车牌定位
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本人的毕设收集资料
a.一些算法
1.基于纹理特征的车牌定位法
车辆图像随拍摄环境的变化而不同,然而车辆牌照具有不因外部条件变化而改变的特征。车牌内有多个基本成水平排列的字符,字符和牌照底在灰度值上存在跳变,因而车牌这个矩形区域(包括边缘)有丰富的边缘存在,呈现出规则的纹理特征。在传统的基于灰度分割技术上,这些特征为车牌定位研究提供了切实可行的依据。基于纹理分析的方法利用车牌区域内字符纹理丰富的特征定位车牌,它对于光照偏弱、偏强、不均匀性、牌照倾斜和变形等情况不敏感。但该方法应用于背景复杂的图像时,容易把一些纹理分布较丰富的非车牌区域定位进来,产生包含车牌在内的车牌候选区域,这是纹理分析方法的缺陷。
2.基于神经网络的定位算法
利用神经网络来定位车牌是一类较为常见的方法。本算法的基本步骤和各模块的功能如下:(1)神经网络训练模块:收集一定数量的车牌图像样本,归一化后输入至BP神经网络进行训练,达到预定的正确率后,训练结束。本模块将获得一个对车牌敏感的BP神经网络。
(2)图像预处理模块:提取车牌前,对图像进行预处理;抑制噪声,提高图片质量。
(3)车牌定位模块:利用训练好的神经网络在图像中搜索车牌区域,定位车牌。
本方法的特点是从车牌区域特征来判别牌照,因此在搜索时会重点考虑以下表面特征(如边缘、对比度、纹理等)而忽视图像区域的内容。有用信号的特征有时会误导搜索,如果因为定位模块忽视了非牌照区域包含的车牌特征信号点,将这些区域送入后续步骤将会影响车牌字符识别。
3基于特征统计的车牌定位
基于特征统计的车牌定位利用车牌区域的结构特征和字符纹理特征。车牌区域字符笔划变化含有丰富的边缘信息。对整幅汽车图像进行边缘检测,车牌区域相对于其它非车牌区域含有更多的细节信息。对边缘图像进行行或列扫描,该行或列灰度值跳变的次数明显不同非车牌区域的行或列,即基于特征统计的车牌定位方法。此方法分为两个部分:粗定位和精确定位。1.粗定位:
粗定位是从车牌边缘检测后的图像中找出含有车牌的区域,并把它提取出来,考虑到车牌区域中存在大量笔画边缘点集,当线段扫描到车牌区域时,£会大于某个阈值,这样就能初步找到横穿车牌区域的线段,然后以此线段为起点,上下平移扫描,利用车牌区域横向积分投影的连续性特征,定出车牌的上下边。在定位出上下边的同时,利用车牌白点数目占据主导的特点,用一定宽度的矩形,从左往右扫描。粗定位具体做法是用一个比估计车牌小的矩形遍历整个边缘二值图,则落在该矩形内白色的点最多的位置就是车牌区域的大致位置。2.精确定位:
车牌颜色主要分为:蓝底白字、黄底黑字、黑底白字,白底黑字四种。相同号码不同颜色组合的车牌不是同一个车牌,所以颜色信息在车牌定位的过程中相当重要。本文在精确定位时结合车牌的长宽信息、颜色信息,根据车牌颜色(蓝、白、黄、黑4种)像素占候选车牌区域所有像素的比例来确定哪个是车牌部分,由此得到准确的车牌区域。
具体思想如下:对粗定位中提取的区域进行研究,如果此区域蓝、黑、黄色中哪种颜色较多,则认为蓝底色牌照、黑底色牌照、黄底色牌照,剩余的车牌为白底色军车和武警车牌照等。每个颜色的RGB有一定的范围比例,如蓝色的RGB各值中蓝色分量最大,并且蓝色红色分量的比值大于门限Tb;黑色的RGB各值相差不大,它们与其它颜色的RGB值相比是很小的值,且小于门限Tbl;黄色的RGB各分量依次减小,而且蓝色分量远小于其它两色。设图像中像素的红
绿蓝三色分量分别记为r、g、b,下面的pixel代表像素的类型,是蓝色的记为Blue,黑色的记为Black,黄色的为Yellow,具体判断如下:
如果车牌颜色信息满足蓝底牌照、黑底牌照条件或者Sillll 从原始图像可以看到,车体和车牌颜色对比明显,车体主要为黑色,而车牌为蓝色背景,白色字体。车体和车牌颜色的明显对比为算法提供了基础。此算法缺陷在于:车牌颜色必须不同于图像整体背景色,否则无法提取出车牌区域。 5基于改进SobeI算子边缘检测法 传统Sobcl算子只有水平和垂直两个方向模板;其中水平模板对水平边缘的响应最大,垂直模板对垂直边缘响应最大。模板的方向表示灰度由低到高或由高到低的变化方向,而不是图像的实际边缘方向。通过对车牌字符的垂直方向和斜线方向进行划分,本文采用六方向模板,算法实现的基本思想:构造六方向模板,对图像进行逐点计算,取最大值作为该点的新灰度值,该最大值对应模板的方向为该像素点的边缘方向。车牌图像提取特征后,采用迭代求图像最佳分割阈值的算法进行二值化;大多数车牌图像上噪声点较多,经过二值化后的图像如果直接进行水平投影定位,可能出现伪特征信息,所以应先进行去除噪声。本文采用模板大小为l×3的腐蚀运算,去除一些较小噪声点,保留图像车牌部位的主要信息。得到腐蚀后的车牌图像后,对图像的像素沿水平方向累加产生一个投影图,在车牌对应的水平位置会出现一段峰值。本文通过以下三点来判断峰值对应的位置是否为车牌区域: 1.波峰和波谷之间具有一定的落差,当一个局部最大值和它邻近的局部最小值的差大于某一阈值时,该局部最小值为波谷,反之为干扰值。 2.波峰的两个临近波谷之间具有一定宽度,该宽度值由车牌宽度特征决定。 3.波谷所占整个图像的高度在一个范围之内,由车牌处于车身较低位置的特点决定。 在光照均匀和背景不复杂的图像中,车牌的峰值特性十分明显,很容易定位出车牌区域的水平位置。当光照不均匀或者背景复杂的图像中峰值特性不明显,需要选择合理的阈值来准确确定局部最小值是否为谷底问题。本文设定峰顶和峰谷落差的经验阈值为16,峰的宽度阈值为30,即当峰顶和峰谷落差大于16且峰的宽度大于30时,判定该位置为包含车牌区域。车牌下方没有明显的边缘密集区域,所以搜索车牌的时候可以从下往上搜索,当出现的第一个峰值满足上述条件时,该峰值即为车牌的投影区域。由于车牌的底色和车牌字的颜色形成强烈对比,并且在一个相对小的范围内频繁变化,所以可以通过这个特征进行车牌的垂直定位。本文采用数学形态学方法对图像进行处理,检测出大小合适的矩形区域。具体定位算法如下:1对定位后的图像膨胀运算,结构元素是3x3矩形,填充车牌区域的小洞。 2对膨胀后的图像进行一次开运算,结构元素是1×4的矩形。 3.再进行一次膨胀运算,结构元素是1×4,第2步和第3步目的是选定具有一定宽度的区域。4.接着再进行一次开运算,结构元素是4x1。 5.最后进行一次膨胀运算,结构元素为4×1,选定具有一定高度的区域。 将得到的图像投影到垂直方向,根据车牌的宽度信息,设定一个范围,在投影图像中找到满足此范围的投影区域,定位出车牌的垂直位置。基于改进Sobel算子边缘检测的效果如图3-4