中考数学轨迹问题集锦

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【中考数学综合7】
1、如图1,已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧
分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点C移动到点D时,G点移
动的路径长度为_______.
2、正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R与点A重合,点P,Q分别在AC,AB上,将△RPQ 沿着边AB,BC,CA逆时针连续翻转(如图所示),直至点P第一次回到原来位置,则点P运动的路径长为_______ cm.(结果保留π)
3、如图,AB为⊙O的直径,AB=8,点C为圆上任意一点,OD⊥AC于D,当点C在⊙O上运动一周,点D运动的路径长为_______
4、如图,一块边长为6cm的等边三角形木板ABC,在水平桌面上绕C点按顺时针方向旋转到△A′B′C′的位置,则边AB的中点D运动的路径长是_______
5、如图所示,扇形OAB从图①无滑动旋转到图②,再由图②到图③,∠O=60°,OA=1.
(1)求O点所运动的路径长;
(2)O点走过路径与直线L围成图形的面积.
6、如图,OA ⊥OB ,垂足为O ,P 、Q 分别是射线OA 、OB 上两个动点,点C 是线段PQ 的中点,且PQ=4.则动点C 运动形成的路径长是______
7、如图,半径为2cm ,圆心角为90°的扇形OAB 的弧AB 上有一运动的点P .从点P 向半径OA 引垂线PH 交OA 于点H .设△OPH 的内心为I ,当点P 在弧AB 上从点A 运动到点B 时,内心I 所经过的路径长为______ .
8.如图,正方形ABCD 的边长是2,M 是AD 的中点,点E 从点A 出发,沿AB 运动到点B 停止.连接EM 并延长交射线CD 于点F ,过M 作EF 的垂线交射线BC 于点G ,连结EG 、FG .
(1)设AE =x 时,△EGF 的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (2)P 是MG 的中点,请直接写出点P 运动路线的长.
F
D
C A B M P G E
F
D C A B M P
G
E
9、某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.
问题思考:
如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC、BPEF.
(1)当点P运动时,这两个正方形的面积之和是定值吗?若是,请求出;若不是,请求出这两个正方形面积之和的最小值.
(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.
问题拓展:
(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向点D运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长.(4)如图3,在“问题思考”中,若点M、N是线段AB上的两点,且AM=BN=1,点G、H分别是边CD、EF的中点,请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.
10、如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t ≥0).
(1)直接用含t的代数式分别表示:QB=____ ,PD=____
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.
11、在直角坐标系中,O是坐标原点,点A坐标为(0,-1),点C是x轴上一个动点。

(1)如图1,△AOB和△BCD都是等边三角形,当点C在x轴上运动时,请探究点D的运动轨迹;
(2)如图2,△ABO和△ACD都是等腰直角三角形,当点C在x轴上运动时,请探究点D的运动轨迹;(3)如图3,四边形OABE是正方形,请你画出正方形BCDF(BCDF按照逆时针顺序),并探究当点C在x轴上运动时,点D的运动轨迹。

12、如图,在直角坐标系中,A点坐标为(0,6),B点坐标为(8,0),点P沿射线BO以每秒2个单位的速度匀速运动,同时点Q从A到O以每秒1个单位的速度匀速运动,当点Q运动到点O时两点同时停止运动.(1)设P点运动时间为t秒,M为PQ的中点,请用t表示出M点的坐标为________
(2)设△BPM的面积为S,当t为何值时,S有最大值,最大值为多少?
(3)请画出M点的运动路径,并说明理由;
(4)若以A为圆心,AQ为半径画圆,t为何值时⊙A与点M的运动路径只有一个交点?
13、如图,抛物线y=ax2+bx+3过点A(1,0),B(3,0),与y轴相交于点C.
(1)求抛物线的解析式;
(2)若点E为抛物线对称轴上的一点,请探索抛物线上是否存在点F,使以A,B,E,F为顶点的四边形为平行四边形?若存在,请求出所有点F的坐标;若不存在,请说明理由;
(3)若点P为线段OC上的动点,连接BP,过点C作CN垂直于直线BP,垂足为N,当点P从点O运动到点C时,求点N运动路径的长.
14、如图,在直角坐标系中,点A 的坐标是(0.3),点C 是x 轴上的一个动点,点C 在x 轴上移动时,始终保持△ACP 是等边三角形.当点C 移动到点O 时,得到等边三角形A OB (此时点P 与点B 重合). (1)点C 在移动的过程中,当等边三角形ACP 的顶点P 在第三象限时(如图),求证:△AOC ≌△ABP ;由此你发现什么结论?
(2)求点C 在x 轴上移动时,点P 所在函数图象的解析式.
15、如图,边长为4的等边三角形AOB 的顶点O 在坐标原点,点A 在x 轴正半轴上,点B 在第一象限.一动点P 沿x 轴以每秒1个单位长的速度向点A 匀速运动,当点P 到达点A 时停止运动,设点P 运动的时间是t 秒.将线段BP 的中点绕点P 按顺时针方向旋转60°得点C ,点C 随点P 的运动而运动,连接CP 、CA ,过点P 作PD ⊥OB 于点D .
(1)填空:PD 的长为 用含t 的代数式表示);(2)求点C 的坐标(用含t 的代数式表示); (3)在点P 从O 向A 运动的过程中,△PCA 能否成为直角三角形?求t 的值.若不能,说理由; (4)填空:在点P 从O 向A 运动的过程中,点C 运动路线的长为 .
x y O
A B
D C P x y O A B
16、等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P.
的值.
(1)若AE=CF.①求证:AF=BE,并求∠APB的度数.②若AE=2,试求AP AF
(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.
17、如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是 _________ .
20、在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.
(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;
(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;
(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).
18、如图,矩形ABCD 的边AB=3cm ,AD=4cm ,点E 从点A 出发,沿射线AD 移动,以CE 为直径作⊙O ,点F 为⊙O 与射线BD 的公共点,连接EF 、CF ,过点E 作EG ⊥EF ,EG 与⊙O 相交于点G ,连接CG . (1) 试说明四边形EFCG 是矩形;
(2) 当⊙O 与射线BD 相切时,点E 停止移动.在点E 移动的过程中, ① 矩形EFCG 的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由; ② 求点G 移动路线的长.
19.如图,在平面直角坐标系中,矩形OABC 的两边OA 、OC 分别在x 轴、y 轴的正半轴上,OA =4,OC =2.点P 从点O 出发,沿x 轴以每秒1个单位长的速度向点A 匀速运动,当点P 到达点A 时停止运动,设点P 运动的时间是t 秒.将线段CP 的中点绕点P 按顺时针方向旋转90°得点D ,点D 随点P 的运动而运动,连接DP 、DA .
(1)请用含t 的代数式表示出点D 的坐标;
(2)求t 为何值时,△DPA 的面积最大,最大为多少?
(3)在点P 从O 向A 运动的过程中,△DPA 能否成为直角三角形?若能,求t 的值;若不能,请说明理由;
(4)请直接写出随着点P 的运动,点D 运动路线的长. A
D
C
B
O
P
x y
A
D
C
B
O
P
x
y
20.如图,直角坐标系中,已知点A(2,4),B(5,0),动点P从B点出发沿BO向终点O运动,动点Q从A点出发沿AB向终点B运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了x秒.
(1)Q点的坐标为( , )(用含x的代数式表示);
(2)当x为何值时,△APQ是一个以AP为腰的等腰三角形?
(3)记PQ的中点为G.请你直接写出点G随点P,Q运动所经过的路线的长度.
21、问题探究:
(1)请在图①的正方形ABCD内,画出使∠APB=90°的一个点,并说明理由.
(2)请在图②的正方形ABCD内(含边),画出使∠APB=60°的所有的点P,并说明理由.
问题解决:
(3)如图③,现在一块矩形钢板ABCD,AB=4,BC=3.工人师傅想用它裁出两块全等的、面积最大的△APB和△CP′D钢板,且∠APB=∠CP'D=60度.请你在图③中画出符合要求的点和,并求出△APB 的面积(结果保留根号).
22.已知:矩形纸片2BCD中,2B=26厘米,BC=18.5厘米,点E在2D上,且2E=6厘米,点P是2B 边上一动点.按如下操作:
步骤一,折叠纸片,使点P与点E重合,展开纸片得折痕MN(如了1所示);
步骤二,过点P作PT⊥AB,交MN所在的直线于点Q,连接QE(手图9所示)
(1)无论点P在AB边上任何位置,都有PQ QE(填“>”、“=”、“<”号);
(2)如图3所示,将纸片ABCD放在直角坐标系中,按上述步骤一、二进行操作:
①当点P在A点时,P3与MN交于点55,Q1点的坐标是(,);
②当PA=6厘米时,PT与MN交于点r2,Q2点的坐标是(,);
③当PA=d2厘米时,在图3中画出MN,PT(不要求写画法),并求出MN与PT的交点Q3的坐标;(3)点P在运动过程,PT与MN形成一系列着交点Q1,Q2,Q3,…观察、猜想:众的的交点形成的图象是什么并直接写出该图象的函数表达式.。

相关文档
最新文档