语音信号滤波去噪——使用双线性变换法设...综述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

语音信号滤波去噪

——使用双线性变换法设计的并联型切比雪夫I型滤波器学生姓名:欧晓燕指导老师:吴志敏

摘要本课程设计是采用双线性变换法设计的切比雪夫I型滤波器对双音频信号滤波去噪。在网上下载一段双音频信号,在MATLAB集成环境下,首先用wavread函数求出双音频信号的相关参数,对双音频信号进行读取和加噪;然后再给定相应技术指标,设计一个满足指标的切比雪夫I型滤波器,对该双音频信号进行滤波去噪处理,并绘制对比图,比较滤波前后的波形和频谱并进行分析;最后通过回放双音频信号,对比滤波前后的信号变换。本课程设计成功的对双音频信号进行滤波去噪,初步完成了设计指标。

关键词双音频信号;滤波设计;MATLAB;切比雪夫I型滤波器

1 引言

用麦克风采集一段8000Hz,8k的双音频信号,绘制波形并观察其频谱,给定通带截止频率为2000Hz,阻带截止频率为2150Hz,通带波纹为1dB,阻带波纹为35dB,用双线性变换法设计的一个满足上述指标的切比雪夫I型IIR滤波器,对该双音频信号进行滤波去噪处理。

1.1 课程设计目的

《数字信号处理》课程设计是在学生完成数字信号处理和MATLAB的结合后的基本实验以后开设的。本课程设计的目的是为了让学生综合数字信号处理和MATLAB并实现一个较为完整的小型滤波系统。这一点与验证性的基本实验有本质性的区别。开设课程设计环节的主要目的是通过系统设计、软件仿真、程序安排与调试、写实习报告等步骤,使学生初步掌握工程设计的具体步骤和方法,提高分析问题和解决问题的能力,提高实际应用水平。

1.2 课程设计的要求

(1)学会MATLAB 的使用,掌握MATLAB 的程序设计方法;

(2)滤波器指标必须符合工程实际,根据模拟滤波器的性能指标,确定数字滤波器指标;(3)采用双线性变换法,设计满足上述性能指标要求的ChebyshevI型数字低通滤波器;(4)设计完后应检查其频率响应曲线是否满足指标;

(5)处理结果和分析结论应该一致,而且应符合理论;

(6)独立完成课程设计并按要求编写课程设计报告书;

1.3 设计平台

本次课程设计是在MATLAB软件平台上进行的。MATLAB是矩阵实验室(MATRIX LABORATORY)的简称,是美国MATHWORKS公司推出的具有强大数值分析、矩阵运算、图形绘制和数据处理等功能的软件,现已广泛应用到教学、科研、工程设计等领域[2]。随着MATLAB软件信号处理工具箱的推出,MATLAB已成为信息处理,特别是数字信号处理DSP应用中分析和设计的主要工具。就MATLAB信号处理中的滤波器设计而言,在很大程度上能快速有效地实现滤波器的分析、设计及仿真,大大节约了设计时间,相对传统设计而言,简化了滤波器设计的难度。

2 设计原理

用麦克风采集一段双音频信号,绘制波形并观察其频谱,给定相应技术指标,用双线性变换法设计的切比雪夫I型IIR滤波器,对该双音频信号进行滤波去噪处理,比较滤波前后的波形和频谱并进行分析。

2.1 IIR滤波器

从离散时间来看,若系统的单位抽样(冲激)响应延伸到无穷长,称之为“无限长单位冲激响应系统”,简称为IIR系统。

无限长单位冲激响应(IIR)滤波器有以下几个特点:

(1)系统的单位冲激响应h(n)是无限长;

(2)系统函数H(z)在有限z平面(0

(3)结构上存在着输出到输入的反馈,也就是结构上是递归型的。

IIR滤波器采用递归型结构,即结构上带有反馈环路。同一种系统函数H(z)可以有多种不同的结构,基本网络结构有直接Ⅰ型、直接Ⅱ型、级联型、并联型四种,都具有反馈回路。同时,IIR数字滤波器在设计上可以借助成熟的模拟滤波器的成果,巴特沃斯(Butterworth)滤波器、切比雪夫(Chebyshev)滤波器、椭圆(Cauer)滤波器、贝塞尔(Bessel)滤波器等,这些典型的滤波器各有特点。有现成的设计数据或图表可查,在设计一个IIR数字滤波器时,我们根据指标先写出模拟滤波器的公式,然后通过一定的变换,将模拟滤波器的公式转换成数字滤波器的公式。

2.2 切比雪夫I型滤器

切比雪夫滤波器(又译车比雪夫滤波器)是在通带或阻带上频率响应幅度等波纹波动的滤波器。在通带波动的为“I型切比雪夫滤波器”,在阻带波动的为“II型切比雪夫滤波器”。切比雪夫滤波器在过渡带比巴特沃斯滤波器的衰减快,但频率响应的幅频特性不如后者平坦。切比雪夫滤波器和理想滤波器的频率响应曲线之间的误差最小,但是在通频带内存在幅度波动。

这种滤波器来自切比雪夫多项式,因此得名,用以纪念俄罗斯数学家巴夫尼提·列波维其·切比雪夫

巴特沃兹滤波器在通带内幅度特性是单调下降的,如果阶次一定,则在靠近截止

处,幅度下降很多,或者说,为了使通带内的衰减足够小,需要的阶次N很高,为了克服

这一缺点,采用切比雪夫多项式来逼近所希望的。切比雪夫滤波器的在通带范围内是等幅起伏的,所以在同样的通常内衰减要求下,其阶数较巴特沃兹滤波器要小。切比雪夫滤波器的振幅平方函数为

(2-1)

式中

Ωc—有效通带截止频率

—与通带波纹有关的参量, 大,波纹大 0<

<1

V N (x )—N 阶切比雪夫多项式

(2-2)

|x|≤1时,|V N (x)|≤1 |x|>1时, |x|↗, V N (x)↗

切比雪夫滤波器的振幅平方特性如图所示,通带内的变化范围为

1(max) →

2

11

ε+

(min)

时,|x|>1,随

↗,

→0 (迅速趋于零)

=0时,

(2-3)

N 为偶数,cos 2(

)=1,得到min ,

, (2-4)

N 为奇数,cos 2(

,得到max ,

(2-5)

切比雪夫滤波器的振幅平方特性如图2.1所示。

相关文档
最新文档