2013-2014年江西财经大学概率论与数理统计试卷A及参考答案

合集下载

2012-2013《概率论与数理统计》期末A卷答案

2012-2013《概率论与数理统计》期末A卷答案

上海应用技术学院2012—2013学年第1学期 《概率论与数理统计》期(末)(A )试卷答案一、单项选择题(本大题共6小题,每小题3分,共计18分)1、B2、C3、C4、A5、B6、B 二、 填空题(本大题共6小题,每小题3分,共计18分)1、312、63、F(1,1)4、]1645.11,8355.10[5、0.00136、e A T S S S += 三、计算题(本大题共5小题,共计50分)1、解:设1A 表示索赔事件由质量问题引起,2A 表示索赔事件由数量短缺问题引起,3A 表示索赔事件由包装问题引起,B 索赔事件协商解决,则123()0.5,()0.3,()0.2P A P A P A ===,123(|)0.34,(|)0.6,(|)0.75P B A P B A P B A ===(2分) (1)112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++0.50.340.30.60.20.750.5=⨯+⨯+⨯= (6分)(2)111112233()(|)(|)()(|)()(|)()(|)P A P B A P A B P A P B A P A P B A P A P B A =++0.50.340.340.5⨯==11(|)1(|)10.340.66P A B P A B =-=-= (10分)2、解:X 的边际密度函数为()233,012xX x p x xdy x x -==<<⎰(1分)()130334E X x d y ==⎰ (2分)Y 的边际密度函数为()()()1212331,0124331,1024y Y y xdx y y p y xdx y y -⎧=-<<⎪⎪=⎨⎪=--<<⎪⎩⎰⎰ (4分)()()231,114Y p y y y =--<< (5分) ()()1213104E Y y y dy -=-=⎰ (6分)()120302xx E XY x ydydx -==⎰⎰ (7分) 所以Cov(X,Y)=0,即X 与Y 不相关 (8分) 又因为()()(),X Y p x y p x p y ≠所以X 与Y 不独立。

(完整word版)2014-2015概率论与数理统计A卷答案 (1)

(完整word版)2014-2015概率论与数理统计A卷答案 (1)

系部 专业班级 学号 姓名 密封线 答题留空不够时,可写到纸的背面 注意保持装订完整,试卷折开无效 装订线二.填空题(每题2分,共10分)1.已知().P A =06, ()|.P B A =03, 则()P A B ⋂= ___0.18_______;2.甲、乙、丙3人独立地译出一种密码,他们能译出的概率分别为1/5,1/3,1/4,则能译出这种密码的概率为35; 3.一种动物的体重X 是一随机变量,设()(),E X D X ==334,10个这种动物的平均体重记作Y ,则()D Y =__ 0.4 _;4. 已知,36)(,25)(==Y D X D X 与Y 的相关系数为4.0=XY ρ,则)(Y X D -= 37 ;5. 设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()nii Xμσ=-∑服从2()n χ分布.三.计算下列各题(共80分)1.(10分)例 1.某电子设备制造厂所用的元件是由三家元件制造厂提供的,根据以往的记录三家厂的次品率分别为0.02,0.01,0.03,三家厂所提供的份额分别为0.15,0.80,0.05。

设这三家厂的产品在仓库中是均匀混合的,且无区别的标志.(1)在仓库中随机取一只元件,求它是次品的概率;(2)在仓库中随机取一只元件,若已知取到的是次品,求出此次品由第一家工厂生产的概率是多少?解:设A 表示“取到的是一只次品”,(i=1,2,3)表示“所取到的产品是由第i 家工厂提供的”,则P()=0.15 P()=0.80 P()=0.05P(=0.02 P(=0.01 P(=0.03 (3分)1>.由全概率公式()112233(|)()(|)()(|) ?()A B B A B B B A A B =++P P P P P P P 0.0125= (5分) 2>.由贝叶斯公式P() = = = 0.24 (10分)桂林理工大学考试试卷 (2014--2015 学年度第 一 学期)课 程 名 称:概率统计 A 卷 命 题:基础数学教研室 题 号 一二三总 分得 分一. 单项选择题(每小题2分,共10分)1.如果 1)()(>+B P A P ,则 事件A 与B 必定( C ))(A 独立 )(B 不独立 )(C 相容 )(D 不相容2.设随机变量X 服从二项分布(,)B n p ,且()()2.1 1.47==E X D X ,则二项分布的参数,n p 的值为( A ) ()70.3==A n p ()30.7==B n p ()210.1==C n p ()40.6==D n p3.设随机变量X 服从)1,0(N 分布,12+=X Y ,则~Y ( B ) ()(0,1)()(1,4)()(1,2)()(0,4)A N B N C N D N4. 已知X 服从泊松分布,则()D X 与()E X 的关系为( C ) )(A ()()D X E X > )(B ()()D X E X < )(C ()()D X E X = )(D 以上都不是5. 设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是( D ))(A 32112110351ˆX X X ++=μ)(B 3212949231ˆX X X ++=μ)(C 3213216131ˆX X X ++=μ)(D 32141254131ˆX X X ++=μX-1-1 0.12将联合分布表每行相加得-10.6将联合分布表每列相加得-10.30,1,;0θ<<!!n e X , (4分)()1ln !!!n X X θ- n ,令ln 0,d d θ=得1n θ= (10000,0.005b49.75, ()2.84Φ-Φ。

《概率论与数理统计》考试试题A(答案)

《概率论与数理统计》考试试题A(答案)

期末考试《概率论与数理统计》A 卷参考答案及评分标准一、判断题(你认为正确的请在括号内打√,错误的打×。

每小题2分,共10分)()1.设0}{==a X P ,则事件}{a X =为不可能事件. (×)2.设A 、B 为两事件,则)()()(B P A P B A P -=-.(√)3.设⎪⎩⎪⎨⎧<<=其它202)(x xx f , 则其一定是某连续型随机变量的概率密度.(√)4.设随机变量X ~N (1,4),则21-X ~N (0,1).(×)5.设3)(=X D ,1)(=Y D ,X 与Y 相互独立,则2)(=-Y X D . 二、填空题(请将正确答案填写在括号内。

每空3分,共30分)6红球的概率为( 271 )。

7.设事件B A ,相互独立,4.0)(,6.0)(==A P B A P ,则=)(B P ( 1 ).8.设B A ,为随机事件,且25.0)(,4.0)(,8.0)(===A B P B P A P ,则=)(B A P ( 0.5 ). 9.设随机变量X 服从参数为3的指数分布,则=+)13(X E ( 2 ),=+)13(X D ( 1 ). 10.若在3次独立重复试验中,事件A 至少发生1次的概率为2726,则事件A 在一次试验中发生的概率为(32 ).11. 设随机变量X 服从区间[0,5]上的均匀分布,则{}=≤3X P ( 0.6 ). 12.已知随机变量X ~)2,3(2N ,8413.0)1(0=Φ,6915.0)5.0(0=Φ,则=>}3{X P ( 0.5 ),=≤<}52{X P ( 0.5328 ).13. 设随机变量X 的概率分布为,}{NaK X P ==K=1,2, …,N ,则a =( 1 ). 三、选择题(每小题的四个选项中只有一个是正确的,请将其代码写在题后的括号内。

每小题3分,共18分) 14.设B A ,互为对立事件,且0)(,0)(>>B P A P ,则下列各式中错误..的是( B ). A .)(1)(B P A P -= B .)()()(B P A P AB P = C .1)(=AB P D .1)(=B A P15.以A 表示“甲种产品畅销,乙种产品滞销”,则其对立事件A ( D ) A .“甲种产品滞销,乙种产品畅销” B .“甲、乙两种产品滞销” C .“甲种产品滞销” D .“甲中产品滞销或乙种产品畅销”16.设连续型随机变量X 的概率密度为⎩⎨⎧<<=其他,00,)(rx x x ϕ,则常数=r ( C )A .0.5B .1C .2D .217.某人向同一目标独立重复射击,每次射击命中目标的概率为)10(<<p p ,则此人第4次射击后,恰好是第2次命中目标的概率为( A )A .22)1(3p p -B .2)1(3p p -C .22)1(6p p -D .2)1(6p p - 18.人的体重X ~)(x ϕ,b X D a XE ==)(,)(,10个人的平均体重记作Y ,则( B )成立.A .a Y E =)(,b Y D =)(B .a Y E =)(,b Y D 1.0)(=C .a Y E 10)(=,b YD =)( D .a YE =)(,b Y D 10)(=19.设随机变量X 服从泊松分布,且P(X =1)= P(X =2),则P(X =4)=( B ).A .232eB .232-e C .32 D .132-e四、计算题(每小题8分,共32分)20,1.0)(,7.0)(,5.0)(=-==B A P B P A P ,试求 (1))(B A P +;(2))(B A P .解 (1))(5.0)()()(1.0AB P AB P A P B A P -=-=-= (2分) 所以 4.0)(=AB P (3分) 8.0)()()()(=-+=+AB P B P A P B A P (5分)(2)2.0)(1)()(=+-=+=B A P B A P B A P (8分)21.设连续型随机变量X 的概率密度⎩⎨⎧<<=其他,010,)(x kx x aϕ)0,>a k (,已知75.0)(=X E ,求(1)a k ,;(2))(X D .解 (1)因为11)(1=+==⎰⎰∞+∞-a kdx kx dx x a ϕ (2分) 75.02)(10=+==⎰a kdx xkx X E a (4分) 解得 3,2==k a (5分)所以 ⎩⎨⎧<<=其他,010,3)(2x x x ϕ533)(10222=⋅=⎰dx x x X E (6分)所以0375.0803)75.0(6.0))(()()(222≈=-=-=X E X E X D (8分)22.保险公司认为人可以分为两类:第一类是易出事故的人,第二类是比较谨慎,不易出事故的人,统计资料表明,第一类人在一年内某一时刻出一次事故的概率为0.4,第二类人在一年内某一时刻出一次事故的概率为0.2,若第一类人占30%,问 (1)一个新客户在购买保险后一年内需要理赔的概率是多少?(2)如果该客户在购买保险后一年内出了一次事故,他是第一类人的概率是多少?解 设A 表示”该客户在购买保险后一年内出了一次事故”,B 表示”他是第一类人”,则3.0)(=B P ,7.0)(=B P ,4.0)(=B A P ,2.0)(=B A P (2分) (1)由全概率公式有26.0)()()()()(=+=B A P B P B A P B P A P . (5分) (2)由贝叶斯公式有46.026.012.0)()()()(===A PB A P B P A B P . (8分)23.已知电站供电网有10000盏电灯,夜晚每一盏灯开灯的概率都是0.6,而假定开、关时间彼此独立,试用切贝谢夫不等式估计夜晚同时开着的灯数在5800与6200之间的概率。

2013~2014年全国自考概率论与数理统计试题及答案要点

2013~2014年全国自考概率论与数理统计试题及答案要点

全国2013年1月高等教育自学考试概率论与数理统计(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)二、填空题(本大题共15小题,每小题2分,共30分)三、计算题(本大题共2小题,每小题8分,共16分)四、综合题(本大题共2小题,每小题12分,共24分)五、应用题(10分)全国2013年1月高等教育自学考试 概率论与数理统计(经管类)答案1、本题考查的是和事件的概率公式,答案为C.2、解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂=== ,故选B.3、解:本题考查的是分布函数的性质。

由()1F +∞=可知,A 、B 不能作为分布函数。

再由分布函数的单调不减性,可知D 不是分布函数。

所以答案为C 。

4、解:选A 。

{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ 5、解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040.14d =--= ,故选D 。

6、解:若~()X P λ,则()()E X D X λ==,故 D 。

7、解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+= ,选A8、解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= ,选C 。

2013-2014年江西财经大学概率论与数理统计试卷A及参考答案

2013-2014年江西财经大学概率论与数理统计试卷A及参考答案

2014年江西财经大学概率论数学模拟试卷一092致091一、填空题(将答案写在答题纸的相应位置,不写解答过程。

每小题3分,共15分)1.已知P(A)=0.4,P(B)=0.5,=-)(B A P 0.28,则P(AUB)=______________;2.设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望)(2X E =______________;3.设随机变量X 的数学期望μ=EX ,方差2σ=DX ,则由切比雪夫不等式可以得到≤≥-}3|{|σμX P _______________;4. 设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则=-)3(Y X D ___________;5.设12(,,,)n X X X 是从正态总体2(,)N μσ中抽取的一个样本, X 是其样本均值,则有21[()]n i i D X X =-=∑____________________。

二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸相应位置处。

答案错选或未选者,该题不得分。

每小题3分,共15分。

)1.设B A ,为两个随机事件,且1)(,0)(=>B A P B P ,则必有( ))(}{)()(}{)()(}{)()(}{)(B P B A P D A P B A P C B P B A P B A P B A P A ==>>2. 下列函数中,可作为某一随机变量的分布函数是A. 21()1F x x =+B. x x F arctan 121)(π+= C. =)(x F 1(1),020,0x e x x -⎧->⎪⎨⎪≤⎩D. ()()x F x f t dt -∞=⎰,其中()1f t dt +∞-∞=⎰ 3. 设离散型随机变量(,)X Y 的联合分布律如下,若Y X ,相互独立,则 (,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)1/61/91/181/3X Y P αβA. 9/1,9/2==βαB. 9/2,9/1==βαC. 6/1,6/1==βαD. 18/1,15/8==βα4. 对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =⋅,则A .()()()D XY D X D Y =⋅ B. ()()()D X Y D X D Y +=+C .X 和Y 独立 D. X 和Y 不独立5. 在对单个正态总体均值的假设检验中,当总体方差已知时,选用A. t 检验法B. u 检验法C. F 检验法D. 2χ检验法三、计算题(要求在答题纸上写出主要计算步骤及结果。

2013-2014年概率论AB卷及答案

2013-2014年概率论AB卷及答案

2013~ 2014年概率论与数理统计A 卷答案一、选择填空题(共18分)1.箱中有5个白球3个红球,任取2个,则两个都是红球的概率为( D ) A.15/28 B.13/28 C.5/28 D.3/282.设2~(,)X N μσ,则随σ增加,概率(||)P X μσ-<( C ) A.单调增加B.单调减少 C.保持不变D.与μ有关3.设总体2123(,),,,XN u X X X σ是总体X 的样本,则以下μ的无偏估计中, 最有效的估计量是( C ).A.12X X -B.123121236X X X +-C. XD.123241555X X X +-4.设()0.5,()0.8P A P A B ==,且A 与B 互斥,则()P B =0.35.设随机变量X 在(1,6)服从均匀分布,则(24)P X <<=0.46.若总体2~(,)X N μσ,其中2σ未知,则对总体均值μ进行区间估计时选择的枢轴量为X t =二、计算题(共30分)1.某保险公司把投保人分成三类:“谨慎的”、“一般的”、“冒险的”,占的比例分别为20%、50%、30%。

一年中他们出事故的概率分别为0.05、0.15、0.30。

(1)求一年中投保人出事故的概率;(2)现有一投保人出了事故,求他是“谨慎的”客户的概率.解:设i A :投保人是“谨慎的、一般的、冒险的”(i=1,2,3),B:投保人出事故 (1)112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++ 0.20.050.50.150.30.30.175=⋅+⋅+⋅= (2)111()(|)(|)()P A P B A P A B P B =0.20.0520.0570.17535⋅==≈2.设随机变量X(1)求()E X ; (2)求()D X .解:(1)11111()(2)01264342E X =-⋅+⋅+⋅+⋅=(2)222221111()(2)01226434E X =-⋅+⋅+⋅+⋅=2217()()()244D XE X E X ∴=-=-=3.设随机变量X 的概率密度为3,0()0,x ce x f x -⎧>=⎨⎩其他(1)求常数c ;(2)求(1)P X <. 解:(1)3301()33x x c cf x dx ce dx e +∞+∞+∞---∞===-=⎰⎰,故3c =(2)1133300(1)31x x P X e dx e e ---<==-=-⎰三、计算题(共40分)1.设二维随机变量(,)X Y 具有联合分布律求(1)X 的边缘分布律; (2))1(22≤+Y X P . 解:5115(0)2481212P X ==++=, 7517(1)24241212P X ==++=X 的边缘分布律为(2)2251755(1)24824246P X Y +≤=+++= 2.设二维随机变量(,)X Y 的联合概率密度为38,01,01(,)0,xy x y f x y ⎧<<<<=⎨⎩其他,(1)求X 与Y 的边缘概率密度;(2)判断X 与Y 是否独立?(说明理由) 解:(1)01x <<时,130()(,)82X f x f x y dy xy dy x +∞-∞===⎰⎰,01y <<时,1330()(,)84Y f y f x y dx xy dx y +∞-∞===⎰⎰.2,01()0,X x x f x <<⎧∴=⎨⎩其他,34,01()0,Y y y f y ⎧<<=⎨⎩其他 (2)因为()()(,)X Y f x f y f x y ⋅=,所以X 与Y 相互独立.3.设总体X 的概率密度为1,01,0(,)0,x x f x θθθθ-⎧<<>=⎨⎩其他,12,,,n X X X 是总体X 的样本,求未知参数θ的最大似然估计量. 解:似然函数为11111()(,)nnnni ii i i i L f x x x θθθθθθ--======∏∏∏,1ln ()ln (1)ln ni i L n x θθθ==+-∑,似然方程为1ln ()ln 0ni i d L n x d θθθ==+=∑ 解得1ln nii nXθ==-∑是θ的最大似然估计量。

2013-2014(2)概率统计(A)解答(精编文档).doc

2013-2014(2)概率统计(A)解答(精编文档).doc

【最新整理,下载后即可编辑】广州大学2013-2014学年第二学期考试卷解答课程:概率论与数理统计(48学时)考试形式:闭卷考试学院:____________ 专业班级:__________ 学号:____________ 姓名:___________一、填空题(每小题3分,共30分)1.事件,,A B C中恰有一个不发生可表示为ABC ABC ABC++. 2.已知()0.2P A BP B A=0.5 .⋃=,则(|)P A=,()0.3P B=,()0.43.将4封信随机地投入4个邮筒中,则每个邮筒中各有一封信的概率为3/32 .4.袋中有红球6个,白球4个,从中取两次,每次任取一个,作不放回抽样. 则第二次取的是红球的概率为0.6 .5.甲、乙两人独立破译一密码,若两人各自独立译出密码的概率依次为0.6、0.5,则此密码被译出的概率为 0.8 . 6.设某种元件的寿命X (单位: 小时)具有概率密度2500,500()0,500x f x xx ⎧>⎪=⎨⎪≤⎩ 则元件寿命大于1000小时的概率为 0.5 .7.设随机变量X 的概率分布为1{}P X i n==,1,,i n =且数学期望()2014E X =,则n = 4027 .8.设()2E X =,()3E Y =,则(3210)E X Y +-= 2 .9.设随机变量X 与Y 相互独立,()()2D X D Y ==,则(2)D X Y -= 10 .10.设随机变量X 服从正态分布(1,4)N ,则{13}P X ≤≤= 0.341 . 参考数据:标准正态分布函数值(0.5)0.692Φ=,(1)0.841Φ=. 二、(每小题6分,共12分)1.10把钥匙中有2把能打开门,从中任意取2把,问能打开门的概率是多少?解:基本事件总数21045n C ==,------2分所求事件所含的基本事件数2011282817r C C C C =+=,------4分 所求概率为1745rP n==.------6分2.某射手每次射击命中目标的概率为0.9,现向一个目标射击至多5次,一但命中目标就停止射击,求射击次数X 的分布律. 解:1{}0.10.9k P X k -==⨯,1,2,3,4k =,------3分4{5}0.10.0001P X ===,-----5分 X 的分布律为------6分三、(本题满分8分)电路由电池A 与2个串联的电池B 及C 并联而成. 设电池A ,B ,C 损坏的概率分别为0.3,0.2,0.2,求电路发生间断的概率. 解:用A ,B ,C 分别表示事件“电池A ,B ,C 损坏”,则事件“电路发生间断”可表示为()A B C ⋃,------3分 所求概率为()()()()()P A B C P AB AC ⋃=⋃ ()()()P AB P AC P ABC =+-()()()()()()()0.108P A P B P A P C P A P B P C =+-=.------8分四、(本题满分8分)某厂有1A 、2A 、3A 三条流水线生产同一产品,已知每条流水线的产品分别占总量的40%,30%,30%,且这三条流水线的次品率分别为0.01,0.02,0.03. 现从出厂的产品中任取一件,求取到的是正品的概率.解:用i A 表示事件“产品是流水线i A 生产的”,B 表示事件“取到的是正品”,则1()0.4P A =,2()0.3P A =,3()0.3P A =,1(|)0.99P B A =,2(|)0.98P B A =,3(|)0.97P B A =,------4分由全概率公式,所求概率为112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++0.981=.---8分 五、(本题满分10分)设随机变量X 的概率密度为32,01()0,x x x f x ⎧+<<=⎨⎩其它 求X 的数学期望()E X 和方差()D X .解:()()d E X xf x x +∞-∞=⎰1301211(2)d 3515x x x x =+=+=⎰,------4分22()()d E X x f x x +∞-∞=⎰1230117(2)d 4312x x x x =+=+=⎰,------8分227121123()()[()]122252700D XE X E X =-=-=.------10分六、(本题满分12分)设随机变量X 与Y 相互独立,其概率分布分别为010.60.4iXp 010.30.7jY p(1)求X ,Y 的联合概率分布;(2)求随机变量Z X Y =+的分布函数. 解:(1)因X 与Y 相互独立,所以{,}{}{}P X a Y b P X a P Y b ====⋅=,------2分由此得X ,Y 的联合概率分布为------5分(2)Z 的取值为0,1,2,{0}{0,0}0.18P Z P X Y =====,{1}{0,1}{1,0}0.420.120.54P Z P X Y P X Y ====+===+=, {2}{1,1}0.28P Z P X Y =====.------8分Z 的分布函数为(){}F z P Z z =≤0,00.18,010.72,121,2z z z z <⎧⎪≤<⎪=⎨≤<⎪⎪>⎩------12分七、(本题满分10分)在次品率为0.2的一大批产品中,任意抽取400件产品,利用中心极限定理计算抽取的产品中次品件数在60与80之间的概率.2t x -~(,)X B n p ,400n =,0.2p =,------2分 由棣-拉定理,808X Y -==近似服从(0,1)N .------5分所求概率为{6080}P X ≤≤{2.50}P Y =-≤≤(0)( 2.5)≈Φ-Φ-(0)[1(2.5)]=Φ--Φ0.494=.------10分八、(本题满分10分) 设总体X 的概率密度函数1,01(,)0,x x f x λλλ-⎧<<=⎨⎩其它,其中0λ>是未知参数. 已知1,,n x x 是来自总体X 的一组样本观察值,求参数λ的最大似然估计值.解:似然函数为1()(,)ni i L f x λλ==∏,------2分易知()L λ的最大值点为111()ni i L x λλλ-==∏的最大值点,------4分。

江财概率论历年试题与答案

江财概率论历年试题与答案
三、(12分)同一种产品由甲、乙、丙三个厂家供应,由长期经验
知,三家的正品率为0.95、0.90、0.80,三家产品数所占比例为2:3:
5,现已混合一起,
1、从中任取一件,求此件产品为正品的概率。
2、现取到1件产品为正品,问它是由甲、乙、丙三个厂中哪个生产的可
能性大?
类似04-5A考题。
解: (1)设B为” 取得一件是正品”
服从 t(3) 分布
4.设总体X~P(λ)(泊松分布),则= 矩估计量
5.已知总体X~N(μ,),(X1,…,Xm)是来自X的样本,其样本修正
方差为。当μ未知时,对假设H0,,H1:进行检验,这时可构造统计
量,其拒绝域为
应该给出显著水平
二、单项选择题(3×5=15)
1.由0,1,2,…,9共10个数字组成7位的电话号码,A=“不含数字8
F~F(6,8) P{F<3.58}=0.95
P{F<4.32}=0.975
F~F(7,9) P{F<3.29}=0.95
P{F<4.20}=0.975
F~F(1,8) P{F<5.32}=0.95
P{F<7.57}=0.975
相关系数检验:λ0.05(8)=0.632,λ0.05(9)=0.602,λ0.05(10)=0.57
04-05学年第二学期期末考试题
试卷代号:03054C
适用对象:选课
课程学时:64
课程名称:概率论与数理统计
一、填空题:(3×5=15)
1、设两事件A、B相互独立,且P(A)=0.3,P(B)=0.4,则P(A∪B)

2、设随机变量X~N(-2,4),则E(2X2+5X)= E{2(X+2)2-3X-

2008-2011江西财经大学概率论与数理统计期末试卷及答案

2008-2011江西财经大学概率论与数理统计期末试卷及答案

2008-2011江西财经大学概率论与数理统计期末试卷及答案D)(C432171717372X X X X +++ )(D 321313131X X X ++4.在假设检验中,原假设0H ,备择假设1H ,显著性水平α,则检验的功效是指( ) )(A 为假}接受00|{H H P (B )为假}拒绝00|{H H P)(C 为真}接受00|{H H P )(D 为真}拒绝00|{H H P 5. 设),,,(21n X X X 为来自正态总体),(2σμN 的样本,μ已知,未知参数2σ的置信度α-1的置信区间为( ))(A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--∑∑=-=)()(,)()(221222112n X n X n i i n i i ααχμχμ )(B ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---==∑∑)()(,)()(221122212n X n X ni i n i i ααχμχμ )(C ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----∑∑=-=)1()(,)1()(221222112n X n X n i i n i i ααχμχμ )(D ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----==∑∑)1()(,)1()(221122212n X n X ni i n i i ααχμχμ三、计算题(要求在答题纸上写出主要计算步骤及结果。

本题10分)两台车床加工同样的零件,第一台出现废品的概率为03.0,第二台出现废品的概率为02.0,加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍。

(1)求任取一个零件是合格品的概率;(2)如果任取一个零件是废品,求它是第二台机床加工的概率。

四、计算题(要求在答题纸上写出主要计算步骤及结果。

本题10分)设两个总体X 与Y 都服从正态分布)3,20(N ,今从总体X 与Y 中分别抽得容量101=n ,152=n 的两个相互独立的样本,Y X 、分别是总体X 与Y 的样本均值,求}5.0|{|>-Y X P 。

概率论与数理统计A考试题及答案

概率论与数理统计A考试题及答案

概率论与数理统计A考试题及答案一、选择题(每题5分,共20分)1. 设随机变量X服从标准正态分布,P(X > 1)的值为:A. 0.1587B. 0.8413C. 0.1587D. 0.1587答案:B2. 某次实验中,事件A和事件B互斥,且P(A) = 0.6,P(B) = 0.4,则P(A∪B)的值为:A. 0.6B. 0.4C. 1D. 0.2答案:C3. 已知随机变量X的期望为2,方差为4,则E(2X-3)的值为:A. 1B. 4C. -1D. 1答案:B4. 设随机变量X服从参数为λ的泊松分布,若P(X=0) = 0.25,则λ的值为:A. 0.5B. 1C. 2D. 4答案:B二、填空题(每题5分,共20分)1. 设随机变量X服从二项分布B(n, p),若n=10,p=0.1,则P(X=2)的值为______。

答案:0.04862. 设随机变量X服从均匀分布U(a, b),若P(X > 2) = 0.2,则b的值为______。

答案:43. 设随机变量X服从正态分布N(μ, σ^2),若μ=5,σ^2=9,则P(X > 8)的值为______。

答案:0.02284. 设随机变量X服从指数分布,其概率密度函数为f(x) = λe^(-λx) (x ≥ 0),若P(X > 3) = 0.25,则λ的值为______。

答案:0.25三、解答题(每题10分,共60分)1. 设随机变量X服从正态分布N(μ, σ^2),已知P(X < 1) = 0.5,P(X < 2) = 0.8,求μ和σ^2的值。

答案:μ = 1.5, σ^2 = 0.252. 某工厂生产的零件长度服从正态分布N(μ, σ^2),已知P(L < 5) = 0.95,P(L > 7) = 0.05,求μ和σ^2的值。

答案:μ = 6, σ^2 = 43. 设随机变量X和Y相互独立,X服从参数为λ的泊松分布,Y服从参数为p的二项分布B(n, p),求P(X+Y=k)。

江西财经大学统计学试题(卷)有答案解析

江西财经大学统计学试题(卷)有答案解析

.
.
(10 分) 计算结果表明:由于商品价格本月比上月平均上升了 4.25%,使销售额增
加了 26 元;又由于销售量本月比上月平均上升了 5.52%,使销售额增加了 32 元。价格与销售量两个因素综合作用的结果,使商品销售额本月比上月增加了 58 元。 (3 分)
五、统计推断题。
H0 : =12 H1 : 12
关关系。(10 分)
(2) 0.74+22.28x (10 分)。
.
.
财经大学
12-13 第一学期期末考试试卷
试卷代码:06003C
授课课时:48
考试用时:110 分钟
课程名称:统计学(主干课程)
适用对象:挂牌班
试卷命题人
试卷审核人
一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代
r
n
n
n
n xi yi
xi
yi
i 1
i 1
i 1
n
n
n xi2 ( xi )2
i 1
i 1
n
n
n yi2 ( yi )2
i 1
i 1
10 63413 780800
10130 0.8244
10 62210 7802 10 65102 8002 117.05104.98
相关系数为 0.8244,说明高等数学成绩和统计学成绩之间存在较强的正相
共 20 分) 2010 年 1 月期末考试结束后,从某班 50 名学生中随机抽取 10 名,得其高
等数学成绩与统计学成绩资料如下:
序号 1 2 3 4 5
高等数学成绩(分) 54 66 68 76 78
统计学成绩(分) 61 80 62 86 84

概率论与数理统计(A)卷参考答案

概率论与数理统计(A)卷参考答案

商学院课程考核试卷参考答案与评分标准 (A )卷课程名称: 概率论与数理统计 学 分: 4 考核班级: 本部二年级各本科专业 考核学期:一. 填空题(每小题3分,共30分)1.0.7;2.0.38;3.0,1,2,3;4.0.6915;5.2;6.0;7.⎩⎨⎧>>--=--其他00,0)1)(1(),(y x e e y x F y x ;8.23π; 9. 11)(-=∏θθni i nx ; 10.0.4。

二. 选择题(每小题3分,共15分)1.B ;2.D ;3.C ;4.A ;5.C 。

三. 计算题(第1题10分,其余5小题每题9分,共55分)1. 设321,,A A A 分别表示取到第一、二、三个箱子,B 表示取到白球, 则321,,A A A 是一个完备事件组,且:31)()()(321===A P A P A P , 52)|(53)|(51)|(321===A B P A B P A B P ,, 2分(1)由全概率公式:)|()()|()()|()(P(B)332211A B P A P A B P A P A B P A P ++=52523153315131=⨯+⨯+⨯= 6分(2)由贝叶斯公式:31)()|()()|(333==B P A B P A P B A P 10分2.(1)122)(222====⎰⎰∞+∞-λλλxxdx dx x f X ,21=λ; 3分 (2)21400()()02;12xX x F x f t dt xx x -∞<⎧⎪==≤<⎨⎪≥⎩⎰6分 (3) {}1313(3)(1)144P X F F <<=-=-=。

9分3. (1)该设备的平均寿命是41=λ年(设备寿命服从41=λ的指数分布) 2分(2)设Y 是工厂出售一台设备的赢利,则⎩⎨⎧≤->=12001100X X Y 4分)1(200)1(100)(≤->=X P X P Y E ⎰⎰-∞+--=104144120041100dx e dx e xx 8分64.3330020041=-=-e万元 9分4. (1)14),(==⎰⎰+∞∞-+∞∞-cdxdy y x f ,所以,4=c 3分 (2)324)(1012==⎰⎰ydy dx x X E ;324)(10210==⎰⎰dy y xdx Y E944)(10212==⎰⎰dy y dx x XY E 6分 (3)0)()()(),(=-=Y E X E XY E Y X Cov 9分5. 解:令第i 次轰炸命中目标的炸弹数为X i ,100次轰炸中命中目标炸弹数X =∑=1001i iX,应用定理5.5,X 渐近服从正态分布,期望值为200,方差为169,标准差为13. 2分所以P {180≤X ≤220}=P {|X -200|≤20} 4分=⎭⎬⎫⎩⎨⎧≤-132013200X P ≈2Φ(1.54)-1=0.8764. 9分 6.222)1(σχS n -=~2χ(n-1),对05.0=α, 2分查表知:535.17)8(,18.2)8(2025.02975.0==χχ 4分使得2σ置信度为0.95的置信区间为:22220.0250.975(1)(1),(8)(8)n S n S χχ⎛⎫-- ⎪⎝⎭ 计算可得:)8(82025.02χS =12.77,)8(82975.02χS =102.75;(12.77, 102.75)即为总体方差2σ置信度为0.95的置信区间. 9分。

2013概率试卷A(11级)

2013概率试卷A(11级)

江西财经大学现代经济管理学院2012-2013第二学期期末考试卷 试卷代码:A课程名称:概率论与数理统计 课时:64 适用对象:11级各专业一、填空题(将答案写在答题纸的相应位置,不写解答过程.每小题3分,共15分)1、把10本不同的书任意地摆成一排,则指定的3本书放在一起的概率为 ;2、设随机变量X ~),(p n B ,且75.18,25==DX EX ,则=n ;3、设5.0,9,4===XY DY DX ρ,则=+-)232(Y X D ;4、随机变量X 的期望μ=EX ,方差2σ=DX ,则由切比雪夫不等式可知≤≥-}3|{|σμX P ;5、设样本)(921,,X X X 为来自总体X ~)9,(μN ,现有样本的一组观测值为)7,4,8,4,5,3,4,6,4(,则参数μ的置信度为0.9的置信区间为 ;二、选择题 (从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分)1、 设事件A 与B 互斥,且0)(,0)(>>B P A P ,则( )A.)()()(B P A P AB P =B.)|()(B A P A P =C.0)|(=A B PD.)(1)(B P A P -=2、设样本 )(n X X X ,,21为来自于总体X ,且2,σμ==DX EX ,则有() A.),2,1(n i X i =是μ的无偏估计量 B. ),2,1(2n i X i =是2σ的无偏估计量C.∑=n i i X 1是μ的无偏估计量 D. 2X 是2σ的无偏估计量3、设随机变量X ,且μ=EX ,2σ=DX (0,>σμ常数),则对任意常数C ,必有()A.222)(C EX C X E -=-B. 22)()(μ-=-X E C X EC.22)()(μ-<-X E C X ED. 22)()(μ-≥-X E C X E4、在假设检验中,显著性水平α表示为()A.}|{00不真接受H H PB. }|{00真拒绝H H PC. }|{00真接受H H PD. }|{00不真拒绝H H P5、设样本 )(1021,,X X X 为来自于总体X ,且2,σμ==DX EX ,则在下面的μ的无偏估计量中,最有效的是() A.221X X + B. 3321X X X ++ C.44321X X X X +++ D. 554321X X X X X ++++ 三 解答题(要求在答题纸上写出主要计算步骤及结果. 此题12分.)甲乙两台机床加工同样的零件,废品率分别为0.02和0.03,甲机床生产的零件是乙机床生产零件的两倍,现从均匀混合在一起的零件中任取一个零件。

江西财经大学概率论试题与答案(精华合辑版)

江西财经大学概率论试题与答案(精华合辑版)

江 西 财 经 大 学04-05学年第二学期期末考试试题试卷代号:03054A 适用对象:选课课程学时:64课程名称:概率论与数理统计一、填空题(3×5=15)1.设A ,B 互斥,已知P(A)=α,P(B)=β,则=)B A (P α 2.设DX=4,DY=9,D (2X-3Y )=61,则ρXY =1/23.设),,,,,(654321X X X X X X 为来自正态总体)3,0(2N 的样本,则)(3262524321X X XX X X ++++服从/14.设总体X~P(λ)(泊松分布),则Mˆλ= X 矩估计量 5.已知总体X~N(μ,20σ),(X 1,…,X m )是来自X 的样本,其样本修正方差为2*XS 。

当μ未知时,对假设H 0,202σσ=,H 1:202σσ≠进行检验,这时可构造2χ统计量,其拒绝域为 )}1()1({}{22/1222/2->-<=-n n w ααχχχχ 202*2)1(σχSn -=应该给出显著水平二、单项选择题(3×5=15)1.由0,1,2,…,9共10个数字组成7位的电话号码,A=“不含数字8和9”,则 P(A)=( D ) (A )771010P (B )771010C (C )78107 (D )771082.若(X ,Y )~N (μ1,μ2;21σ,22σ;ρ),下列命题错误的是( D ) (A )X~N (μ1,21σ)且Y~N (μ2,22σ) (B )若X ,Y 独立,则X 、Y 不相关 (C )若X 、Y 不相关,则X 、Y 独立(D )f(x ,y)=f X (x)f Y (y)对任意的x ∈R,y ∈R ,成立,其中f X (x), f Y (y)分别是X 与Y 的密度,f(x,y)为(X ,Y)的联合密度3.设X 1,X 2,…X n ,为正态总体(μ,σ2),2*2S ,S ,X 分别为样本均值,样本方差,样本修正方差,则(C )(A )22ES ,X E σ=μ= (B )2*2ES ,X E σ=μ≠ (C )2*2ES ,X E σ=μ=(D )22ES ,X E σ=μ≠4.设随机变量T~t(n),则2T1~(B )分布(A )χ2(n)(B )F(n,1) (C )F(1,n) (D )F(n-1,1) 5.对正态总体的均值μ进行假设检验,如果在显著性水平0.05下,接受原假设H 0:μ=μ0,那么在显著性水平0.01下,下列结论正确的是( A )(A )必接受H 0(B )可能接受H 0也可能拒绝H 0 (C )必拒绝H 0(D )不接受,也不拒绝H 0三、(12分)设有一箱同规格的产品,已知其中21由甲厂生产,41由乙厂生产,41由丙厂生产,又知甲、乙、丙三厂次品率分别为0.02,0.02,0.04。

2008-211江西财经大学概率论与数理统计期末试卷及答案

2008-211江西财经大学概率论与数理统计期末试卷及答案

江西财经大学2009-2010第二学期期末考试试卷试卷代码:03054C 授课课时:64 考试用时:150分钟课程名称:概率论与数理统计 适用对象:2010本科 试卷命题人 徐晔 试卷审核人 何明【本次考试允许带计算器。

做题时,需要查表获得的信息,请在试卷后面附表中查找】一、填空题(将答案写在答题纸的相应位置,不写解答过程。

每小题3分,共15分)1. 设A 和B 是任意两事件,则=))()((B A B A B A _________2. 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>-=303271)(3x x x x F ,则=<<)52(X P _________3. 设随机变量)2,1(~,)1,2(~N Y N X ,且X 与Y 相互独立,则~42+-=Y X Z _________4. 设随机变量X 和Y 的数学期望分别为2和1,方差分别为1和4,而相关系数为5.0,则根据切比雪夫不等式≤≥--}61{Y X P _________5. 设总体X 的密度函数为⎪⎩⎪⎨⎧<<-=其他01)(b x a a b x f ,而n x x x ,,,21 为来自总体X 样本),,,(21b x x x a n << ,则未知参数a 最大似然估计值为_________,未知参数b 最大似然估计值为_________二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸的相应位置。

答案选错或未选者,该题不得分。

每小题3分,共15分)1. 设B A ,为两个随机事件,且1)(,0)(=>B A P B P ,则必有( ))(}{)()(}{)()(}{)()(}{)(B P B A P D A P B A P C B P B A P B A P B A P A ==>>2. 设随机变量()2,~σμN X ,而n X X X ,,,21 为来自总体X 的样本,样本均值和样本修正方差分别为X 和2*S ,1+n X 是对X 的又一独立样本,则统计量11+-=*+n n S X X Y n 是( ) )(A 服从()1,0N 分布 )(B 服从)1(-n t 分布)(C 服从)(2n χ分布 )(D 服从)1,(+n n F 分布 3. 设4321,,,X X X X 为来自总体),(~2σμN X 的样本,0≠=μEX ,02≠=σDX ,从无偏性、有效性考虑总体均值μ的最好的点估计量是( ))(A 432141414141X X X X +++ )(B 212121X X + )(C 432171717372X X X X +++ )(D 321313131X X X ++4.在假设检验中,原假设0H ,备择假设1H ,显著性水平α,则检验的功效是指( ) )(A 为假}接受00|{H H P (B )为假}拒绝00|{H H P)(C 为真}接受00|{H H P )(D 为真}拒绝00|{H H P 5. 设),,,(21n X X X 为来自正态总体),(2σμN 的样本,μ已知,未知参数2σ的置信度α-1的置信区间为( ))(A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--∑∑=-=)()(,)()(221222112n X n X n i i n i i ααχμχμ )(B ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---==∑∑)()(,)()(221122212n X n X n i i n i i ααχμχμ )(C ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----∑∑=-=)1()(,)1()(221222112n X n X n i i n i i ααχμχμ )(D ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----==∑∑)1()(,)1()(221122212n X n X n i i n i i ααχμχμ三、计算题(要求在答题纸上写出主要计算步骤及结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年江西财经大学概率论数学模拟试卷一
092致091
一、填空题(将答案写在答题纸的相应位置,不写解答过程。

每小题3分,共15分)
1.已知P(A)=0.4,P(B)=0.5,=-)(B A P 0.28,则P(AUB)=______________;
2.设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的
数学期望)(2X E =______________;
3.设随机变量X 的数学期望μ=EX ,方差2σ=DX ,则由切比雪夫不等式可以得到
≤≥-}3|{|σμX P _______________;
4. 设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则=-)3(Y X D ___________;
5.设12(,,
,)n X X X 是从正态总体2(,)N μσ中抽取的一个样本, X 是其样本均值,则有
21
[()]n i i D X X =-=∑____________________。

二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸相
应位置处。

答案错选或未选者,该题不得分。

每小题3分,共15分。


1.设B A ,为两个随机事件,且1)(,0)(=>B A P B P ,则必有( )
)(}{)()(}{)()(}{)()
(}{)(B P B A P D A P B A P C B P B A P B A P B A P A ==>>
2. 下列函数中,可作为某一随机变量的分布函数是
A. 21()1F x x =+
B. x x F arctan 121)(π
+= C. =)(x F 1(1),020,0x e x x -⎧->⎪⎨⎪≤⎩
D. ()()x F x f t dt -∞=⎰,其中()1f t dt +∞-∞=⎰ 3. 设离散型随机变量(,)X Y 的联合分布律如下,若Y X ,相互独立,则 (,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)
1/61/91/181/3X Y P αβ
A. 9/1,9/2==βα
B. 9/2,9/1==βα
C. 6/1,6/1==βα
D. 18/1,15/8==βα
4. 对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =⋅,则
A .()()()D XY D X D Y =⋅ B. ()()()D X Y D X D Y +=+
C .X 和Y 独立 D. X 和Y 不独立
5. 在对单个正态总体均值的假设检验中,当总体方差已知时,选用
A. t 检验法
B. u 检验法
C. F 检验法
D. 2χ检验法
三、计算题(要求在答题纸上写出主要计算步骤及结果。

本题10分)
仓库中有十箱同样规格的产品,已知其中有五箱、三箱、二箱依次为甲、乙、丙厂生产的,且甲厂,乙厂、丙厂生产的这种产品的次品率依次为1/10,1/15,1/20.从这十箱产品中任取一件产品,求取得正品的概率。

四、计算题(要求在答题纸上写出主要计算步骤及结果。

本题10分)
设),(Y X 的联合密度为x y x x Ay y x f ≤≤≤≤-=0,10),1(),(,
(1)求系数A (2)X 与Y 是否相互独立?
五、计算题(要求在答题纸上写出主要计算步骤及结果。

本题10分)
一家保险公司接受多种项目的保险,其中有一项为老年人寿保险,假设一年有10000人参加此保险,每人每年需付保险费20元,在此项保险中,每人的死亡率为0.016,死亡后家属可向保险公司领得1000元,试求保险公司在此保险中亏本的概率。

六、计算题(要求在答题纸上写出主要计算步骤及结果。

本题10分)
设12,,,n X X X ⋅⋅⋅为总体X 的一个样本, X 的密度函数1,01()0,
x x f x ββ-⎧<<=⎨⎩其他,0β> 求参数β的最大似然估计量。

七、计算题(要求在答题纸上写出主要计算步骤及结果。

本题10分)
某糖厂用自动打包装糖果,设每包重量服从正态分布)1,(μN ,从包装的糖果中随机地抽测9包,测得每包的重量数据(单位:克)为:99.3,98.7,100.5,101.2,98.3,99.7,99.7,102.1,100.5,试求总体μ的95%的置信区间。

八、证明题(要求在答题纸上写出主要计算步骤及结果。

本题10分)
设A 、B 为两个随机事件,且1)(0<<B P ,证明:若)()(B A P B A P =,则A 与B 相互独立。

附 表
表1 )1,0(N 分布函数值表
表2 )9(~22χχ:975.0}0.19{,95.0}9.16{,05.0}33.3{,025.0}70.2{2222=≤=≤=≤=≤χχχχP P P P
)10(~22χχ:975.0}5.20{,95.0}3.18{,05.0}94.3{,025.0}25.3{2222=≤=≤=≤=≤χχχχP P P P 表3 r.v. )9(~T T :95.0}8331.1{=≤T P ,975.0}2622.2{=≤T P ,995.0}281.2{=≤T P
r.v. )10(~T T :95.0}8125.1{=≤T P ,975.0}2281.2{=≤T P ,995.0}764.2{=≤T P
表4 r.v. ~(5,5),F F { 3.45}0.9,{ 5.05}0.95,{7.P F P F P F ≤=≤=≤= 表5 相关系数检验表 576.0)10(,602.0)9(,632.0)8(05.005.005.0===λλλ
2014年江西财经大学概率论数学模拟试卷一参考答案
一、填空题(将答案写在答题纸的相应位置,不写解答过程。

每小题3分,共15分)
1. 0.78 2. 18.4 3. 1/9 4. 7.4 5.4)1(2σ-n
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸相
应位置处。

答案错选或未选者,该题不得分。

每小题3分,共15分。


1.C 2. B 3. A 4. B 5. B
三、计算题(要求在答题纸上写出主要计算步骤及结果。

本题10分)
A1: 产品来自甲厂; A2:产品来自乙厂; A3:产品来自丙厂; B:取得的是正品 )1092.0)820
191021514103109105)7()20
11(102)1511(103)1011(105)5()
|()()|()()|()()(332211分(分(分分=⨯+⨯+⨯=-⨯+-⨯+-⨯=
++=A B P A P A B P A P A B P A P B P 四、计算题(要求在答题纸上写出主要计算步骤及结果。

本题10分) 2424/1)1(1)1(0
10=⇒=⇒-=⎰⎰A A dy x Ay dx x (5分) ⎩
⎨⎧≤≤+-=⎩⎨⎧≤≤-=其他其他010122412)(010)1(12)()2(22y y y y f x x x x f Y X 不独立 (10分)
五、计算题(要求在答题纸上写出主要计算步骤及结果。

本题10分)
出自于书上146页,第三大题的第6小题
六、计算题(要求在答题纸上写出主要计算步骤及结果。

本题10分)
X
X M -=1ˆ)1(β (5分) ∑-=-=)ln()ln(ˆ)2(21i
n L x n x x x n β (10分) 七、计算题(要求在答题纸上写出主要计算步骤及结果。

本题10分)
造随机变量 )1,0(~/N n
X U σμ-= (4分) 置信区间为 ],[2
121n u X n u X σσαα⋅+⋅--- (7分)
代入计算得 ]65.100,35.99[]65.0100[=± (10分)
八、计算题(要求在答题纸上写出主要计算步骤及结果。

本题10分)
证明 ∵)()(B A P B A P = ∴
-----=-==)()()()()()()()()(B P AB P A P B P AB A P B P B A P B P AB P ∴P (AB )P ()()()()()B P AB P B P A P B -=- ∴P (AB )【P (B )P ()-B 】=P (A )P (B )
∴P (AB )=P (A )P (B ) (这个是这个题目的核心) ∴A 与B 相互独立
2014年6月14、15日。

相关文档
最新文档