直线与圆锥曲线的交点

直线与圆锥曲线的交点
直线与圆锥曲线的交点

主备人: 审核: 包科领导: 使用时间:

§4.3直线与圆锥曲线的交点

【学习目标】 解决简单的直线与圆锥曲线相交的问题

【学习重点】 直线与圆锥曲线相交

【学习难点】直线与圆锥曲线的各种位置关系

【使用说明与学法指导】

1.通过阅读教材,自主学习,思考,交流,讨论和概括,完成本节课的学习目标。

2.用红笔勾勒出疑点,合作学习后寻求解决方案。

3.带*号的为选做题。

【自主探究】

直线与圆锥曲线位置关系

设直线方程A x +B y +C=0 , 圆锥曲线方程为F (x ,y )=0,

A x +

B y +C=0

由 ,消去(如消去y )后得:

F (x ,y )=0

02=++c bx ax

1. 当0≠a 时,设?ac b 42-=

(1) 当?>0时,方程有 2 个解,直线与曲线 相交 ,有 2 个公共点。

(2)当?<0时, 方程有 个解,直线与曲线 ,有 个公共点。

(3)当?=0时, 方程有 个解,直线与曲线 ,有 个公共点。

2.当0=a 时,方程只有一个解.

(1) 若圆锥曲线是双曲线,直线与双曲线的 平行(或重合),有一个交点(或

无交点);

(2)若圆锥曲线是抛物线,直线与抛物线的 平行(或重合),有一个交点。

【合作探究】

1、求过点)1,3(-M 且被点M 平分的双曲线14

22

=-y x 的弦所在直线方程 2、已知椭圆C 的焦点F 1(-22,0)和F 2(22,0),长轴长6

(1)求椭圆方程。

(2)设直线2+=x y 交椭圆C 于A B 两点,求线段AB 的中点坐标

(3) 在(2)的条件下求线段AB 的长度。

【巩固提高】

1. 若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是 ( )

(A )(315,315-) (B )(315,0) (C )(0,315-) (D )(1,3

15--)

2.已知曲线C 上任意一点P 到两个定点()1F 和)

2

F 的距离之和为4. (1)求曲线C 的方程; (2)设过()0,2-的直线l 与曲线C 交于A 、B 两点,且0OA OB ?= (O 为坐标原点),

求直线l 的方程.

【课堂小结】________________________________________________________

直线和椭圆(圆锥曲线)常考的题目型

直线和圆锥曲线常考题型 运用的知识: 1、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-;两条直线垂直,则直线所在的向量120v v = 2、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a +=-=。 3、中点坐标公式:1212 ,y 22 x x y y x ++= =,其中,x y 是点1122(,)(,)A x y B x y ,的中点坐标。 4、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上, 则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一, AB = 或者AB = 例题1、已知直线:1l y kx =+与椭圆22 : 14x y C m +=始终有交点,求m 的取值范围 例题2、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。 设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。 由2(1)y k x y x =+??=?消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得 2 2 4 2 (21)4410k k k ?=--=-+> 即2 1 04 k << ② 由韦达定理,得:2122 21 ,k x x k -+=-121x x =。 则线段AB 的中点为22 211 (,)22k k k --。

高考数学-直线和椭圆(圆锥曲线)常考题型

高考数学 直线和圆锥曲线常考题型 运用的知识: 1、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-;两条直线垂直,则直线所在的向量120v v =r r g 2、韦达定理:若一元二次方程2 0(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a +=-=。 3、中点坐标公式:1212,y 22 x x y y x ++= =,其中,x y 是点1122(,)(,)A x y B x y ,的中点坐标。 4、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上, 则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一, AB = 或者AB = 例题1、已知直线:1l y kx =+与椭圆22 : 14x y C m +=始终有交点,求m 的取值范围 解: 14m m ≤≠且。 例题2、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。 设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。 由2 (1)y k x y x =+?? =?消y 整理,得2222 (21)0k x k x k +-+= ① 由直线和抛物线交于两点,得 2242(21)4410k k k ?=--=-+> 即2 1 04 k << ② 由韦达定理,得:212221 ,k x x k -+=-121x x =。 则线段AB 的中点为22211 (,)22k k k -- 。 线段的垂直平分线方程为:2 21112()22k y x k k k --=--

直线和圆锥曲线的位置关系

聚焦考点直线和圆锥曲线的位置关系 直线与圆锥曲线的位置关系是历年高考命题的热点;试题具有一定的综合性,覆盖面大,不仅考查“三基”掌握的情况,而且重点考查学生的作图、数形结合、等价转化、分类讨论、逻辑推理、合理运算,以及运用数学知识分析问题和解决问题的能力。在近几年的高考中,每年风格都在变换,考查思维的敏捷性,在探索中求创新。 具体来说,这些问题常涉及到圆锥曲线的性质和直线的基本知识点,如直线被圆锥曲线截得的弦长、弦中点问题,垂直问题,对称问题。与圆锥曲线性质有关的量的取值范围等是近几年命题的新趋向。 纵观近几年高考和各类型考试,可以发现: 1.研究直线与圆锥曲线位置关系的问题,通常有两种方法:一是转化为研究方程组的解的问题,利用直线方程与圆锥曲线方程所组成的方程组消去一个变量后,将交点问题(包括公共点个数、与交点坐标有关的问题)转化为一元二次方程根的问题,结合根与系数的关系及判别式解决问题;二是运用数形结合,迅速判断某些直线和圆锥曲线的位置关系。 2.涉及弦长问题,利用弦长公式及韦达定理求解,涉及弦的中点及中点弦问题,利用差分法较为简便。 3.充分发挥判别式和韦达定理在解题中的作用。灵活应用数形结合的思想、函数思想、等价转化思想、分类讨论思想解题。 热点透析 题型1:直线与圆锥曲线的交点个数问题

例1已知双曲线C:2x2-y2=2与点P(1,2) (1)求过P(1,2)点的直线l的斜率取值范围,使l与C分别有一个交点,两个交点,没有交点. (2)若Q(1,1),试判断以Q为中点的弦是否存在. 解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点.当l的斜率存在时,设直线l的方程为y-2=k(x-1),代入C的方程,并整理得 (2-k2)x2+2(k2-2k)x-k2+4k-6=0 .(*) (ⅰ)当2-k2=0,即k=±时,方程(*)有一个根,l与C有一个交点 (ⅱ)当2-k2≠0,即k≠±时 Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k-6)=16(3-2k) ①当Δ=0,即3-2k=0,k=时,方程(*)有一个实根,l与C有一个交点. ②当Δ>0,即k<,又k≠±, 故当k<-或-<k<或<k<时,方程(*)有两不等实根,l与C有两个交点. ③当Δ<0,即k>时,方程(*)无解,l与C无交点.

专题直线与圆、圆锥曲线知识点

专题 直线与圆、圆锥曲线 一、直线与方程 1、倾斜角与斜率:1 21 2tan x x y y k --= =α 2、直线方程:⑴点斜式:()00x x k y y -=- ⑵斜截式:b kx y += ⑶两点式: 121121y y y y x x x x --=-- ⑷截距式:1x y a b += ⑸一般式:0=++C By Ax 3、对于直线: 222111:,:b x k y l b x k y l +=+=有:⑴???≠=?21 2 121//b b k k l l ; ⑵1l 和2l 相交12k k ?≠;⑶1l 和2l 重合???==?2 12 1b b k k ;⑷12121-=?⊥k k l l . 4、对于直线: 0:, 0:22221111=++=++C y B x A l C y B x A l 有:⑴???≠=?122 11 22121//C B C B B A B A l l ;⑵1l 和2l 相交1221B A B A ≠?; ⑶1l 和2l 重合?? ?==?1 2211 221C B C B B A B A ;⑷0212121=+?⊥B B A A l l . 5、两点间距离公式: ()()21221221y y x x P P -+-= 6、点到直线距离公式: 2 2 00B A C By Ax d +++= 7、两平行线间的距离公式: 1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2 2 21B A C C d +-= 二、圆与方程 1、圆的方程:⑴标准方程:()()2 2 2 r b y a x =-+-其中圆心为(,)a b ,半径为r . ⑵一般方程:02 2=++++F Ey Dx y x . 其中圆心为(,)22 D E - - ,半径为r = 2、直线与圆的位置关系 直线0=++C By Ax 与圆2 22)()(r b y a x =-+-的位置关系有三种:

2020年普通高考数学一轮复习第34讲直线与圆锥曲线的位置关系精品学案

2020年普通高考数学科一轮复习精品学案 第34讲直线与圆锥曲线的位置关系 一?课标要求: 1 ?通过圆锥曲线与方程的学习,进一步体会数形结合的思想; 2 ?掌握直线与圆锥曲线的位置关系判定及其相关问题。 二.命题走向 近几年来直线与圆锥曲线的位置关系在高考中占据高考解答题压轴题的位置,且选择、填空也有涉及,有关直线与圆锥曲线的位置关系的题目可能会涉及线段中点、弦长等。分析这类问题,往往利用数形结合的思想和“设而不求”的方法,对称的方法及韦达定理等。 预测2020年高考: 1 ?会出现1道关于直线与圆锥曲线的位置关系的解答题; 2 ?与直线、圆锥曲线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现。 三?要点精讲 1 .点M(x0, y0)与圆锥曲线C: f(x , y)=0的位置关系 2 ?直线与圆锥曲线的位置关系 直线与圆锥曲线的位置关系,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点。

9 直线与圆锥曲线的位置关系的研究方法可通过代数方法即解方程组的办法来研究。因为 方程组解的个数与交点的个数是一样的。 直线与圆锥曲线的位置关系可分为:相交、相切、相离?对于抛物线来说,平行于对称 轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双 曲线只有一个交点,但并不相切?这三种位置关系的判定条件可引导学生归纳为: i 殳直线;血+By+c=o,圆ft 曲线C :虬爲y)=0, 消去y (或消古丈)得匕 az a -bbzH-c=0, A=b 2 -4ac, a^0_ ⑴相交: (2)A<0 ? 相离; ⑶A=0?相切. 注意:直线与抛物线、双曲线有一个公共点是直线与抛物线、双曲线相切的必要条件, 但不是充分条件. 3 ?直线与圆锥曲线相交的弦长公式 设直线l :y=kx+n ,圆锥曲线:F(x,y)=0,它们的交点为 P i (x i ,y 1) , P 2 (x 2,y 2), 且由 F (X ,y) 0 ,消去 厂ax 2+bx+c=0 (0) , △ =b 2 — 4ac 。 y kx n 则弦长公式为: d=J (x , X 2)2 (% y 2)2=" k 2)% x ?)2 = 。 | PF | 焦点弦长: e (点P 是圆锥曲线上的任意一点, F 是焦点,d 是P 到相应于焦 d 点F 的准线的距离,e 是离心率)。 四?典例解析 r j\x+By + C=0 由/ 琳 y )=0

2021新高考数学二轮总复习专题突破练25直线与圆及圆锥曲线含解析

专题突破练25 直线与圆及圆锥曲线 1.(2020全国Ⅱ,理19)已知椭圆C 1: x 2a + y 2b =1(a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心 与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD|=4 3|AB|. (1)求C 1的离心率; (2)设M 是C 1与C 2的公共点.若|MF|=5,求C 1与C 2的标准方程. 2. 已知圆O :x 2+y 2=4,点A (√3,0),以线段AB 为直径的圆内切于圆O ,记点B 的轨迹为Γ. (1)求曲线Γ的方程; (2)直线AB 交圆O 于C ,D 两点,当B 为CD 的中点时,求直线AB 的方程. 3.(2019全国Ⅰ,理19)已知抛物线C :y 2=3x 的焦点为F ,斜率为3 2的直线l 与C 的交点为A ,B ,与x 轴的交点为P. (1)若|AF|+|BF|=4,求l 的方程; (2)若AP ????? =3PB ????? ,求|AB|.

4.(2020山东威海一模,20)已知椭圆x2 a2+y2 b2 =1(a>b>0)的左、右焦点分别为F1,F2,点P(-1,3 2 )是椭圆上 一点,|F1F2|是|PF1|和|PF2|的等差中项. (1)求椭圆的标准方程; (2)若A为椭圆的右顶点,直线AP与y轴交于点H,过点H的另一条直线与椭圆交于M,N两点,且S△HMA =6S△PHN,求直线MN的方程. 5.(2020重庆名校联盟高三二诊,19)已知椭圆C:x2 a2+y2 b2 =1(a>b>0),F1,F2为椭圆的左、右焦点,P(1,√2 2 ) 为椭圆上一点,且|PF1|=3√2 2 . (1)求椭圆的标准方程; (2)设直线l:x=-2,过点F2的直线交椭圆于A,B两点,线段AB的垂直平分线分别交直线l、直线AB于M,N两点,当∠MAN最小时,求直线AB的方程.

直线与圆锥曲线的位置关系详解

直线与圆锥曲线的位置关系 ●知识梳理 本节主要内容是直线与圆锥曲线公共点问题、相交弦问题以及它们的综合应用.解决这些问题经常转化为它们所对应的方程构成的方程组是否有解或解的个数问题.对相交弦长问题及中点弦问题要正确运用“设而不求”.涉及焦点弦的问题还可以利用圆锥曲线的焦半径公式. ●点击双基 1.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有 A.1条 B.2条 C.3条 D.4条 解析:数形结合法,同时注意点在曲线上的情况. 答案:B 2.已知双曲线C :x 2-4 2y =1,过点P (1,1)作直线l ,使l 与C 有且只有一个公共点,则满足上述条件的直线l 共有 A.1条 B.2条 C.3条 D.4条 解析:数形结合法,与渐近线平行、相切. 答案:D 3.双曲线x 2-y 2=1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点),则直线PF 的斜率的变化范围是 A.(-∞,0) B.(1,+∞) C.(-∞,0)∪(1,+∞) D.(-∞,-1)∪(1,+∞)

解析:数形结合法,与渐近线斜率比较. 答案:C 4.过抛物线y 2=4x 焦点的直线交抛物线于A 、B 两点,已知|AB |=8,O 为坐标原点,则 △OAB 的重心的横坐标为____________. 解析:由题意知抛物线焦点F (1,0).设过焦点F (1,0)的直线为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2). 代入抛物线方程消去y 得k 2x 2-2(k 2+2)x +k 2=0. ∵k 2≠0,∴x 1+x 2=2 2)2(2k k +,x 1x 2=1. ∵|AB |=2212))(1(x x k -+ =]4))[(1(212212x x x x k -++ =]4)2(4)[1(42 22 -++k k k =8, ∴k 2=1. ∴△OAB 的重心的横坐标为x = 3 021x x ++=2. 答案:2 5.已知(4,2)是直线l 被椭圆362x +9 2y =1所截得的线段的中点,则l 的方程是____________. 解析:设直线l 与椭圆交于P 1(x 1,y 1)、P 2(x 2,y 2), 将P 1、P 2两点坐标代入椭圆方程相减得直线l 斜率k =2121x x y y --=-) (42121y y x x ++=

第1讲 直线与圆、圆锥曲线的方程与性质

第1讲直线与圆、圆锥曲线的方程与性质 [选题明细表] 知识点、方法题号 直线与圆2,3,13 圆锥曲线的定义与标准方程的应用1,7,8,9,14 圆锥曲线的几何性质5,10,11,16 圆锥曲线的离心率4,6,12,15 一、选择题 1.(2019·武汉模拟)已知F1(-3,0),F2(3,0),若点P(x,y)满足|PF1|- |PF2|=6,则P点的轨迹为( D ) (A)椭圆(B)双曲线 (C)双曲线的一支(D)一条射线 解析:F1(-3,0),F2(3,0),动点P满足|PF1|-|PF2|=6, 因为|F1F2|=6,则点P的轨迹是一条射线.故选D. 2.过点(0,1)的直线l被圆(x-1)2+y2=4所截得的弦长最短时,直线l 的斜率为( A ) (A)1 (B)-1 (C) (D)- 解析:点(0,1)在圆(x-1)2+y2=4内,要使得过点(0,1)的直线l被圆(x-1)2+y2=4所截得的弦长最短,则该弦以(0,1)为中点,与圆心和(0,1)

的连线垂直,而圆心和(0,1)连线的斜率为=-1,所以所求直线斜率为1,故选A. 3.(2019·合肥三模)已知直线l:x-y-a=0与圆C:(x-3)2+(y+)2=4交于点M,N,点P在圆C上,且∠MPN=,则实数a的值等于( B ) (A)2或10 (B)4或8 (C)6±2(D)6±2 解析:由∠MPN=可得∠MCN=2∠MPN=. 在△MCN中,CM=CN=2,∠CMN=∠CNM=, 可得点C(3,-)到直线MN,即直线l:x-y-a=0的距离为2sin=1. 所以=1,解得a=4或8.故选B. 4.(2019·临沂三模)若双曲线C:-=1(a>0,b>0)的一条渐近线被圆x2+(y-2)2=2所截得的弦长为2,则双曲线C的离心率为( B ) (A) (B)2 (C)(D)2 解析:双曲线C:-=1(a>0,b>0)的渐近线方程为y=±x, 由对称性,不妨取y=x,即bx-ay=0. 圆x2+(y-2)2=2的圆心坐标为(0,2),半径为, 则圆心到渐近线的距离d==1,

直线与圆锥曲线的位置关系一教学设计

北京市北纬路中学徐学军 《直线与圆锥曲线的位置关系(一)》教学设计 一、教材分析及学生情况分析 本节课是平面解析几何的核心内容之一。在此之前,学生已学习了直线的基本知识,圆锥曲线的定义、标准方程和简单的几何性质,直线与圆的位置关系及判定,这为本节课的学习起着铺垫作用。本节内容是《直线与圆锥曲线的位置关系》的第一节课,着重是教会学生如何判断直线与椭圆的位置关系,体会运用方程思想、数形结合、分类讨论、类比归纳等数学思想方法,优化学生的解题思维,提高学生解题能力。这为后面解决直线与圆锥曲线的综合问题打下良好的基础。所以是承上启下的一节课。这节课还是培养学生数学能力的良好题材,所以说是解析几何的核心内容之一。 数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。因此本节课在教学中力图让学生动手操作,自主探究、发现共性、类比归纳、总结解题规律。 学生情况分析:对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交,会从代数、几何两个方面进行判断。本节课,学生将类比挖掘直线与椭圆圆的位置关系,学会从不同角度分析思考问题,为后续学习打下基础。本班为理科班,学生整体思维能力较强,勤于动脑,喜欢想问题,但不愿动手实践,特别是进行相关计算,另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。 二、教学目标 根据上述教材结构与内容分析,考虑到学生已有的认知心理特征和实际,制定如下教学目标: 知识与技能:①理解直线与椭圆的位置关系; ②会进行位置关系的判断,计算弦长。 过程与方法:根据本节课的内容和学生的实际水平,通过回忆画图让学生理解直线与椭圆的位置关系;观察类比直线与圆的位置关系的判定,归纳总结出直线与椭圆的位置关系的判定,掌握代数方法, 学会解决相关的问题。 情感、态度、价值观:使得学生在学习知识的同时,培养学生自主探究和数形结合解决问题的能力。 三、教学重点、难点、关键 本着课程标准,在吃透教材基础上,我觉得这节课是解决直线与圆锥曲线综合问题的基础。对解决综合问题,我觉得只有先定性分析画出图形并观察图形,以形助数,才能定量分析解决综合问题。如:解决圆锥

直线与圆锥曲线的交点个数问题

直线与圆锥曲线的交点个数问题 直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程组是否有实数解或实数解的个数问题,对于消元后的一元二次方程,必须讨论二次项系数和判别式?,若能数形结合,借助图形的几何性质则较为简便。 一、直线与圆锥曲线的交点个数的探求 设直线:0l Ax By C ++=,圆锥曲线:()0C f x y =,,由0()0A x B y C f x y ++=??=? ,,,,即将直线l 的方程与圆锥曲线C 的方程联立,消去y 便得到关于x 的一元二次方程20ax bx c ++=(当然,也可以消去x 得到关于y 的一元二次方程),通过一元二次方程解的情况判断关系,见下表: 注意:(1)对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切;(2)有关直线与圆锥曲线公共点的个数问题,要注意用好分类讨论和数形结合的思想方法。 例1、讨论直线:1l y kx =+与双曲线22:1C x y -=的公共点的个数. 解:联立方程2211y kx x y =+??-=? ,,整理得22(1)220k x kx ---=, 当1k =±时,1x = . 当1k ≠±时,22248(1)84k k k ?=+-=-, 若0?> ,则k <0?= ,则k =0?< ,则k < 或k > 综上所述,当k =时,直线与双曲线相切于一点;1k =± 时,直线与双曲线相交

于一 点;k< 或k>时,直线与双曲线没有公共点 ;1k <<或11 k -<< 或1 k<-时,直线与双曲线有两个公共点. 点评:直线与圆锥曲线有无公共点的问题,实际上就是相应的方程组有无实数解的问题.直线与双曲线公共点的个数,特别是只有一个公共点时,除了相切的情况之外,还有直线与双曲线渐近线相平行时的情况.抛物线同样也存在这样的问题,应特别引起注意.二、借助于直线与圆锥曲线的交点个数探求直线方程 例2、已知双曲线C:2x2-y2=2与点Q(1,1),试判断以Q为中点的弦是否存在. 解:假设以Q为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2,∴2(x1-x2)=y1-y1,即k AB= 2 1 2 1 x x y y - - =2 但渐近线斜率为±2,结合图形知直线AB与C无交点,所以假设不正确,即以Q为中点的弦不存在. 点评:解答利用了“点差法”,但前提应是直线与曲线有交点,故求出斜率后必须进行验证,本题的验证利用了数形结合法,也可利用判别式法进行验证。 三、借助于直线与圆锥曲线的交点个数探求参数 例3、若直线1 y kx =+与焦点在x轴上的椭圆 22 1 5 x y m +=总有公共点,求m的取值范围.解法一:考虑到直线与椭圆总有公共点,由直线与圆锥曲线的位置关系的充要条件可求.解:由椭圆方程及椭圆的焦点在x轴上,知05 m <<. 由22 1 1 5 y kx x y m =+ ? ? ? += ? ? , , 得22 (5)105(1)0 m k x kx m +++-=. 又∵直线与椭圆总有公共点,∴上述方程0 ?≥对一切实数k成立, 即22 (10)4(5)5(1)0 k n k m -?+?-=,亦即2 51 k m - ≥对一切实数k成立.10 m - ∴≤,即1 m≥.故m的取值范围为[) 15 m∈,. 解法二:由于直线过定点(01) ,,而直线与椭圆总有公共点,所以定点(01) ,必在椭圆内部或边界上,由点与椭圆的位置关系的充要条件易求. 解:由椭圆的方程及椭圆的焦点在x轴上知05 m <<. 又∵直线与椭圆总有公共点.∴直线所经过的定点(01),必在椭圆内部或边界上.22 01 1 5m + ∴≤,即1 m≥.故m的取值范围为[) 15 m∈,. 点评:解法一由直线与圆锥曲线的位置关系的充要条件求,思路易得,但计算量大;解法二首先判断直线是否过定点,定点在椭圆内、外还是干脆就在椭圆上,然后借助曲线特征判断,思路灵活,且简捷. 总之,讨论直线与圆锥曲线的交点个数实际上就是讨论方程组的解的个数,在讨论方程组的解时需要对二次项系数及一次项系数进行讨论,体现了分类讨论和数形结合的思想方法

直线与圆锥曲线的位置关系知识梳理

直线与圆锥曲线的位置关系 知识梳理 1.直线与圆锥曲线的位置关系的判定 (1)代数法:把圆锥曲线方程C 1与直线方程l 联立消去y ,整理得到关于x 的方程ax 2 +bx +c =0. (2)几何法:在同一直角坐标系中画出圆锥曲线和直线,利用图象和性质可判定直线与圆锥曲线的位置关系. 2.圆锥曲线的弦长 设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2), 则|AB |=1+k 2 |x 2-x 1|=1+k 2 (x 1+x 2)2-4x 1x 2= 1+1 k 2|y 2-y 1|= 1+ 1 k 2 (y 1+y 2)2-4y 1y 2, |x 2-x 1|= ||a ?,|y 2-y 1|=| |a ? 3.中点弦问题:中点弦问题常用“根与系数的关系”或“点差法”求解. (1)点差法 设而不求,借用中点公式即可求得斜率. (2)在椭圆x 2a 2+y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =-b 2x 0 a 2y 0; 在双曲线x 2a 2-y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =b 2x 0 a 2y 0 ; 在抛物线y 2 =2px 中,以P (x 0,y 0)为中点的弦所在直线的斜率k =p y 0 . 典型例题 题型一 直线与圆锥曲线的位置关系的判断及应用 例1 若过点(0,1)作直线,使它与抛物线y 2 =4x 仅有一个公共点,则这样的直线有( )条 变式训练 若直线y =kx 与双曲线x 2 9-y 2 4=1相交,则k 的取值范围是________. 题型二 中点弦问题 例2 过椭圆x 2 16+y 2 4 =1内一点P (3,1),且被这点平分的弦所在直线的方程是________.

平面解析几何(直线和圆的方程圆锥曲线)专题

平面解析几何(直线和圆的方程、圆锥曲线)专题 17.0 圆锥曲线几何性质 如果涉及到其两“焦点”,优先选用圆锥曲线第一定义;如果涉及到其“焦点”、“准线”或“离心 率”,优先选用圆锥曲线第二定义;此外,如果涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用? PF t +PF2| =2a》£沪2方程为椭圆, 椭圆方程的第一定义:PF1- PF2 =2a F I F2无轨迹, PF1 - PF2 =2a = F t F2以F"F2为端点的线段 |PF t _PF2| =2aYF t F2方程为双曲线 双曲线的第一定义:PF1 _PF2 =2a - F1F 2无轨迹 PF i -PF 2 =2a=F i F2以F i,F 2的一个端点的一条射线 圆锥曲线第二定义(统一定义):平面内到定点F和定直线|的距离之比为常数e的点的轨迹.简言之就是“ e=点点距(数的统一)”,椭圆,双曲线,抛物线相对关系(形的统一)如右图. 点线距 当0 e 1时,轨迹为椭圆; 当e =1时,轨迹为抛物线; 当e -1时,轨迹为双曲线; 当e =0时,轨迹为圆(e =£,当c =0, a =b时). a 圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势 b =?,1 —e2、双曲线中b . e2 -1 . a a 圆锥曲线的焦半径公式如下图: 特征直角三角形、焦半径的最值、焦点弦的最值及其“顶点、焦点、准线等相互之间与坐标系无关的几 何性质”,尤其是双曲线中焦半径最值、焦点弦最值的特点 17.1圆锥曲线中的精要结论: .其中e=c,椭圆中 a a ex a— ex

16全国高中数学竞赛讲义-直线和圆、圆锥曲线(练习题)

最新高中数学奥数竞赛试题直线和圆,圆锥曲线 课后练习 1.已知点A 为双曲线122=-y x 的左顶点,点B 和点C 在双曲线的右支上,ABC ?是等边三角形,则ABC ?的面积是 (A ) 33 (B )2 33 (C )33 (D )36 2.平面上整点(纵、横坐标都是整数的点)到直线5 4 35+=x y 的距离中的最小值是 (A )17034 (B )8534 (C )201 (D )30 1 3.若实数x, y 满足(x + 5)2+(y – 12)2=142,则x 2+y 2的最小值为 (A) 2 (B) 1 (C) 3 (D) 2 4.直线13 4=+y x 椭圆191622=+y x 相交于A ,B 两点,该圆上点P ,使得⊿PAB 面积等于3,这样的点P 共有 (A) 1个 (B) 2个 (C) 3个 (D) 4个 5.设a ,b ∈R ,ab ≠0,那么直线ax -y +b =0和曲线bx 2+ay 2=ab 的图形是 A B 6.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60o 的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于P 点,则线段PF 的长等于 A . 3 16 B . 3 8 C . 3 3 16 D .38 7.方程 13 cos 2cos 3sin 2sin 2 2=-+-y x 表示的曲线是 A. 焦点在x 轴上的椭圆 B. 焦点在x 轴上的双曲线 C. 焦点在y 轴上的椭圆 D. 焦点在y 轴上的双曲线 8.在椭圆)0(122 22>>=+b a b y a x 中,记左焦点为F ,右顶点为A ,短轴上方的端点为B 。 若该椭圆的离心率是 2 1 5-,则ABF ∠= 。 9.设F 1,F 2是椭圆14 92 2=+y x 的两个焦点,P 是椭圆上的点,且|PF 1| : |PF 2|=2 : 1,则 三角形?PF 1F 2的面积等于______________.

圆锥曲线与方程 知识点详细

椭圆 1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121 F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的 轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示: 221x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴 为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对 称中心称为椭圆的中心。 (2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆 122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。a 和b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值范围是)10(<>),且已知椭 圆的准线方程为2 a x c =±,试推导出下列式子:(提示:用三角 函数假设P 点的坐标e PM PF PM PF == 2 21 1

圆锥曲线-直线与圆锥曲线位置关系

直线与圆锥曲线位置关系 一、基础知识: (一)直线与椭圆位置关系 1、直线与椭圆位置关系:相交(两个公共点),相切(一个公共点),相离(无公共点) 2、直线与椭圆位置关系的判定步骤:通过方程根的个数进行判定, 下面以直线y kx m =+和椭圆:()22 2210x y a b a b +=>>为例 (1)联立直线与椭圆方程:222222 y kx m b x a y a b =+??+=? (2)确定主变量x (或y )并通过直线方程消去另一变量y (或x ),代入椭圆方程得到关于主变量的一元二次方程:() 2 22 2 22b x a kx m a b ++=,整理可得: ()22 222222220a k b x a kxm a m a b +++-= (3)通过计算判别式?的符号判断方程根的个数,从而判定直线与椭圆的位置关系 ① 0?>?方程有两个不同实根?直线与椭圆相交 ② 0?=?方程有两个相同实根?直线与椭圆相切 ③ 0?>为例: (1)联立直线与双曲线方程:22 2 2 22 y kx m b x a y a b =+?? -=?,消元代入后可得: ()()2 2222222220b a k x a kxm a m a b ---+= (2)与椭圆不同,在椭圆中,因为2 2 2 0a k b +>,所以消元后的方程一定是二次方程,但双曲线中,消元后的方程二次项系数为2 2 2 b a k -,有可能为零。所以要分情况进行讨论

直线与圆锥曲线的位置关系专题

直线与圆锥曲线的位置关系 规范答题示专题 典例 (12分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+ y 2b 2 =1(a >b >0)的离心率为 32 , 且点? ???? 3,12在椭圆C 上. (1)求椭圆C 的方程; (2)设椭圆E :x 24a 2+y 2 4b 2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q . ①求|OQ ||OP | 的值;②求△ABQ 面积的最大值. 审题路线图 (1)椭圆C 上点满足条件―→得到a ,b 的关系式――――――――――→已知离心率e = 3 2 a 2= b 2+ c 2 基本量法求得椭圆C 的方程 (2)①P 在C 上,Q 在E 上――→P ,Q 共线设坐标代入方程―→求出|OQ | |OP | ②直线y =kx +m 和椭圆E 的方程联立――→通法 研究判别式Δ并判断根与系数的关系―→用m ,k 表示S △OAB ―→ 求S △OAB 的最值 ―――――――――――→利用①得 S △ABQ 和S △OAB 的关系 得S △ABQ 的最大值

(2)由(1)知椭圆E 的方程为 x 216+y 2 4 =1. ①设P (x 0,y 0),|OQ | |OP |=λ,由题意知Q (-λx 0,-λy 0). 因为x 20 4 +y 20=1, 又-λx 02 16 + -λy 0 2 4 =1,即λ24? ?? ??x 20 4 +y 20 =1, 所以λ=2,即|OQ | |OP |=2.5分 ②设A (x 1,y 1),B (x 2,y 2). 将y =kx +m 代入椭圆E 的方程,可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2,(*) 则x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|= 4 16k 2+4-m 21+4k 2 . 因为直线y =kx +m 与y 轴交点的坐标为(0,m ), 所以△OAB 的面积S =12|m ||x 1-x 2|= 2 16k 2+4-m 2|m | 1+4k 2 = 216k 2+4-m 2 m 2 1+4k 2 =2 ? ?? ??4-m 21+4k 2m 21+4k 2.8分 设 m 2 1+4k 2 =t ,将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.(**)

高二寒假 第七讲 直线与圆锥曲线提高篇(理科)

直线与圆锥曲线(复习)辅导教案 知识点一、直线与圆锥曲线的关系 1.直线y =kx -k +1与椭圆x 29+y 24 =1的位置关系为( ) A .相交 B .相切 C .相离 D .不确定 2.若直线y =kx 与双曲线x 29-y 24 =1相交,则k 的取值范围是( ) A.??? ?0,23 B.????-23,0 C.????-23,23 D.????-∞,-23∪??? ?23,+∞ 3.(2014·辽宁)已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )

A.12 B.23 C.34 D.43 知识点二、弦长问题 4.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A 、 B 两点,则弦AB 的长为________. 知识点三、中点弦问题 5.过椭圆x216+y24 =1内一点M(2,1)引一条弦,使弦被M 点平分,求此弦所在的直线方程. 知识点一、 直线与圆锥曲线 (1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标.也 可利用消元后的一元二次方程根的判别式来确定,需注意利用判别式的前提是 二次项系数不为0. (2)依据直线与圆锥曲线的交点个数求参数时,联立方程并消元,得到一元方程, 此时注意观察方程的二次项系数是否为0,若为0,则方程为一次方程;若不为 0,则将方程解的个数转化为判别式与0的大小关系求解. 知识点二、点差法 涉及弦的中点与直线的斜率问题,可考虑“点差法”,构造出k AB =y 1-y 2x 1-x 2 和x 1+x 2,y 1+y 2,整体代换,求出中点或斜率,体现“设而不求”的思想. 知识点三、定点定值问题

选修2—1直线与圆锥曲线1

直线与圆锥曲线 【复习要点】 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能. 1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法. 2.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍. 【例题】 【例1】已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭圆交于P和Q,且OP⊥OQ,|PQ|=,求椭圆方程. 解:设椭圆方程为mx2+ny2=1(m>0,n>0),P(x1,y1),Q(x2,y2) 由得(m+n)x2+2nx+n-1=0, Δ=4n2-4(m+n)(n-1)>0,即m+n-mn>0, 由OP⊥OQ,所以x1x2+y1y2=0,即2x1x2+(x1+x2)+1=0, ∴+1=0,∴m+n=2 ① 又22, 将m+n=2,代入得m·n= ② 由①、②式得m=,n=或m=,n= 故椭圆方程为+y2=1或x2+y2=1. 【例2】如图所示,抛物线y2=4x的顶点为O,点A的坐标为(5,0),倾斜角为的直线l与线段OA相交(不经过点O或点A)且交抛物线于M、N两点,求△AMN面积最大时直线l的方程,并求△AMN的最大面积.

直线与圆锥曲线的交点

主备人: 审核: 包科领导: 使用时间: §4.3直线与圆锥曲线的交点 【学习目标】 解决简单的直线与圆锥曲线相交的问题 【学习重点】 直线与圆锥曲线相交 【学习难点】直线与圆锥曲线的各种位置关系 【使用说明与学法指导】 1.通过阅读教材,自主学习,思考,交流,讨论和概括,完成本节课的学习目标。 2.用红笔勾勒出疑点,合作学习后寻求解决方案。 3.带*号的为选做题。 【自主探究】 直线与圆锥曲线位置关系 设直线方程A x +B y +C=0 , 圆锥曲线方程为F (x ,y )=0, A x + B y +C=0 由 ,消去(如消去y )后得: F (x ,y )=0 02=++c bx ax 1. 当0≠a 时,设?ac b 42-= (1) 当?>0时,方程有 2 个解,直线与曲线 相交 ,有 2 个公共点。 (2)当?<0时, 方程有 个解,直线与曲线 ,有 个公共点。 (3)当?=0时, 方程有 个解,直线与曲线 ,有 个公共点。 2.当0=a 时,方程只有一个解. (1) 若圆锥曲线是双曲线,直线与双曲线的 平行(或重合),有一个交点(或 无交点); (2)若圆锥曲线是抛物线,直线与抛物线的 平行(或重合),有一个交点。 【合作探究】 1、求过点)1,3(-M 且被点M 平分的双曲线14 22 =-y x 的弦所在直线方程 2、已知椭圆C 的焦点F 1(-22,0)和F 2(22,0),长轴长6 (1)求椭圆方程。

(2)设直线2+=x y 交椭圆C 于A B 两点,求线段AB 的中点坐标 (3) 在(2)的条件下求线段AB 的长度。 【巩固提高】 1. 若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是 ( ) (A )(315,315-) (B )(315,0) (C )(0,315-) (D )(1,3 15--) 2.已知曲线C 上任意一点P 到两个定点()1F 和) 2 F 的距离之和为4. (1)求曲线C 的方程; (2)设过()0,2-的直线l 与曲线C 交于A 、B 两点,且0OA OB ?= (O 为坐标原点), 求直线l 的方程. 【课堂小结】________________________________________________________

相关文档
最新文档