不动点理论及其应用
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不动点理论及其应用
主要内容:
●不动点理论—压缩映像原理
●不动点理论在微分方程中的应用●不动点理论在中学数学中的应用
目录:
一、引言
二、压缩映像原理
三、在微分方程中的应用
四、在中学数学中的应用
五、其它
一、 引言
取一张照片,按比例缩小,然后把小照片随手放在大照片上,
那么大小两张照片在同一个部位,一定有一个点是重合的。 这个重合点就是一个不动点。
函数的不动点, 在数学中是指被这个函数映射到其自身的一个点, 即函数)(x f 在取值过程中, 如果有一个点0x 使00)(x x f =,则 0x 就是一个不动点。
二、 压缩映像原理
定理:(Banach 不动点定理—压缩映像原理)
设 ),(ρX 是一个完备的距离空间, T 是),(ρX 到其自身的一个压缩映射,则T 在X 上存在唯一的不动点。
这里有三个概念:距离空间,完备的距离空间,压缩映射
距离空间又称为度量空间。
定义:(距离空间)设 X 是一个非空集合。X 称为距离空间,是指在X 上定义了一个双变量的实值函数 ),(y x ρ, 满足下面三个条件:
(1)。0),(≥y x ρ, 而且0),(=y x ρ, 当且仅当 y x =; (2)。),(),(x y y x ρρ=;
(3)。),(),(),(z y y x z x ρρρ+≤, (X ,,∈∀z y x )。
这里 ρ 叫做 X 上的一个距离,以 ρ 为距离的距离空间 X 记作),(ρX 。
定义:(完备的距离空间)距离空间),(ρX 中的所有基本列都是收敛列,则称该空间是完备的。