基于PLC控制的变频器调速系统

合集下载

《2024年基于PLC的变频调速电梯系统设计》范文

《2024年基于PLC的变频调速电梯系统设计》范文

《基于PLC的变频调速电梯系统设计》篇一一、引言随着城市化进程的加快,电梯已经成为现代建筑中不可或缺的一部分。

为满足现代社会的需求,电梯系统需要具有高可靠性、高效率和灵活性。

本文旨在介绍一种基于PLC(可编程逻辑控制器)的变频调速电梯系统设计,该系统可有效提高电梯的运行效率、安全性和用户体验。

二、系统设计概述本电梯系统设计采用PLC作为核心控制器,通过变频调速技术实现电梯的精确控制。

系统主要由以下几个部分组成:PLC控制器、变频器、电机、编码器、传感器以及人机界面等。

三、硬件设计1. PLC控制器:选用高性能的PLC控制器,具有高可靠性、高速度和高精度的特点,可实现电梯的逻辑控制和运动控制。

2. 变频器:采用变频调速技术,根据电梯的运行需求,实时调整电机的运行速度,实现电梯的平稳启动和停止。

3. 电机:选用高效、低噪音的电梯专用电机,与变频器配合使用,实现电梯的精确控制。

4. 编码器:通过安装在电机上的编码器,实时监测电机的运行状态,为PLC控制器提供反馈信号。

5. 传感器:包括位置传感器、速度传感器等,用于实时监测电梯的运行状态,确保电梯的安全运行。

6. 人机界面:采用触摸屏或按钮等方式,实现用户与电梯系统的交互。

四、软件设计软件设计是本系统的关键部分,主要涉及PLC控制程序的编写和调试。

1. 逻辑控制程序:根据电梯的运行需求,编写逻辑控制程序,实现电梯的召唤、应答、启停、开门关门等基本功能。

2. 运动控制程序:采用PID(比例-积分-微分)控制算法,根据电梯的运行状态和目标位置,实时调整电机的运行速度和方向,实现电梯的平稳运行。

3. 人机交互程序:编写人机交互程序,实现用户与电梯系统的友好交互,包括显示楼层信息、运行状态等。

4. 故障诊断与保护程序:编写故障诊断与保护程序,实时监测电梯的运行状态和传感器信号,一旦发现异常情况,立即采取相应措施,确保电梯的安全运行。

五、系统实现与测试在完成硬件和软件设计后,进行系统实现与测试。

基于PLC的电梯变频调速系统的设计

基于PLC的电梯变频调速系统的设计

基于PLC的电梯变频调速系统的设计摘要:本次设计方案采用了PLC作为控制器,通过VS-616G5变频器调节电梯运行速度,实现对电梯的控制。

通过对电梯控制系统的主电路进行设计并且进行了相关元器件的选型。

确定了I/0分配点并且绘制了 PLC的外部接线图及软件流程图,之后编写了控制程序。

最终通过合理的选型与设计,使电梯运行状况得到改善,达到更理想的控制效果。

关键词:电梯;可编程控制器;变频1 绪论1.1课题的研究背景及意义随着社会经济的进一步快速发展,越来越多的使用高层建筑,人们对电梯的需求也在逐渐增加。

大型购物中心、酒店、住宅等与电梯密不可分。

伴随着电梯数量的逐年增加,对电梯的基本性能也要求进一步的改善,不仅是为了确保其可靠性和安全性,而且要考虑舒适感、美观及其他问题。

首先,电梯的安全性是首要任务,设计人员在设计电梯时必须采取预防措施,以避免事故的发生。

电梯机械零部件和电气部件必须具备高的安全系数和保险系数,为了保证电梯的安全和质量,首先需要在电梯的制造、安装和调试过程中有高度的安全保障。

在国外,专业升降机设施和维修单位的安装、调试和检查必须得到国家的承认,确保电梯运行的可靠性和安全性。

2.1电梯信号控制系统分类及特点比较从系统实现方法来看,电梯信号控制系统经历了继电器控制系统、可编程控制器和微机控制系统等多种形式,随着大规模集成电路和计算机技术的发展,电梯控制系统在不同时期成为主流,并逐步得到改善。

可编程控制器是一种以顺序逻辑控制为基础的电子设备,它是专为工业环境应用而设计的一种数字操作设备。

由于它的诸多优点,目前电梯继电器控制已逐步被PLC控制所取代。

同时,随着交流变频电机调速技术的发展,电梯拖动方式也从直流转向交流变频调速。

所以,PLC控制技术和变频调速技术已经成为当今电梯行业的研究热点。

2.1.1继电器控制方式继电器控制系统优点:(1)所有的自动控制线路功能和相关信号数据处理都必须是通过系统硬件设计来进行实现的,线路直观、易准确理解、易熟练掌握,适合普通专业技术人员和专业熟练工人进行使用;(2)多数都是普通控制电器,价格比较低,替换方便。

《变频器技术及综合应用》基于PLC的变频调速

《变频器技术及综合应用》基于PLC的变频调速

2
P1000
3
*P0701
16
*P0702
16
*P0703
16
*P1001
10
*P1002
25
*P1003
50
说明 用外部端子控制变频器起停
选择固定频率设定值 选择固定频率 选择固定频率 选择固定频率
设置固定频率1/Hz 设置固定频率2/Hz 设置固定频率3/Hz
3.2.2 多档速的
PLC控制
5.功能调试
3.1.2模拟信号的
连接
模拟信号
由于变频器在运行过程中会产生较强的电磁干扰,为了保证PLC不因变频器主电路 的断路及开关器件等产生的噪声而出现故障,在将变频器和PLC等上位机配合使用 时还必须注意: 1.由于PLC本体按照规定的标准和接地条件进行接地。此时应避免和变频器使用 共同的接地线,并在接地时尽可能使两者分开。 2.当电源条件不太好时,应在PLC的电源模块以及输入/输出模块的电源线上接入 噪声滤波器和降低噪声用的变压器等。此外,如有必要在变频器一侧也应采取相应 措施。 3.当把变频器和PLC安装在同一操作柜中时,应尽可能使与变频器和PLC有关的 电线分开。 4.通过使用屏蔽线和双绞线达到提高抗噪声水平的目的。
PLC控制
2.硬件电路设计
通过西门子S7-200 SMART PLC和MM440变频器联机,按控制要求完成对电动机 的控制。若变频器开关量端子参数设置为16,采用“固定频率直接选择+1命令” 控制方式,则PLC需要4个输入点,3个输出点,其I/O分配及与变频器的接口关系 如表3-3所示, PLC与MM440接线如图3-4的示。
3.1.2模拟信号的
连接
模拟信号
PLC的模拟量输出模块输出0~5V(或10)电压信号或0(或4)~20mA电流信号, 可以作为变频器模拟量输入信号。这种控制方式接线简单,但需要选择与变频器输 入阻抗匹配的PLC输出模块,且PLC的模拟量模块价格较为昂贵,此外还需要采取 串联电阻分压使变频器适应PLC的电压信号范围,在连接时还应该将布线分开,保 证主电路一侧的噪声不传至控制电路。 通常变频器也有模拟量输出,信号范围通常为0~5V(或10V)及0(或4)~ 20mA电流。无论哪种情况,都必须注意PLC一侧输入阻抗的大小以保证电路中的 电压和电流不超过电路的容许值,从而提高系统的可靠性和减少误差。

机电系统实验-基于PLC通信方式的变频器开环调速

机电系统实验-基于PLC通信方式的变频器开环调速

实验十六基于PLC通信方式的变频器开环调速
一、实验目的
1.熟悉变频器与PLC之间的通讯方式和接线方法。

2.掌握用PLC控制电机转速的方法。

二、控制要求
本实验中的SB1为启动/停止开关,SB2、SB3分别为加、减频率按钮。

触动一次SB1,使系统处于启动状态,再触动SB2、SB3对频率进行调节,电机的转速随之而改变。

再次触动SB1,电机停止转动。

三、系统接线图
四、实验步骤
(1)正确按接线图接好线后,接通PLC电源和变频器电源。

(2)按下表设置变频器参数
在改其他的参数时,要首先把n10改成0,然后掉电,再开电把变频器打开,再按PU键使变频器PU指示灯亮,然后改其他的参数,然后掉电。

把参数保存入变频器,然后上电,再改n10参数,然后在上电保存参数。

(3)程序写入。

打开GX软件,调出相应的实验参考程序,选择“在线”菜单下的“PLC 写入”选项,进行程序的下载(由PC机进入PLC主机)。

注意:写入程序的对话框中三项只需选中“程序MAIN”即可,写入完毕后PLC主机要断电一次,以确保参数的写入。

下载完毕后将主机切换到"RUN”位置。

(4)触动SB1、SB2、SB3,观察对电机转速的影响。

五、梯形图参考程序
见附页。

基于PLC的变频调速控制系统设计毕业论文.doc

基于PLC的变频调速控制系统设计毕业论文.doc

摘要现代科学是一个以自动化设备控制系统为核心的工业科学。

工业自动化技术对工业生产过程实现测量、控制、优化和决策,使企业实现“好、省、多、快”,提升企业的市场竞争力.因此“国家中长期科技发展规划”已明确规定,工业自动化技术是21世纪现代装备制造业中最重要的科学工业技术之一,而PLC占据主导地位。

PLC是一种专门在工业环境下应用而设计的数字运算操作的电子装置,它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。

本次基于CompactLogix风动模型控制器的设计,主要内容是对PLC进行了研究,通过搭建DeviceNet网络,通过对CompactLogix 可编程逻辑控制器编程,控制PowerFlex变频器来驱动风机模型,风机转动改变模型箱的压强,从而使小球运动并悬浮于某一设定位置。

通过模型中小球的运动趋势来展现了抽象的运动控制,使得能够更直观的看到运动控制的功效.关键词:CompactLogix、变频控制、自动化、风机summaryModern science is a scientific industry as the core of automation equipment control system. Industrial automation technology achieves measurement, control,optimization and decision for industrial producing process. And makes enterprises realize ”good, province, much and fast",and improve enterprises' market competitiveness。

《2024年基于PLC的变频调速电梯系统设计》范文

《2024年基于PLC的变频调速电梯系统设计》范文

《基于PLC的变频调速电梯系统设计》篇一一、引言随着科技的不断发展,电梯的控制系统日益向着数字化、智能化的方向发展。

基于PLC(可编程逻辑控制器)的变频调速电梯系统,是当前电梯行业广泛采用的一种高效、可靠的电梯控制系统。

本文将详细阐述基于PLC的变频调速电梯系统的设计原理、系统构成、工作原理及其应用。

二、系统设计原理基于PLC的变频调速电梯系统设计主要遵循可靠性、可维护性、经济性及适用性等原则。

该系统通过PLC控制变频器,实现对电梯的精确调速,提高了电梯的舒适度和安全性。

1. 精确调速:通过变频器对电机进行精确控制,使电梯运行更加平稳,减少震动和噪音。

2. 节能降耗:根据电梯的实际运行需求,自动调整电机运行速度,实现节能降耗。

3. 保护功能:具备过载、过流、过压等保护功能,确保电梯运行安全。

三、系统构成基于PLC的变频调速电梯系统主要由以下部分构成:1. PLC控制器:作为系统的核心,负责接收电梯的指令信号,控制变频器的输出,实现对电机的精确控制。

2. 变频器:将电源的交流电转换为直流电,再通过逆变器将直流电转换为电机所需的交流电,实现对电机的调速。

3. 电机:作为电梯的驱动装置,负责将电能转换为机械能,驱动电梯的运行。

4. 传感器:包括速度传感器、位置传感器等,负责实时监测电梯的运行状态,为PLC控制器提供反馈信号。

5. 人机界面:用于显示电梯的运行状态、故障信息等,方便用户操作和维修。

四、工作原理基于PLC的变频调速电梯系统的工作原理如下:1. 用户通过按钮或呼叫系统发出指令,请求电梯运行。

2. PLC控制器接收指令信号,根据电梯的实际运行状态和需求,控制变频器的输出,调节电机的运行速度。

3. 电机根据变频器的指令,驱动电梯运行。

4. 传感器实时监测电梯的运行状态和位置,将信息反馈给PLC控制器。

5. PLC控制器根据反馈信号,调整变频器的输出,确保电梯运行的稳定性和舒适性。

6. 如遇故障或异常情况,系统将自动启动保护功能,确保电梯的安全运行。

基于plc的电机变频调速系统设计_毕业设计论文

基于plc的电机变频调速系统设计_毕业设计论文

基于plc的电机变频调速系统设计1 绪论1.1本课题研究目的和意义PLC具有结构简单、编程方便、性能优越、灵活通用、使用方便、可靠性高、抗干扰能力强、寿命长等到一系列优点[2]。

可编程控制器(PLC)的核心微处理器,通过将计算机技术与传统的继电器控制系统有机结合起来,能够实现高度灵活、高可靠性的工业控制。

为了进一步提高设备的自动化程度,越来越多的企业将PLC 技术应用于其工厂设备中。

将原有电机控制系统的技术进行改造,引入电机控制系统的数据自动采集、监控以及变频、组态技术完善并改进电机变频调速机构。

该系统能对电机转速实现精确控制,实用性强,具有一定的推广价值随着电力电子技术以及控制技术的发展,交流变频调速在工业电机拖动领域得到了广泛应用[5]。

交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。

电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。

变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式[3]。

本文对如何利用变频器连接PLC和控制对象,利用软件操作来控制电机的转速,达到远程自动控制进行了讨论[4]。

在工业生产中,电机交流变频调速技术以其优异的调速和起制动性能,高效率、高功率因数和节电效果,被公认为最有发展前途的调速方式。

PLC控制技术在自动控制系统中被普遍采用。

本文构建了一个变频嚣连接PLC和控制对象,利用软件操作来控制电机转速.以达到远程自动控制的系统[8]。

1.2 交流变频调速技术的研究情况及其发展在21世纪电力电子器件的快速发展,使交流变频调速技术优越的性能得到迅速发展,同时控制理论进步,变频调速以其调速精度高、调速控制范围广、回路保护功能完善,响应速度快、节能显著等优点,现在以广泛的用于电力、制造、运输等国民经济领域[6]。

变频调速技术现在被公认为是最理想、最有发展前景的调速方式之一,采用变频器构成变频调速传动系统的主要目的是为了满足提高劳动生产率、改善产品质量、提高设备自动化程度、提高生活质量及改善生活环境等要求以及节约能源、降低生产成本。

《2024年PLC控制电机变频调速试验系统的设计与实现》范文

《2024年PLC控制电机变频调速试验系统的设计与实现》范文

《PLC控制电机变频调速试验系统的设计与实现》篇一一、引言随着工业自动化程度的不断提高,PLC(可编程逻辑控制器)与电机变频调速技术已经成为了现代工业生产中的重要组成部分。

本文旨在设计并实现一套基于PLC控制的电机变频调速试验系统,以实现对电机运行状态的有效监控与精确控制,提高生产效率与产品质量。

二、系统设计1. 硬件设计本系统主要由PLC控制器、变频器、电机、传感器等部分组成。

其中,PLC控制器负责整个系统的控制与协调,变频器用于调节电机的运行速度,电机则作为执行机构实现具体的运动,传感器则用于实时监测电机的运行状态。

(1)PLC控制器:选用高性能的PLC控制器,具备强大的逻辑控制与数据处理能力。

(2)变频器:选用适合电机类型与功率的变频器,具备高精度、高效率的调速性能。

(3)电机:根据实际需求选择合适的电机类型与功率。

(4)传感器:选用能够实时监测电机运行状态的高精度传感器。

2. 软件设计软件设计主要包括PLC控制程序的编写与调试。

首先,根据系统需求,设计合理的控制逻辑;其次,利用编程软件编写控制程序;最后,通过调试与测试,确保程序能够正常运行并实现预期功能。

(1)控制逻辑设计:根据电机运行的需求,设计合理的控制逻辑,包括启动、停止、调速等功能。

(2)编程软件选择:选用适合PLC控制的编程软件,如梯形图、结构化控制语言等。

(3)程序调试与测试:对编写好的程序进行调试与测试,确保程序能够正常运行并实现预期功能。

三、系统实现1. 连接硬件设备根据硬件设计,将PLC控制器、变频器、电机、传感器等设备进行连接。

确保各部分之间的连接牢固、可靠。

2. 编写与调试程序根据软件设计,编写PLC控制程序。

在编写过程中,需要充分考虑系统的实时性、稳定性以及可扩展性。

编写完成后,通过调试与测试,确保程序能够正常运行并实现预期功能。

3. 系统测试与优化对系统进行全面的测试,包括启动、停止、调速等功能。

根据测试结果,对系统进行优化与调整,提高系统的性能与稳定性。

基于PLC的变频器多段速调速系统设计_毕业设计 精品

基于PLC的变频器多段速调速系统设计_毕业设计 精品

陕西工业职业技术学院基于PLC的变频器多段速调速系统设计专业:机电一体化班级:机电1105班姓名:冯志超指导教师:司老师目录1 绪论 (1)2课题的背景 (1)背景分析......................................................................................................... 错误!未定义书签。

3 PLC 和变频器的介绍 (5)4 PLC 的结构及特点 (5)5 PLC 的工作原理 (7)6 PLC 的应用 (7)7 PLC 发展趋势 (8)8 PLC 控制变频器带电机多段速运行 (8)9变频器的介绍 (8)10变频器的控制方式 (9)11变频器的应用 (9)12 PLC 与变频器的组合 (10)13变频器和PLC 进行配合时所需注意的事项 (10)14变频调速系统 (11)15变频调速的基本控制方式 (11)16系统的控制要求..................................................................................... 1错误!未定义书签。

17方案的确定............................................................................................. 1错误!未定义书签。

18 S7-200 PLC ................................................................................................ 错误!未定义书签。

19MicroMaster420 变频器 (13)20外部电路设计 (14)21 变频开环调速 (14)22.按项目控制要求设计PLC和变频器 (15)23 PLC程序设计 (15)24变频器参数设置 (16)25任务拓展 (17)26项目实现 (17)附录 (20)结论 (23)致谢 (24)参考文献 (25)绪论课题的背景最先制成电动机的人是德国的雅可比,在两个u 型电磁铁中间,装一六臂轮,每臂带两根棒型磁铁。

完整版)基于PLC控制的变频器调速系统

完整版)基于PLC控制的变频器调速系统

完整版)基于PLC控制的变频器调速系统目录第一章系统的功能设计分析和总体思路1.1 概述本文旨在对系统的功能设计和总体思路进行分析和讨论,以确保系统的高效运行和稳定性。

1.2 系统功能设计分析在系统功能设计分析中,我们需要考虑系统的需求和目标,以及用户的使用惯和需求。

在此基础上,我们可以确定系统的主要功能和模块,并对其进行详细的设计和实现。

1.3 系统设计的总体思路系统设计的总体思路包括系统的整体架构设计、模块之间的关系和数据流程,以及系统的系统性能和稳定性等方面。

在设计过程中,我们需要充分考虑系统的可维护性和可扩展性,并采用合适的技术和工具来实现系统的设计。

第二章 PLC和变频器的型号选择2.1 PLC的型号选择在PLC的型号选择中,我们需要考虑系统的需求和目标,以及PLC的性能和稳定性等方面。

在此基础上,我们可以选择合适的PLC型号,并进行详细的参数设置和调试。

2.2 变频器的选择和参数设置在变频器的选择和参数设置中,我们需要考虑系统的负载和功率需求,以及变频器的性能和稳定性等方面。

在此基础上,我们可以选择合适的变频器型号,并进行详细的参数设置和调试,以确保系统的高效运行和稳定性。

第一章系统功能设计分析和总体思路1.1 概述在工业自动化生产中,调速系统的快速性、稳定性和动态性能是基本要求。

调速系统在国防、汽车、冶金、机械、石油等工业中具有举足轻重的作用。

然而,调速控制系统的工艺过程复杂多变,具有不确定性,因此需要更为先进的控制技术和控制理论。

1.2 可编程控制器(PLC)可编程控制器(PLC)是一种工业控制计算机,它是继续计算机、自动控制技术和通信技术为一体的新型自动装置。

PLC具有抗干扰能力强、价格便宜、可靠性高、编程简单易学等特点,因此在工业领域中被广泛使用。

尽管在控制领域中逐步采用了电子计算机这个先进技术工具,特别是石油化工企业普遍采用了分散控制系统(DCS),但在控制策略方面,常规的PID控制仍然占据主导地位。

基于PLC的变频调速恒压供水系统设计与实现

基于PLC的变频调速恒压供水系统设计与实现

基于PLC的变频调速恒压供水系统设计与实现一、本文概述随着工业自动化的发展,变频调速技术在供水系统中的应用越来越广泛。

基于PLC(可编程逻辑控制器)的变频调速恒压供水系统,以其高效、稳定、节能的特点,成为当前供水系统设计的重要趋势。

本文旨在探讨基于PLC的变频调速恒压供水系统的设计与实现方法,以期为相关领域的工程应用提供有益的参考。

文章首先介绍了供水系统的基本构成和功能需求,包括恒压供水的重要性以及变频调速技术在供水系统中的应用优势。

随后,详细阐述了基于PLC的变频调速恒压供水系统的总体设计方案,包括硬件选型、软件编程、系统控制策略等方面。

在此基础上,文章重点探讨了系统实现过程中的关键技术问题,如PLC编程实现、变频器的选择与配置、压力传感器信号的采集与处理等。

通过本文的研究,期望能够为供水系统的设计与实现提供一种有效、可靠的解决方案,同时推动变频调速技术在供水领域的应用和发展。

二、系统需求分析和设计目标随着现代工业技术的快速发展,供水系统的稳定性和效率成为了评价一个城市或企业基础设施水平的重要指标。

传统的供水系统往往存在能耗高、调节性差、压力不稳定等问题,无法满足现代供水系统的要求。

为了解决这些问题,本文提出了一种基于PLC的变频调速恒压供水系统设计方案。

稳定性需求:供水系统需要保持长时间的稳定运行,确保供水压力的稳定性,避免因压力波动对供水质量造成影响。

节能性需求:传统的供水系统往往存在能耗高的问题,新的供水系统需要采用先进的控制技术,降低能耗,提高能源利用效率。

调节性需求:供水系统需要能够根据实际需求,自动调节供水流量和压力,以满足不同时段、不同区域的供水需求。

实现供水系统的恒压供水:通过PLC控制系统,实时监测供水压力,根据压力变化自动调节变频器的输出频率,从而控制水泵的转速,实现恒压供水。

提高供水系统的稳定性:采用先进的控制算法,确保供水系统在各种工况下都能保持稳定的运行状态,避免因压力波动对供水质量造成影响。

【大学本科毕业设计】基于PLC的变频调速恒压供水系统-----自动化等专业3

【大学本科毕业设计】基于PLC的变频调速恒压供水系统-----自动化等专业3

摘要本论文根据中国城市小区的供水要求,设计了一套基于PLC的变频调速恒压供水系统,并利用组态软件开发良好的运行管理界面。

变频恒压供水系统由可编程控制器、变频器、水泵机组、压力传感器、工控机等构成。

本系统包含三台水泵电机,它们组成变频循环运行方式。

采用变频器实现对三相水泵电机的软启动和变频调速,运行切换采用“先启先停”的原则。

压力传感器检测当前水压信号,送入PLC与设定值比较后进行PID运算,从而控制变频器的输出电压和频率,进而改变水泵电机的转速来改变供水量,最终保持管网压力稳定在设定值附近。

通过工控机与PLC的连接,采用组态软件完成系统监控,实现了运行状态动态显示及数据、报警的查询。

关键词:变频调速,恒压供水,PLC,组态软1 绪论1.1 课题的提出水和电是人类生活、生产中不可缺少的重要物质,在节水节能已成为时代特征的现实条件下,我们这个水资源和电能源短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度较低,而随着我国社会经济的发展,人们生活水平的不断提高,以及住房制度改革的不断深入,城市中各类小区建设发展十分迅速,同时也对小区的基础设施建设提出了更高的要求。

小区供水系统的建设是其中的一个重要方面,供水的可靠性、稳定性、经济性直接影响到小区住户的正常工作和生活,也直接体现了小区物业管理水平的高低。

传统的小区供水方式有:恒速泵加压供水、气压罐供水、水塔高位水箱供水、液力耦合器和电池滑差离合器调速的供水方式、单片机变频调速供水系统等方式,其优、缺点如下[1]:(1) 恒速泵加压供水方式无法对供水管网的压力做出及时的反应,水泵的增减都依赖人工进行手工操作,自动化程度低,而且为保证供水,机组常处于满负荷运行,不但效率低、耗电量大,而且在用水量较少时,管网长期处于超压运行状态,爆损现象严重,电机硬起动易产生水锤效应,破坏性大,目前较少采用。

(2) 气压罐供水具有体积小、技术简单、不受高度限制等特点,但此方式调节量小、水泵电机为硬起动且起动频繁,对电器设备要求较高、系统维护工作量大,而且为减少水泵起动次数,停泵压力往往比较高,致使水泵在低效段工作,而出水压力无谓的增高,也使浪费加大,从而限制了其发展。

基于plc控制交流变频调速电梯系统设计

基于plc控制交流变频调速电梯系统设计

基于plc控制交流变频调速电梯系统设计摘要:电梯是现代高层建筑中必不可少的交通工具,而变频调速器在电梯系统中的应用又使得电梯的运行效率更高,乘坐舒适度更佳。

本文采用基于PLC控制的变频调速电梯系统,详细介绍其设计和实现过程。

系统采用PLC作为控制核心,利用S7-200 PLC的语言和软件设计工具,建立电梯的控制程序和变频调速控制程序,并且搭建了变频调速器和电梯连接的硬件系统,进行了实验验证。

实验结果表明,该电梯系统具有良好的性能和稳定性,实现了高效、安全、舒适的运行。

关键词:PLC,变频调速,电梯系统,控制程序,硬件系统Abstract:Elevators are essential transportation tools in modern high-rise buildings, and the application of variablefrequency drives in elevator systems makes elevator operation more efficient and ride comfort better. This paper describes the design and implementation process of a variable frequency drive elevator system based on PLC control. The system uses PLC as the control core, uses the language and softwaredesign tools of S7-200 PLC to establish the control programof the elevator and the variable frequency drive control program, and builds a hardware system connecting the variable frequency drive and the elevator for experimentalverification. The experimental results show that the elevator system has good performance and stability, and achieves efficient, safe and comfortable operation.Keywords: PLC, Variable frequency drive, Elevator system, Control program, Hardware system1. 引言随着现代建筑的高度和数量不断增加,电梯的使用也越来越普遍。

基于PLC与变频器的交流电机调速控制系统

基于PLC与变频器的交流电机调速控制系统

基于PLC与变频器的交流电机调速控制系统摘要:变频调速系统中,变频控制与PLC的应用是十分关键的。

所以,要根据现场实际情况,对变频器和PLC 进行优化控制,以确保二者都能实现真正的自动控制,希望能在一定程度上减少交流电动机调速系统的能耗,本论文以PLC和变频调速为基础,对我国电动机行业的发展起到了积极作用。

关键词:PLC;变频器;交流电机采用变频调速器可以有效地提高工业的自动化程度和提高工作的工作效率。

为此,设计者必须加强对变频调速的研究,深入理解其工作机理,并利用其自身的制动、调速、启动特性,并运用组合程序Wincc进行控制,确保调速的稳定。

1、PLC概述PLC是一种常用的计算机控制软件,它所使用的内存都是可编程的,具有储存程式的功能,可执行顺序控制、计数及逻辑运算等有关运算,并以模拟量、数字等形式进行资料的输出与输入,对各类机器的运作进行高效控制。

PLC供电在电力供应中占有举足轻重的地位。

PLC的控制中心是微机,该软件受PLC软件编程的支配,具有从编程软件输入的程序和资料的接收和储存,并可以进行故障诊断。

此外,PLC的相关设备能够适应用户对变频调速器的要求,提高PLC的抗干扰性和稳定性。

另外,通过PLC配线与程序的设计可以达到某种程度上的同步,既可以大大减少研发周期,又可以大大地提升交流电动机的工作性能。

2、变频器概述本工程在进行交流电动机的控制时,十分注重变频器的应用,并将它应用于电工、电力、信息和控制等方面。

另外,采用变频技术可以有效地解决传统的DC电机自身的抽水問题,确保了交流电机的优越性。

由于其自身坚固耐用,结构简单,采用变频技术可有效地克服交流电机的速度问题。

2.1变频器在交流电机调速控制系统节能结合方面的运用通过对变频调速器的详细研究,可以看出它是一种典型的泵、风机,它可以在一定程度上减少电力的损耗,通常可以节省20%~60%的电力,再加上风机和泵的负荷,它的功耗与速度成正比,既可以达到节能的目的,又可以改善整个系统的性能。

基于PLC模拟量的变频器闭环调速控制

基于PLC模拟量的变频器闭环调速控制

矿井通风系统------基于PLC模拟量的变频器闭环调速控制摘要随着电力电子技术及控制技术的发展,使得交流变频调速在工业电机拖动领域得到了广泛应用。

由于PLC的功能强大、容易使用、高可靠性,常常被用来作为现场现场数据的采集和设备的控制。

本文介绍了 PLC控制变频调速系统在矿井局部通风机中的应用。

以瓦斯浓度为主控参数,通过A/D采样模块采集瓦斯浓度,送入PLC与设定值进行运算,输出再经过D/A转换控制变频器 ,来调节局部通风机电机转速实现最优控制 ,达到安全监控与节能目的。

关键字:PLC;变频器;PID控制;局部通风机;A/D转换;D/A转换AbstractWith the power electronics and control technology, making the AC variable speed motor drive in the industry has been widely applied. Since the PLC powerful, easy to use, high reliability, are often used as a field-site data collection and device control.This article describes the frequency control system PLC control local fan in the mine in the application. To gas concentration as the main control parameters through the PLC control frequency, to adjust the fan motor speed to achieve optimal local control, to security monitoring and energy conservation purposes.Keyword:PLC; inverter; PID control; local fan;A / D converter; D / A converter目录0中英文摘要 (1)1引言 (3)1.1 PLC概述 (3)1.2设计目的 (3)1.3设计内容 (3)1.4设计实现目标 (3)2系统总体方案设计 (4)2.1系统硬件配置及组成原理 (4)2.2系统接线图设计 (6)3控制系统设计 (7)3.1控制程序流程图设计 (7)3.2控制程序设计思路 (7)4系统调试及结果分析 (8)4.1系统调试步骤 (8)4.2遇到的问题以及解决方案 (9)4.3结果分析 (9)5结束语 (9)6参考文献 (10)1 引言1.1 PLC概述可编程控制器(PLC)是以计算机技术为核心的通用自动化控制装置,它的功能性强,可靠性高,编程简单,使用方便,体积小巧,近年来在工业生产中得到广泛的应用,被誉为当代工业自动化主要支柱之一。

毕业设计(论文)-基于S7-200PLC的变频调速电梯控制系统设计

毕业设计(论文)-基于S7-200PLC的变频调速电梯控制系统设计

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊安徽工业大学毕业设计(论文)任务书课题名称基于S7-200PLC的变频调速电梯控制系统设计学院电气与信息工程学院专业班级自动化101班姓名学号毕业设计(论文)的主要内容及要求:根据电梯的设计要求和性能指标,确定PLC的控制任务,完成PLC的硬件设计、I/O地址分配、变频器的参数设置,绘制出PLC、曳引系统、显示系统、旋转编码器、门机电机等模块之间的硬件连接、系统框图。

在此基础上,分模块画出程序流程图,设计PLC的梯形图。

要求具备以下能力:(1)熟练使用STEP7编程软件(2)查阅相关文献了解电梯变频控制系统的组成及原理(3)基于 S7-200 PLC 和 FR-A540 通用变频器的实现六层电梯的控制,并运用与之相配的STEP7编程软件,通过STL和LAD两种编程语言编制控制程序。

指导教师签字:┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊摘要电梯是高层建筑不可缺少的垂直方向的交通运输工具。

由于传统的电梯运行逻辑控制系统采用的是继电器逻辑控制线路。

采用这种控制线路,存在易出故障、维护不便、运行寿命较短、占用空间大等缺点。

从技术发展来看,这种系统将逐渐被淘汰。

随着电梯拖动技术、控制技术的快速发展,电梯已从直流电动机拖动到交流单速、交流双速电动机驱动,到交流调压调速控制,发展到交流调压调频技术控制,其逻辑控制也由PLC代替原来的继电器控制,使得电梯运行的可靠性、安全性、舒适感、平层精度、运行速度、节能降耗、降低噪音等方面得到了极大的发展。

新制造的电梯都采用了对电动机实现线性调速的调压调频技术,由于vwF电梯采用微机控制,有完善的自检测、自诊断、自保护功能,因而十分安全可靠。

在研究电梯基本结构的基础上,阐述了电梯的拖动原理和控制原理,重点分析了电梯改造中如何用变频器和PLc来完善电梯控制系统,研究并提出了基于PLc和变频器的电梯控制系统的实现方案,利用FR-A540型变频器可编制速度曲线的特点为电梯舒适度的提高,提供了技术支持。

基于PLC控制的变频调速通风机系统

基于PLC控制的变频调速通风机系统

目前,国内外对于局部通风机变频调速系统的研究已经取得了一定的成果。 在国外,一些发达国家已经将变频调速技术广泛应用于局部通风机的控制系统中, 实现了风量的精确控制和节能降耗。在国内,虽然也有一些研究机构和企业在进 行局部通风机变频调速系统的研究,但总体来说还处于比较初级的阶段,存在一 些不足之处。
5、完成软件编程和调试,确保 系统软件的稳定性和可靠性。
6、设计合适的人机界面,方便操作人员进行实时监控和操作,同时提高系 统的可维护性。
系统优化
为提高基于PLC控制的变频调速通风机系统的效率和稳定性,可采取以下优 化措施:
1、优化控制算法:采用更先进的控制算法,例如模糊控制、神经网络控制 等,以提高系统的响应速度和鲁棒性。
在硬件设计方面,PLC控制器选用西门子S7-200系列小型PLC,具有可靠性高、 体积小、价格适中等优点。传感器主要包括风量传感器和压力传感器,用于实时 监测风量和压力的变化。局部通风机选用具有高性能、低噪音、高稳定性的型号。
在软件设计方面,采用PID控制算法实现风量的精确控制。具体来说,将实 际风量和设定风量进行比较,根据比较结果调整变频器的输出频率,使实际风量 逐步逼近设定风量。为了提高控制精度和稳定性,还引入了反馈控制环节,将系 统的输出信号反馈给PLC控制器进行比较运算,以实现对系统的精确控制。此外, 还可以根据实际需要设置不同的控制模式,如手动模式、自动模式等。 5.实验 结果与分析
2、软件部分:
软件部分是PLC控制变频调速通风机系统的核心,它直接决定了系统的稳定 性和可靠性。软件部分主要包括初始化程序、主程序、子程序以及故障处理程序 等。其中,初始化程序负责系统上电后的参数设置和设备检查;主程序负责实现 系统的基本功能;子程序则对主程序进行补充,处理一些复杂任务;故障处理程 序则负责处理系统故障,保障系统的安全运行。

基于PLC控制的交流变频调速系统的设计

基于PLC控制的交流变频调速系统的设计

基于PLC控制的交流变频调速系统的设计1. 引言随着工业自动化的快速发展,交流变频调速系统在工业生产中的应用越来越广泛。

PLC(可编程逻辑控制器)作为控制系统的核心,具有可编程性强、可靠性高、适应性强等优点,成为交流变频调速系统中常用的控制器。

本文将围绕基于PLC控制的交流变频调速系统的设计展开研究,通过对系统结构、工作原理、关键技术等方面进行深入分析和研究,旨在为相关领域的研究和应用提供有价值的参考。

2. 交流变频调速系统概述2.1 交流变频调速原理2.1.1交流变频调速原理概述交流变频调速系统主要是利用电力电子技术,将工频电源转换为频率可调的三相交流电源,从而实现对电机转速的调节。

其基本原理是通过调整电源频率,改变电机的同步转速,从而实现调速。

交流变频调速系统具有调速范围广、调速性能优异、节能效果显著等优点。

2.2交流变频调速系统的分类根据控制方式的不同,交流变频调速系统可分为电压型变频器和电流型变频器。

电压型变频器采用电压调制方式,通过调整输出电压的大小来实现电机转速的调节;电流型变频器则采用电流调制方式,通过调整输出电流的大小来实现电机转速的调节。

2.3交流变频调速系统的主要组成部分交流变频调速系统主要由以下几部分组成:变频器、电机、控制器(如PLC)、传感器(如速度传感器)等。

其中,变频器是系统的核心部分,负责实现电源频率的调节;电机作为系统的执行元件,负责将电能转换为机械能;控制器(如PLC)负责对整个系统进行控制和调节;传感器(如速度传感器)负责实时检测电机转速,并将检测信号反馈给控制器,以便进行实时调节。

3.基于PLC控制的交流变频调速系统设计3.1系统结构设计基于PLC控制的交流变频调速系统结构如图1所示。

系统主要包括以下几个部分:1) PLC控制器:作为系统的核心,负责对整个系统进行控制和调节。

2)变频器:根据PLC控制器的指令,调整电源频率,实现电机转速的调节。

3)电机:将电能转换为机械能,完成各种工作任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录目录 .............................................................................................................................................. 第一章系统的功能设计分析和总体思路.......................................................................................1.1 概述 ................................................................................................. 错误!未定义书签。

1.2 系统功能设计分析 ...........................................................................................................1.3 系统设计的总体思路 ....................................................................................................... 第二章PLC和变频器的型号选择 (5)2.1PLC的型号选择............................................................................................................2.2变频器的选择和参数设置 ............................................................................................2.2.1 变频器的选择 ..........................................................................................................2.2.2 变频调速原理 ........................................................................................................2.2.3 变频器的工作原理 ................................................................................................2.2.4 变频器的快速设置 ................................................................................................ 第三章硬件设计以及PLC编程 ...............................................................................................3.1开环控制设计及PLC编程 ...........................................................................................3.1.1 硬件设计 ..................................................................................................................3.1.2 PLC软件编程 ........................................................................................................3.2 闭环控制设计 ...................................................................................................................3.2.1 硬件和速度反馈设计 ............................................................................................3.2.3闭环的程序设计以及源程序............................................................................. 第四章实验调试和数据分析 ......................................................................................................4.1 PID 参数整定...................................................................................................................4.2 运行结果 (25)第五章总结和体会 .................................................................................................................... 第六章附录 ................................................................................................................................6.1 变频器内部原理框图 ....................................................................................................... 第七章参考文献 ........................................................................................................................第一章系统的功能设计分析和总体思路1.1 概述调速系统快速性、稳定性、动态性能好是工业自动化生产中基本要求。

在科学研究和生产实践的诸多领域中调速系统占有着极为重要的地位特别是在国防、汽车、冶金、机械、石油等工业中,具有举足轻重的作用。

调速控制系统的工艺过程复杂多变,具有不确定性,因此对系统要求更为先进的控制技术和控制理论。

可编程控制器(PLC)可编程控制器是一种工业控制计算机,是继续计算机、自动控制技术和通信技术为一体的新型自动装置。

它具有抗干扰能力强,价格便宜,可靠性强,编程简朴,易学易用等特点,在工业领域中深受工程操作人员的喜欢,因此PLC已在工业控制的各个领域中被广泛地使用。

目前在控制领域中,虽然逐步采用了电子计算机这个先进技术工具,特别是石油化工企业普遍采用了分散控制系统(DCS)。

但就其控制策略而言,占统治地位的仍旧是常规的PID控制。

PID结构简朴、稳定性好、工作可靠、使用中不必弄清系统的数学模型。

PID的使用已经有60多年了,有人称赞它是控制领域的常青树。

变频调速已被公认为是最理想、最有发展前景的调速方式之一,采用变频器构成变频调速传动系统的主要目的,一是为了满足提高劳动生产率、改善产品质量、提高设备自动化程度、提高生活质量及改善生活环境等要求;二是为了节约能源、降低生产成本。

用户根据自己的实际工艺要求和运用场合选择不同类型的变频器。

组态软件是指一些数据采集与过程控制的专用软件,它们是在自动控制系统监控层一级的软件平台和开发环境,使用灵活的组态方式,为用户提供快速构建工业自动控制系统监控功能的、通用层次的软件工具。

在组态概念出现之前,要实现某一任务,都是通过编写程序来实现的。

编写程序不但工作量大、周期长,而且轻易犯错误,不能保证工期。

组态软件的出现,解决了这个问题。

对于过去需要几个月的工作,通过组态几天就可以完成。

组态王是海内一家较有影响力的组态软件开发公司开发的,组态王具有流程画面,过程数据记录,趋势曲线,报警窗口,生产报表等功能,已经在多个领域被应用。

1.2 系统功能设计分析随着电力电子技术以及控制技术的发展,交流变频调速在工业电机拖动领域得到了广泛应用;可编程控制器PLC作为替代继电器的新型控制装置,简单可靠,操作方便、通用灵活、体积小、使用寿命长且功能强大、容易使用、可靠性高,常常被用于现场数据采集和设备的控制;组态软件技术作为用户可定制功能的软件开发平台工具,可实现显示电机转速,可实现远程调速控制,在PC机上可开发友好人机界面,通过PLC可以对自动化设备进行“智能”控制。

在此,本次设计就是基于PLC的变频器调速系统。

将现在应用最广泛的PLC和变频器综合起来主要功能实现了变压变频调速。

电机的正反转,加减速以及快速制动等。

因此,该系统必须具备以下三个主体部分:控制运算部分、执行和反馈部分。

控制运算主要由PLC和变频器来完成;执行元件为变频器和电机;反馈部分主要为速度反馈。

1.3 系统设计的总体思路系统主要由三个部分构成,即可编程逻辑控制器件PLC、变频器和电机。

首先通过设置给定输入给PLC,再通过PLC控制变频器,再经由变频器来控制电机,随后将电机的转速反馈给PLC,经比较后输出给变频器从而实现无静差调速。

具体如下图所示:在PLC系统设计时,首先应确定控制方案,下一步工作就是PLC工程设计选型。

工艺流程的特点和应用要求是设计选型的主要依据。

PLC及有关设备应是集成的、标准的,按照易于与工业控制系统形成一个整体,易于扩充其功能的原则选型所选用PLC应是在相关工业领域有投运业绩、成熟可靠的系统,PLC 的系统硬件、软件配置及功能应与装置规模和控制要求相适应。

熟悉可编程序控制器、功能表图及有关的编程语言有利于缩短编程时间,因此,工程设计选型和估算时,应详细分析工艺过程的特点、控制要求,明确控制任务和范围确定所需的操作和动作,然后根据控制要求,估算输入输出点数、所需存储器容量、确定PLC的功能、外部设备特性等,最后选择有较高性能价格比的PLC和设计相应的控制系统。

相关文档
最新文档