突变株、油酸缺陷型或甘油缺陷型突变株15谷氨酸生产菌的育种思路(1).切断或减弱支路代谢(2)解除自身的反馈抑制(3).增加前体物的合成 (4).提高细胞膜的渗透性 (5).强化能量代谢(6).利用基因工程技术构建谷氨酸工程菌株16现有谷氨酸生产菌主要有哪四个菌属。
棒状杆菌属、短杆菌属、小杆菌属及节杆菌属中的细菌17谷氨酸发酵生产菌的主要生化特点。
现有谷氨酸生产菌的主要特征:(1)细胞形态短杆形、棒形;(2)革兰氏阳性菌,无鞭毛,无芽孢,不能运动;(3)需氧型微生物;(4)生物素缺陷型;(5)脲酶强阳性;(6)不分解淀粉、纤维素、油脂、酪蛋白、明胶等;(7)发酵中菌体发生明显形态变化,同时细胞膜渗透性改变;(8)二氧化碳固定反应酶系强;(9)异柠檬酸裂解酶活力欠缺或微弱,乙醛酸循环弱;(10)α-酮戊二酸氧化能力微弱;(11)柠檬酸合成酶、乌头酸酶、异柠檬酸脱氢酶、谷氨酸脱氢酶活性强;(12)具有向环境泄露谷氨酸的能力;(13)不分解利用谷氨酸,并能耐高谷氨酸,产谷氨酸8%以上;(14)还原性辅酶II进入呼吸链能力弱(15)利用醋酸不能利用石蜡22氨基酸生产菌菌种的来源有哪些。
(1)向菌种保藏机构索取有关的菌株,从中筛选所需菌株。
(2)由自然界采集样品,如土壤、水、动植物体等,从中进行分离筛选。
(3)从一些发酵制品中分离目的菌株。
27谷氨酸发酵培养基包括哪些主要营养成分。
碳源谷氨酸产生菌均不能利用淀粉,只能利用葡萄糖、果糖、蔗糖、麦芽糖。
谷氨酸产量随糖浓度的增加而增加氮源无机氮源: (1)尿素(2) 液氨(3)氨水有机氮源:主要是蛋白质、胨、氨基酸等。
谷氨酸发酵的有机氮源常用玉米浆、麸皮水解液、豆饼水解液和糖蜜等。
完整版)各种氨基酸的生产工艺
完整版)各种氨基酸的生产工艺本文介绍了谷氨酸的生产工艺,其中包括等电离交工艺方法、连续等电工艺、发酵法生产谷氨酸的谷氨酸提取工艺、水解等电点法、低温等电点法和直接常温等电点法。
等电离交工艺方法是从发酵液中提取谷氨酸的一种方法。
该方法的缺点是废水量大,治理成本高,酸碱用量大。
连续等电工艺方法将谷氨酸发酵液适当浓缩后进行结晶,虽然水量相对较少,但氨酸提取率及产品质量较差。
发酵法生产谷氨酸的谷氨酸提取工艺是通过超滤膜进行超滤,然后进行结晶、分离、洗涤等步骤得到谷氨酸晶体。
该方法设备简单,废水量减少,生产成本低,酸碱用量省。
水解等电点法是将发酵液浓缩后进行盐酸水解,然后进行过滤、脱色、浓缩等步骤得到谷氨酸晶体。
该方法设备简单,废水量减少,生产成本低,酸碱用量省。
低温等电点法和直接常温等电点法也是从发酵液中提取谷氨酸的方法,它们的优点都是设备简单,废水量减少,生产成本低,酸碱用量省。
发酵法制备谷氨酸晶体的工艺流程如下:首先将发酵液加入硫酸中,调节pH值为4.0-4.5,进行育晶2-4小时,然后再加入硫酸,调节pH值为3.5-3.8,再进行育晶2小时,最后加入硫酸,调节pH值为3.0-3.2,进行育晶2小时。
冷却降温后,进行搅拌16-20小时,沉淀2-4小时即可获得谷氨酸晶体。
该工艺具有设备简单、操作容易、生产周期短、酸碱用量省等优点。
L-亮氨酸的制备过程分为6个步骤。
首先,在浓缩罐中通入一次母液,加入蒸汽进行浓缩,温度为120度,气压为-0.09Mpa,浓缩时间为6小时,得到结晶液。
然后将结晶液进入一次中和罐中,加入硫酸和纯水进行中和,温度为80度,中和时间为4小时,过滤后得到滤液和滤渣。
接着将滤渣进入氨解罐中,加入氨水、纯水和蒸汽进行氨解,温度为80度,氨解时间为3小时,过滤后得到滤液和滤渣。
将滤渣进入脱色罐中,加入蒸汽、纯水和活性炭进行脱色,温度为80度,脱色时间为2小时,过滤后得到滤液和滤渣。
将滤液进入二次中和罐中,加入氨水和蒸汽进行中和,温度为80度,中和时间为4小时,过滤后得到滤液和滤渣。
利用氨基酸废液发酵制备酵母蛋白饲料的工艺
利用氨基酸废液发酵制备酵母蛋白饲料的工
艺
氨基酸废液发酵制备酵母蛋白饲料的工艺主要分为以下几步:1、废液预处理:将氨基酸废液进行酸碱平衡操作,调整氨基酸废液的pH值在7.2左右。
2、菌株筛选:从氨基酸菌落片中筛选出最适合发酵制备酵母蛋白的菌株,可根据工业生产的要求对菌株进行改良。
3、加入添加剂:根据氨基酸废液的成分,合理添加适量的微量元素、琼脂糖及葡萄糖等,增强菌株的生长效果。
4、发酵:将经过处理的废液和已经加入添加剂的发酵介质搅拌均匀,再加入菌株进行发酵,控制好发酵温度和时间,使其达到预期的发酵效果。
5、收取:发酵结束后,用低速离心离心机除去菌体,收取清澈的发酵液,此液即为酵母蛋白饲料,可以直接使用也可经过进一步的处理后使用。
氨基酸生产工艺
氨基酸生产工艺氨基酸是生命体内必不可少的基本组成元素之一,广泛应用于农业、医药、化工等领域。
氨基酸的生产工艺通常包括发酵、提纯和干燥三个主要步骤。
下面将为大家介绍一下氨基酸的生产工艺。
首先是发酵过程。
氨基酸的发酵主要是通过微生物对含有氮源和碳源的培养基进行发酵,产生氨基酸。
常用的微生物有大肠杆菌、窄叶蓝枯草菌等。
培养基中的碳源主要有葡萄糖、甘油等,而氮源则有酵母粉、角蛋白等。
发酵过程中,微生物在一定的温度、pH值和氧气条件下生长和繁殖,生成氨基酸。
发酵结束后,需要对发酵液进行提纯。
提纯过程中,一般通过离子交换、凝胶过滤和超滤等方法,将杂质和有机物去除,得到纯净的氨基酸产物。
其中,离子交换属于最常用的提纯方法之一,主要是通过树脂的吸附作用,将杂质和有机物与目标物质分离。
最后是干燥过程。
氨基酸经过提纯后,仍然是液体状态,需要经过干燥来得到固体产品。
干燥的方法有很多种,常用的有喷雾干燥和真空干燥。
其中,喷雾干燥是将液态的氨基酸通过喷雾器喷入高温的空气中,迅速使其蒸发和冷凝成粉末状。
而真空干燥则是通过减压操作,将氨基酸的水分蒸发出来,得到干燥的氨基酸。
整个氨基酸生产工艺需要控制各个环节的条件,以确保产品质量。
发酵过程中,需要控制好温度、pH值和氧气供应,以促进微生物的生长和产酸。
在提纯过程中,要选择适合的方法和条件,以达到高纯度的氨基酸产物。
干燥过程中,需要控制干燥温度和时间,以避免产物的降解和热敏性。
氨基酸生产工艺的优化是提高产量和降低成本的关键之一。
通过优化培养基的配方、改进发酵条件和提高纯化技术,可以提高氨基酸的产量和纯度,并减少废物的产生和处理成本。
总之,氨基酸的生产工艺是一个较为复杂的过程,需要依靠微生物的发酵和多种分离纯化技术的协同作用。
随着科学技术的进步,氨基酸的生产工艺将进一步优化,为人们提供更多高质量的氨基酸产品,促进农业和医疗卫生事业的发展。
各种氨基酸的生产工艺
各种氨基酸的生产工艺1、谷氨酸(1)等电离交工艺方法——从发酵液中提取谷氨酸,即将谷氨酸发酵液降温并用硫酸调PH值至谷氨酸等电点(pH3.0-3.2),温度降到10以下沉淀,离心分离谷氨酸,再将上清液用硫酸调pH至1.5上732强酸性阳离子交换树脂,用氨水调上清液pH10进行洗脱,洗脱下来的高流分再用硫酸调PH1.0返回等电车间加入发酵液进行等电提取,离交车间的上柱后的上清液及洗柱水送去环保车间进行废水处理。
该工艺方法的缺点是:废水量大,治理成本高,酸碱用量大。
(2)连续等电工艺——将谷氨酸发酵液适当浓缩后控制40℃左右,连续加入有晶种的等电罐中,同时加入硫酸,控制等电罐中PH值维持在3.2左右,温度40℃进行结晶。
该工艺方法废的优点是:水量相对较少;缺点是:氨酸提取率及产品质量较差。
(3)发酵法生产谷氨酸的谷氨酸提取工艺——谷氨酸发酵液经灭菌后进入超滤膜进行超滤,澄清的谷氨酸发酵液在第一调酸罐中被调整pH值为3.20〜3.25,然后进入常温的等电点连续蒸发降温结晶装置进行结晶,分离、洗涤,得到谷氨酸晶体和母液,将一部分母液进入脱盐装置,脱盐后的谷氨酸母液一部分与超滤后澄清的谷氨酸发酵液合并;另一部分在第二调酸罐中被调整pH值至4.5〜7,蒸发、浓缩、再在第三调酸罐中调pH值至3.20〜3.25 后,进入低温的等电点连续蒸发降温结晶装置,使母液中的谷氨酸充分结晶出来,低温的等电点连续蒸发降温结晶装置排出的晶浆被分离、洗涤,得到谷氨酸晶体和二次母液。
(4)水解等电点法发酵液--- 浓缩(78.9kPa,0.15MPa蒸汽)——盐酸水解(130 ℃, 4h ) ——过滤 ---- 滤液脱色——浓缩——中和,调pH至3.0-3.2(NaOH或发酵液)——低温放置,析晶谷氨酸晶体此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省(5)低温等电点法发酵液--- 边冷却边加硫酸调节pH4.0-4.5 --- 加晶种,育晶2h --- 边冷却边加硫酸调至pH3.0-3.2 ---- 冷却降温 ---- 搅拌16h ------ 4 ℃ 静置4h ---- 离心分离------ 谷氨酸晶体此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省(6)直接常温等电点法发酵液加硫酸调节pH4.0-4.5 -------- 育晶2-4h --- 加硫酸调至pH3.5-3.8 ---- 育晶2h ---- 加硫酸调至pH3.0-3.2 -----育晶2h ----- 冷却降温------ 搅拌16-20h ----- 沉淀2-4h ----- 谷氨酸晶体此工艺的优点:设备简单、操作容易、生产周期短、酸碱用量省。
氨基酸发酵生产工艺学
Jiaxing university
Jiaxing university
2.2 用营养缺陷变异株的方法 (切断支路代谢)
• 这一方法是诱变出菌体内氨基酸生物合成某步反
Jiaxing university
应阻遏的营养缺陷型变异体,使生物合成在中途
停止,不让最终产物起控制作用。
• 这种方法中有用高丝氨酸缺陷株的赖氨酸发酵,
日本味之素
日本协和发酵 日本东丽
55000
20500 6500
甘氨酸
甘氨酸 甘氨酸
日本有机合成化学
协和发酵 日本化药
6000
5000 1000
赖氨酸
南朝鲜味元
10000
丙氨酸
丙氨酸
武藏野化学研究所
日本化药
——
——
二、氨基酸合成的代谢调控
是氨基酸代谢控制发酵的基本策略之一 • 发酵工程要求微生物大量地合成特定的代谢产物, 这一目的只有当微生物的部分代谢调控机制遭到 破坏时才能达到。用人工诱变的方法有目的地改 变微生物固有的调节机制,使合成产物的途径畅 通无阻,按照人们所需要的方向进行,最大限度 地过量积累特定产物,这种发酵称为代谢控制发 酵。
Jiaxing university
2、4 选育渗漏缺陷型突变菌株
指因突变所产生的不完全遗传障碍,其基因所控 制的反应程度不象野生型,但多少还能进行,称 这种现象为渗漏(leakage),具有这种性质的 突变型就称为渗漏突变型。
Jiaxing university
2、5 选育温度敏感突变菌株
具有温度条件限制的突变型生物体。当其生长 温度从限制性温度范围发生由低到高(热敏)或由 高到低(冷敏)改变时,某种基因产物的活性丧失 或改变,从而导致野生型转变为突变型。
发酵法生产氨基酸的基本过程
发酵法生产氨基酸的基本过程嘿,咱今儿就来讲讲发酵法生产氨基酸的基本过程。
这可真是个神奇又有趣的事儿啊!你想啊,就像咱蒸馒头得先准备好面粉、酵母啥的,发酵法生产氨基酸也有一系列的步骤呢。
首先呢,得有合适的菌种。
这菌种就好比是一支特别厉害的队伍,它们得能打硬仗,能在特定的环境里好好干活。
就像咱足球队里的那些主力队员,得有真本事才行。
没有好的菌种,那可就像没了将军的军队,还怎么打胜仗啊,对吧?然后呢,就是给这些菌种准备一个舒服的“家”,也就是培养基啦。
这培养基里得有各种营养成分,让菌种能吃得饱饱的,有力气干活。
这就跟咱人一样,得吃好喝好才有精力做事儿嘛。
接下来,菌种就在这个“家”里开始生长繁殖啦。
它们会越来越多,越来越壮大,就好像春天里的小草,呼呼地长起来了。
在这个过程中,可不能马虎大意。
得时刻关注着各种条件,温度啦、酸碱度啦、氧气含量啦等等。
温度不合适,菌种可能就不高兴了,不干活啦;酸碱度不对,它们可能就闹脾气啦。
这就好比咱人,太热了会烦躁,太冷了会哆嗦,环境得适宜才行呀。
等菌种们长得差不多了,就到了关键的时刻啦——发酵。
这就像是一场激烈的比赛,菌种们全力以赴,生产出我们想要的氨基酸。
这时候,就好像农民伯伯盼着庄稼丰收一样,我们也盼着能有多多的氨基酸产生。
发酵完成后,还得把氨基酸从那些乱七八糟的东西里分离出来。
这可不是个容易的事儿,就跟在一堆沙子里找金子似的,得有耐心,还得有好的方法。
你说这发酵法生产氨基酸是不是很有意思?从小小的菌种开始,经过一系列的过程,最后变成了对我们有用的氨基酸。
这就像一个魔法一样,把普通的东西变成了宝贝。
咱生活中的好多东西都离不开氨基酸呢,像吃的、用的、药啊啥的。
要是没有发酵法生产氨基酸,那得少了多少好东西呀!所以说,这个过程虽然看起来挺复杂,但真的超级重要。
总之呢,发酵法生产氨基酸可不是一件简单的事儿,需要很多人的努力和智慧。
但正是因为有了这个神奇的过程,我们的生活才变得更加丰富多彩啦!你说是不是?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 氨基酸发酵的工艺控制
pH对氨基酸发酵的影响及其控制
(1)菌体生长或耗糖慢时,少量多次流加尿素, 避免pH过高 (2)菌体生长或耗糖过快时,流加尿素可多些, 以抑制菌体生长。
控制:
(3)发酵后期,残糖少,接近放罐时,少加或不 加尿素,以免造成氨基酸提取困难。
(4)氨水对pH影响大,应采取连续流加。
3 氨基酸发酵的工艺控制
温度对氨基酸发酵的影响及其控制
菌体生长达一定程度后再开始产生氨基酸,因此菌体
生长最适温度和氨基酸合成的最适温度是不同的。谷 氨酸前者30~32˚C,后者34~37˚C。
菌体生长阶段温度不宜过高,否则菌体易衰老,pH增 高,糖耗减慢,酸产量低。
当菌体生长温度过高时:要减少通风量,少量多次流
发酵周期一般为30h。
4 谷氨酸生产工艺
谷氨酸发酵控制
(1)生物素:作为催化脂肪酸生物合成最初反应的 关键酶乙酰CoA的辅酶,参与脂肪酸的生物合成, 进而影响磷酯的合成。当磷酯含量减少到正常时的 一半左右时,细胞发生变形,谷氨酸能够从胞内渗 出,积累于发酵液中。生物素过量,则发酵过程菌
2 氨基酸发酵的代谢控制
消除终产物的反馈抑制与阻遏作用
消除终产物的反馈抑制与阻遏作用,是通过使用
抗氨基酸结构类似物突变株的方法来进行。
例:利用抗性突变株消除S-(β-氨基乙酸)-L-半胱氨酸 (即AEC)(赖氨酸的结构类似物)与L-苏氨酸的协 同抑制。
2 氨基酸发酵的代谢控制
2 氨基酸发酵的代谢控制
也可以在发酵液中加入表面活性剂吐温60或 添加青霉素。
4 谷氨酸生产工艺
菌种扩大培养
1、斜面培养:主要产生菌是棒状杆菌属、短杆菌属、 小杆菌属、节杆菌属。 我国各工厂目前使用的菌株主要是钝齿棒杆菌 和北京棒杆菌及各种诱变株。生长特点:适用于糖 质原料,需氧,以生物素为生长因子。 斜面培养基:蛋白胨、牛肉膏、氯化钠组成的 pH 7.0-7.2琼脂培养基,32 ℃培养18-24 h。
浓度:过多促进菌体生长,氨基酸产量低。过少菌体
生长缓慢,发酵周期长。
与其它培养条件的关系:氧供给不足,生物素过量时, 发酵向其它途径转化。 来源:玉米浆、麸皮水解液、甘蔗糖蜜和甜菜糖蜜。
3 氨基酸发酵的工艺控制
pH对氨基酸发酵的影响及其控制
作用机理:主要影响酶的活性和菌的代谢。 控制pH方法:流加尿素和氨水 流加方式:根据菌体生长、pH变化、糖耗情况和 发酵阶段等因素决定。
1、调浆:干淀粉用水调成10-11˚Bx(白利度)的淀 粉乳,加盐酸0.5-0.8%至pH 1.5。 2、糖化:蒸汽加热、加压糖化25min。
3、中和:冷却至80℃,烧碱中和至pH 4.0-5.0(避免
产生焦糖又保证过滤,中和为沉淀胶体)。
4、脱色:活性炭脱色和脱色树脂。活性炭用量为 0.6-0.8%,在70℃及酸性条件下搅拌后过滤。
1 概述
氨基酸的应用
1、食品工业:营养强化剂、鲜味剂、甜味剂。 2、饲料工业:营养强化剂。
3、医药工业:氨基酸输液、氨基酸衍生物、氨 基酸盐。
4、化学工业:洗涤剂,护肤品,人造革。 5、农业:无公害农药。
1 概述
氨基酸的应用
强化食品:谷物中缺赖氨酸,苏氨酸,色氨酸、
食品工业:
蛋氨酸。
增鲜剂:谷氨酸单钠和天冬氨酸。 苯丙氨酸与天冬氨酸可用于制造低热量二肽甜 味剂(α-天冬酰苯丙氨酸甲酯),此产品1981年获FDA 批准,现在每年产量已达数万吨。
源及调节pH在7.5-8.0;维持温度30- 32℃
4 谷氨酸生产工艺
谷氨酸发酵
3、菌体生长停止期:谷氨酸合成,糖和尿素分解 产生α-酮戊二酸和氨用于合成谷氨酸。措施:及时 流加尿素以提供足够的氨并使pH维持在7.2-7.4。 大量通气,控制温度34-37 ℃。 4、发酵后期:菌体衰老,糖耗慢,残糖低。措施: 营养物耗尽酸浓度不增加时,及时放罐。
3 氨基酸发酵的工艺控制
培养基
2、氮源:铵盐、尿素、氨水,同时调整pH值。
营养缺陷型需要添加适量氨基酸时,主要添加有 机氮源水解液。 需生物素和氨基酸时,以玉米浆作氮源。 尿素灭菌时分解或形成磷酸铵镁盐,须单独 灭菌,40%的尿素可在108℃40min,高温会生产 缩脲。 氨水用pH自动控制连续流加。
促进ATP的积累,增加氨基酸的生物 合成
氨基酸的生物合成需要能量,ATP的积 累可促进氨基酸的生物合成。
2 氨基酸发酵的代谢控制
3 氨基酸发酵的工艺控制
培养基 pH 温度 氧
3 氨基酸发酵的工艺控制
培养基
1、碳源:
淀粉水解糖、糖蜜、醋酸、乙醇、烷烃 碳源浓度要适当,避免碳源浓度过高,否则 对菌体生长不利,氨基酸的转化率降低。 菌种性质、生产氨基酸种类和所采用的发酵 操作决定碳源种类。
3 氨基酸发酵的工艺控制
培养基
3、碳氮比 氮源除用于菌体生长外,还用于氨基酸合成, 在氨基酸发酵中常常是用氨水、尿素来调节pH, 所以氨基酸发酵所用的C/N比一般微生物发酵的 低,或者说氮源用量更高。
谷氨酸发酵在C/N小于100:11时才开始 积累谷氨酸,所以通常情况下谷氨酸发酵 C/N为100:(15~30)。 合成菌体使用3~6%的氮源;合成谷 氨酸用去30~80%氮源。
4 谷氨酸生产工艺
谷氨酸发酵
1、适应期:尿素分解出氨使pH上升。糖不利用。2-4h。措 施:接种量和发酵条件控制使该期缩短。 2、对数生长期:糖耗快,尿素大量分解使pH上升,氨被利 用pH又迅速下降;溶氧急剧下降后维持在一定水平;菌体 浓度迅速增大,菌体形态为排列整齐的八字形;不产酸;
12h。措施:采取流加尿素办法及时供给菌体生长必须的氮
衍生物。
1 概述
氨基酸的国内生产概况
天津氨基酸公司、湖北八峰氨基酸公司 规模及产品质量与国外大厂有较大差距。 生产
在80年代中后期,我国从日本的味之素、协和 发酵以技贸合作的方式引进输液制剂的制造技术, 1991年销售量为二千万瓶,1996年达六千万瓶,主 要厂家有无锡华瑞,北京费森尤斯,昆明康普莱特, 但生产原料都依赖进口。
4 谷氨酸生产工艺
淀粉的酶法糖化工艺
以大米或碎米为原料时采用大米浸泡磨浆,再 调成15˚Bx,pH 6.0,加细菌α-淀粉酶在85 ℃下液 化30 min,加糖化酶60 ℃糖化24 h,过滤后可供配 制培养基。
4 谷氨酸生产工艺
糖蜜原料
不宜直接用来作为谷氨酸发酵的碳源,因含 丰富的生物素。 预处理方法:活性炭或树脂吸附和亚硝酸法 破坏以减少糖蜜中的生物素。
野生菌株
营养缺陷型突变 抗氨基酸结构类似物突变株
抗氨基酸结构类似物突变株的营养缺陷型菌株
营养缺陷型回复突变株发酵。生产方法
2、酶法:利用酶来制造氨基酸。 3、提取法:蛋白质水解液中提取。胱氨酸、半 胱氨酸和酪氨酸 4、合成法:DL-蛋氨酸、丙氨酸、甘氨酸、苯丙 氨酸
酸发酵
4 谷氨酸生产工艺
谷氨酸生产概述
起初工业化生产采取小麦或大豆蛋白质水解制取。
1957年,日本率先采用微生物发酵生产,并实现工业 化,被誉为现代发酵工业的重大创举,使发酵工业进 入调节调控水平。
目前世界产谷氨酸钠30吨/年,占氨基酸总量的2/3。 我国现有200余家生产,年产量达15万吨,居世界首 位。
谷氨酸
反馈抑制 增强反馈抑制 优先合成
谷氨酸合成调节机制
影响谷氨酸合成的因素
因素 氧 代谢途径 乳酸或琥珀酸 谷氨酸
适量
NH4+ pH
磷酸盐
α-酮戊二酸
不足 适量
缺乏
谷氨酸
过量
谷氨酰胺或N-乙酰谷氨酰胺 谷氨酸
过量
适量 适量
谷氨酰胺
缬氨酸 谷氨酸
过量
亚适量
4 谷氨酸生产工艺
淀粉的酸水解工艺
谷氨酸发酵生产流程
4 谷氨酸生产工艺
谷氨酸产生菌株特点
革兰氏阳性
不形成芽胞
没有鞭毛,不能运动
需要生物素作为生长因子
在通气条件下才能产生谷氨酸
不易被低浓度的谷氨酸抑制
4 谷氨酸生产工艺
谷氨酸生物合成机理
由三羧酸循环中产生的a-酮戊二 酸,在谷氨酸脱氢酶和氢供体存在下
进行还原性氨化作用而得到。
4 谷氨酸生产工艺
菌种扩大培养
2、一级种子培养:由葡萄糖、玉米浆、尿素、磷酸 氢二钾、硫酸镁、硫酸铁及硫酸锰组成。pH 6.5- 6.8。1000ml装200-250ml振荡,32℃ 培养12h。
4 谷氨酸生产工艺
菌种扩大培养
3、二级种子培养:用种子罐培养,料液量为发酵罐投 料体积的1%,用水解糖代替葡萄糖,于32℃ 进行通 气搅拌7-10h。种子质量要求:二级种子培养结束时, 无杂菌或噬菌体污染,菌体大小均一,呈单个或八 字排列。活菌数为108-109/ml。
1 概述
氨基酸的应用
食品工业:
大豆蛋白的氨基酸组 成影响其营养效价。
氨基酸名称缩写
1 概述
氨基酸的应用
医药工业:
多种复合氨基酸制剂可通过输液治疗营 养或代谢失调; 苯丙氨酸与氮芥子气合成的苯丙氨酸氮 芥子气对骨髓肿瘤治疗有效,且副作用低。
1 概述
氨基酸的生产方法
1、发酵法 (1)直接发酵
NH4+:α-酮戊二酸 谷氨酸 谷酰胺 (缺乏) (适量) (过量) pH: 谷酰胺,N-乙酰谷酰胺 谷氨酸 (pH 5-8,NH4+过多) (中性或微碱性) 磷酸: 缬氨酸 谷氨酸 (高浓度磷酸盐) 生物素: 乳酸或琥珀酸 谷氨酸 (过量) (限量)