利用电石渣替代石灰石生产水泥熟料

利用电石渣替代石灰石生产水泥熟料
利用电石渣替代石灰石生产水泥熟料

中国石油大学(华东)现代远程教育

毕业设计(论文)

题目:电石渣替代石灰石在硅酸盐水泥熟料生产中的应用

学习中心:云南学习中心

年级专业:网络11春化学工程与工艺

学生姓名:普志智学号:11805591003

指导教师:丁雪职称:讲师

导师单位:中国石油大学(华东)

中国石油大学(华东)远程与继续教育学院

论文完成时间:2013 年01 月05 日

毕业设计(论文)任务书

发给学员

1.设计(论文)题目:

2.学生完成设计(论文)期限:年月日至年月日3.设计(论文)课题要求:

4.实验(上机、调研)部分要求内容:

5.文献查阅要求:

6.发出日期:年月日

7.学员完成日期:年月日

指导教师签名:

学生签名:

注:此页由指导教师填写

摘要

电石渣是乙炔法生产聚氯乙烯、聚乙烯醇等过程中电石(CaC )水解后产生的废渣。

,正常流动时的水分在50%以上。电石渣如得不到有效利电石渣的主要成分是Ca(0H)

2

用,将占用大量的土地堆放,并污染堆场附近的水资源,对周边环境污染很大,属难处理工业废弃物。目前,电石渣作为水泥原料仍是综合利用电石渣的重要途径。在我厂水泥熟料的生产中,生料中电石渣掺量(干基)65%±5%(替代石灰石量),熟料3天抗压强度≥30MPa(抗折+抗压),28天抗压强度≥68MPa(抗折+抗压),能源消耗明显降低,同时电石渣有利于改善生料易烧性,且能适用劣质煤煅烧,经济效益、社会效益和环境效益得到充分体现,具有重要的实际效益。

关键词:电石渣、替代石灰石、硅酸盐水泥、熟料煅烧

目录

第1章前言 (1)

第2章生产线主要系统介绍 (2)

2.1 电石渣浆处理系统 (2)

2.1.1 电石渣浆的脱水 (2)

2.1.2 电石渣的预烘干 (3)

2.2 生料的烘干及粉末 (4)

2.3 窑尾预分解系统 (5)

第3章实际运行效果 (6)

3.1电石渣特性分析 (6)

3.1.1物理特性 (6)

3.1.2电石渣配料与石灰石配料的差异 (6)

3.2熟料成分分析 (6)

第4章结论 (9)

参考文献 (10)

致谢 (11)

第1章前言

电石渣是在聚氯乙烯、聚乙烯醇等工业产品生产过程中,电石(CaC2)水解后产生的沉淀物(工业废渣),主要成分为Ca(OH)2。

CaC2(电石) + 2H2O —→C2H2↑(乙炔气) + Ca(OH)2↓(电石渣)

每吨电石水解后约产生1.15吨电石渣。电石渣的堆放不仅占用大量的土地,而且因电石渣易于流失扩散,污染堆放场地附近的水资源、碱化土地;长时间堆放还可能因风干起灰,污染周边环境。电石渣属难以处置的工业废弃物之一。我国水泥工业石灰石的消耗量巨大, 生产1 吨水泥熟料约需1280公斤优质石灰石。充分利用电石渣能节省不可再生的石灰石资源, 减少CO2 气体排放, 保护环境。实现了持续稳定生产,达到了国内领先水平。现截取引用我厂(云南云维股份有限公司水泥分厂)2012年8月26日-9月4日的生产数据。数据来源为我厂化验室分析数据。

第2章生产线主要系统介绍

2.1 电石渣浆处理系统

,其CaO含量高达60%以上。我厂采用的从乙炔生产中电石渣的主要成分是Ca(OH)

2

排出的电石渣液水分高达90%以上,经沉降池浓缩后,水分仍有80%左右,正常流动时的水分在50%以上。我厂采用的电石渣化学成分如表2-1所示。

表2-1 电石渣化学成分(有用成分)百分比

根据成都设计院设计初期调查报告数据,电石渣的个数平均粒径:1.89μm;重量平均粒径:9.19μm;面积平均粒径:5.75μm;中位粒径:8.29μm;比表面积:947.32m2/kg。电石渣的比表面积越高,吸水性亦越高,烘干难度越大。

通过对电石渣的物理及化学性能分析可以看出:电石渣中的CaO含量很高,可以说是制造水泥熟料的优质钙质原料。其粒度很细,几乎不需要粉磨就可以满足水泥熟料生产的要求。需要解决的主要问题是:对电石渣浆进行有效脱水和准确配料。

2.1.1 电石渣浆的脱水

1. 电石渣液的浓缩

电石渣液通过料浆泵送到2米高直径24米的浓缩池中。浓缩池为混凝土结构,池底的倾角为8.5°,周边辊轮传动耙式浓缩机的耙架一端籍特殊的止推轴承放置在浓缩池的中央支柱上,另一端与传动小车连接,电动机经减速机带动辊轮而使耙架绕池子的中心线回转。

电石渣液首先进入自由沉降区,水中的颗粒靠自重而迅速下沉,到达过渡区。一部分颗粒靠自重继续下沉,一部分颗粒却又受到密集颗粒的阻碍而不能自由下沉。当下沉

到压缩区时,汇集成紧密接触的絮团而继续下沉到浓缩区。由于刮板的运转,进一步被压缩,挤出其中水分。最后由卸料口排出,澄清水从溢流堰流出,由渣浆泵送至化工厂沉淀池循环利用。

电石渣液经NG-24浓缩机浓缩后含水约75%。

2. 电石渣浆的压滤

针对电石渣浆的性能和以往的经验,本系统选择脱水能力较强、料饼水分较低的带气橡胶隔膜板框压滤脱水方案。该压滤系统的主要工作原理为:含水分约75%的电石渣浆经渣浆泵注入带气橡胶隔膜的压滤机各个滤室,当压力升至设定值后,通过流体静压压滤脱掉滤饼颗粒间的游离水分;接着再通入压缩空气保压,通过橡胶隔膜的弧面产生变向剪切力,破坏滤饼的几何结构,使滤饼水分进一步降低。

通过试验得知:

(1)电石渣浆的浓度影响滤饼的最终水分。设置电石渣浆浓缩池进行浓缩是必要的,浓缩后含水量控制在小于75%为好。

(2)电石渣浆的过滤压力以0.8 MPa为宜。压力过低则滤饼水分难以控制;压力过大则对板框压滤机的机械制造要求过高。

(3)滤室的厚度以30mm为宜。滤饼过厚,水分难以控制;滤饼过薄,产能难以满足要求。

根据电石渣浆过滤性能试验结果和生产中的物料平衡要求,选用七台XMZ500型厢式全自动压滤机(六用一备),每台压滤机过滤面积500m2,过滤总容积10.16m3,滤室的厚度30mm,压滤后滤饼水分设计值为32~36%。实际生产中,料饼的水分最好状态为25%,一般能保证在35%左右。

2.1.2 电石渣的预烘干

电石渣浆采用机械脱水后水分一般在28~35%范围内波动,给电石渣的输送、储存和准确配料带来困难,因此有必要对电石渣进行预烘干;由于电石渣属于高湿含量的轻质废渣,烘干处理难度非常大,需要解决以下技术难题:

(1)解决喂料及防堵问题。压滤后的电石渣呈“牙膏”状态,输送过程中无法储存和喂料计量,也不易送入烘干机内,落入烘干机后易出现堆料和粘堵现象。

(2)电石渣烘干时,需要克服蒸发速率低以及湿含量大的缺点。

(3)利用电石气燃烧作为烘干热源难度大。电石气是电石炉生产电石产生的废气,电

石气主要含CO、CH4等可燃气体,易爆炸;电石气本身有400~600℃温度,含有200mg/Nm3灰尘,焦油含量大,不易输送和使用。

(4)电石渣烘干后废气中含尘浓度高,收尘设备易产生粘堵和腐蚀。

电石渣含水15%时的物理性能检测如下:松散容重为600g/l,紧密容重为750g/l;电石渣在生料中占63.5 %时所配生料的休止角为36°;在办公室常温条件下,敞开七天,吸湿率为4%,在10MPa压力下不渗水。

根据以上实验结果,确定电石渣烘干终水分控制在15%左右为宜,以避免电石渣在输送、储存过程中发生粘堵,并实现准确配料。

年产7.5万吨电石的电石炉,每小时可以产生含热2500×104kJ电石气,折合标准煤855千克,经理论计算能够满足电石渣烘干需要。这样,不仅利用了电石气的热能,而且节省了一套电石气处理系统,对电石厂来说可以节省大量的投资。在电石气输送工艺布置上,采用强力送风,并尽量缩短输送路径和时间,以防止管道结焦粘堵。

压滤后的电石渣其塑性、粘性均在表观上大幅度降低,具有一种类似水泥浆体“假凝”现象的物理性质,经储存风干和采用防堵措施后,解决了喂料及粘堵。供热系统提供900~1100℃持续高温烟气,选择长径比较大的烘干机,安装强化蒸发装置,使电石渣在其有效烘干区域内有充裕的干燥强度和时间;系统选用能处理高浓度粉尘、抗结露、防腐蚀袋式除尘器进行除尘,使其达标排放。

实际生产中 3.0×25m回转式烘干机系统运行稳定,单机产量为26~30t/h。

2.2生料的烘干及粉磨

生料采用石灰石、电石渣、粘土、硫酸渣、砂岩五组份配料,需要研磨的物料约占37.7%。根据入磨物料综合水分为11~14%的特点和原料易磨性实验结果,采用烘干能力强、热交换和粉磨效率高的立式磨作为生料磨。

通过对窑尾废气成分进行分析和热力学计算,可以利用废气作为烘干热源。系统参数设计为:进立式磨气体温度为340℃,立式磨产量为75~85t/h,出磨生料水份小于1%,出磨气体与生料的温度均为80℃。为了更好地满足粉磨掺大量电石渣生料的要求,专门研制的HRM1900/2200立式磨,具有45~60t/h生料的研磨能力和80~90t/h生料的烘干能力。

在磨辊的快速碾压下,水分为10~12%的混合料被粉碎并且向磨盘边沿风环处抛洒,并被70~90m/s的高速气流带起,产生强烈的热交换。水分没有来得及蒸发的大块物料

会再次沉落,反复带起、沉落,充分进行热交换。高速气流在磨腔内流速很快降低,形成强烈的紊流场,特别适合于电石渣微细颗粒的烘干。粉状物料随气流一起上升通过磨机上壳体进入分离器的分级区,在分离器转子叶片的作用下,其中的粗粉落回磨盘与新喂入的物料一起重新粉磨,合格的细粉随气流一起出磨,经高效旋风收尘器收集后,与增湿塔和窑尾电收尘器收集的粉尘混合,由输送设备送入生料均化库内进行均化、储存。出磨的废气汇入窑尾电收尘器进行除尘后达标排放。

2.3窑尾预分解系统

针对电石渣替代石灰石生产水泥熟料的特殊性,我们用差热分析法对电石渣的脱水做了试验,结果如下:

电石渣从室温升温到870℃时,仪器记录了失重(TG)和差热(DTA)的曲线,电石渣在190℃时有弱吸热伴微失重峰,此峰值为吸附水脱出;350℃时弱吸热伴微失重峰为水化铝酸钙结构水脱出,584℃时出现强吸热伴快失重峰,Ca(OH)

脱水,失重为16.3%;

2

830℃时为吸热伴有失重,870℃的放热峰无重量变化,前一峰值为水化硅酸钙脱去结构水,后一峰值为水化硅酸钙的晶型转化。试验过程中试样总失重25.68%,按电石渣CaO 全部结合为Ca(OH)2,69.36%CaO结合水为22.29%,其余失重应来自水化硅酸钙结合水和电石渣中的碳粒。

我们按JC/T735-88生料易烧性实验方法进行了生料易烧性测试。原料的化学成分分析结果如表2-2所示。

表2-2入窑料浆化学成分及生料率值

第3章实际运行效果

2004 年8月正式投产以来的生产数据显示,电石渣掺量高达65%( 替代80%石灰石) , 整个烧成系统运行稳定, 入窑生料分解率90%~97%, 熟料28天抗压强度≥58MPa, 熟料烧成热耗低于3 180 kJ/kg, 熟料f- CaO 及升重合格率均大于85%。根据该生产线窑和预分解系统的运行状况分析, 随着对电石渣生料煅烧特性的掌握和操作的进一步熟练, 生料中电石渣掺量还可以提高, 完全可以全部代替石灰石。该生产线的成功运行消除了业内对采用新型干法预分解窑煅烧高掺电石渣生料的疑虑。预烘干干磨干烧工艺采用先进的高效预烘干、立式粉磨和窑外分解窑煅烧等技术, 回转窑单位容积产量高, 综合能耗低, 容易大型化形成规模效益,电石渣配比高处理量大, 且与水泥工业发展的主流工艺技术一致。

3.1电石渣特性分析

3.1.1物理性能

电石渣比表面积为947.32m2/Kg,电石渣具有多孔状结构,其黏附性和保水性很强。齐齐哈尔榆树屯化工厂的电石渣,由于年限较长,水分达到25%以下,给汽车运输带来方便,电石渣运进厂内后,经烘干机烘干,可进入单独仓直接使用。

3.1.2电石渣配料与石灰石配料的差异

除电石渣的物理性能及化学成分与石灰石不同外,生料煅烧时两者的化学反应过程有巨大不同。石灰石的主要成分是CaCO3加热至750℃时开始分解,900℃时分解剧烈,反应式如下:

CaCO3→CaO+CO2↑

CaCO3 分解时, 需要吸收大量的热量, 反应热为1787.8 kJ/kg,是水泥熟料形成过程中消耗热量最多的一个过程。

电石渣的主要成分是Ca(OH) 2,在加热过程中,部分Ca (OH) 2会吸收气体中的CO2形成CaCO3加热至550℃时Ca(OH) 2开始分解,生成的部分CaO 又会吸收气体中的CO2形

成CaCO3在900℃以上时,上述两部分生成的CaCO3 会重新分解。上述反应如下:Ca (OH)2→CaO+H2O(吸热反应,1kgCa(OH) 2反应热为1787.8 kcal)

CaCO3→CaO+ CO2↑(吸热反应,1kgCa(OH) 2 反应热为1787.8 kcal)可以看出,电石渣配料生料分解反应后的废气成分和废气量与石灰石配料不同。我厂配料方案电石渣掺量控制在65%±5(干基)。

3.2熟料成分分析

随着操作人员操作水平的提高,在设备运转良好的条件下,产量逐渐增加,到9月份烧成系统熟料产量达到了1200t/d以上,熟料28天抗压强度≥58MPa,熟料烧成热耗小于760×4.18kJ/kg。熟料强度见表3-1所示,熟料化学分析见表3-2,熟料矿物组成分析见表3-3,窑用煤粉工业分析见表3-4.

表3-1熟料强度

表3-2 熟料化学成分分析

表3-3熟料率值及矿物组成

表3-4 煤粉工业分析

第4章结论

利用电石渣替代部分石灰石配料生产硅酸盐水泥熟料是完全可行的,使用电石渣配料煅烧硅酸盐熟料可以明显改善生料的易烧性,提高熟料产品质量,利用电石渣配料使得大量废弃的电石渣变废为宝,节约宝贵的资源,实现了循环经济,同时,也为企业生产降低了原材料成本,即保护了环境又取得了很好的社会效益和经济效益。全年可以节省约35万吨优质石灰石资源和少向大气中排放15万吨CO2。

参考文献

[ 1] 张平洪, 周明, 朱大来, 等.电石渣首次在新型干磨干烧生产线的成功利用.水泥工程, 2004.

[ 2] 潘炯.湿磨干烧技术在废渣治理中的应用.水泥, 2002.

[ 3] 谷胜余, 袁曙光.以电石渣为原料的水泥生产线的设计.新世纪水泥导报, 2004( 增刊).

[ 4] 钮一民.湿法窑改造还是湿磨干烧好.水泥科技, 1999.

[ 5] 孙义燊.水泥厂湿磨干烧热经济分析.水泥.石灰, 1995.

致谢

本文能得以完成,首先要感谢中国石油大学(华东)及远程与继续教育学院的各位老师和指导老师丁雪讲师,丁老师在百忙之中给我以悉心的指导,提出了详细的修改意见,并给以极大的鼓励。丁雪老师渊博的专业知识,严谨的治学态度,精益求精的工作作风,严以律己、宽以待人的崇高风范,朴实无华、平易近人的人格魅力对我影响深远。

本文在写作的过程中,阅读和参考了大量文献,从中获益非浅。在此,谨向各位作者表示衷心的感谢!同时我所在单位领导及各位同事的大力支持,给予了我大量的数据进行参考。在此表示衷心的感谢!

电石渣综合利用水泥生产线项目可行性研究报告

电石渣综合利用水泥生产线项目可行性研究报告

目录 第1章总论 (2) 第2章市场分析 (22) 第3章原料与燃料 (29) 第4章生产工艺 (37) 第5章总图运输 (60) 第6章电气及生产过程自动化 (64) 第7章建筑工程 (73) 第8章给水、排水 (81) 第9章采暖、通风及空调 (88) 第10章节约与合理利用能源 (90) 第11章环境保护 (94) 第12章劳动安全与工业卫生 (106) 第13章消防 (111) 第14章组织机构及劳动定员 (116) 第15章建设进度安排设想 (119) 第16章投资估算 (121) 第17章技术经济分析与评价 (127) 附件 1. 水泥生产线总平面布置图 2. 水泥生产线工艺流程图 3. 水泥生产线水量平衡图

第1章总论 1.1 项目概况和背景 1.1.1 项目概况 项目名称:XXXXXXXX能源化工有限公司电石渣综合利用2×2300t/d熟料 2×100万吨水泥/年生产线建设工程 建设地点:内蒙古XXXX市蒙西工业园区 建设单位:XXXX市XXXX能源化工有限公司 法人代表:XXXX 1.1.2 企业概况 XXXX市XXXX能源化工有限公司是由内蒙古XXXX有限责任公司在XXXX 市组建的新公司,内蒙古XXXX有限责任公司是在原内蒙古黄河化工集团公司的基础上,经国家经贸委批准以债转股的方式于2002年3月26日组建的有限责任公司,是乌海市大化工基地的骨干企业,也是内蒙古自治区60户重点企业之一,有着多年氯碱、聚氯乙烯生产经验,和有着强大的技术队伍。注册资金为18615万元。经营范围PVC树脂、烧碱、电石、液氯、盐酸、编织袋;机械加工修理、非标件制作、白灰生产。主要产品PVC树脂、烧碱。公司下设氯碱厂、树脂厂、电气厂、机修厂,共有职工400人,专业技术人员123人,经过多年的化工生产技术改造,培养和锻炼了一批技术过硬、经验丰富的专业技术力量。目前企业经营正常,效益良好。 XXXX有限责任公司坐落在内蒙古西部著名的资源性工业城市乌海市,

干法电石渣制水泥熟料生产线方案

利用30万吨PVC生产电石渣(干法) 建设2000吨/日水泥熟料生产线项目 1.建设条件 ⑴厂址 拟建水泥熟料生产线位于30万吨PVC化工项目附近,用地面积200亩。 ⑵原料 钙质原料利用30万吨PVC化工厂生产的电石渣作为水泥生产的石灰质原料。根据理论计算,1吨PVC可产生1.63t电石渣, 30万吨PVC产生的电石渣(干基)总量为489000吨,该化工厂采用干法乙炔工艺制取乙炔气,电石渣含水量8%,电石渣总量为531000吨。电石炉灰及石灰渣粉(干基)45000吨,含水量3%,电石炉灰及石灰渣粉46400吨。 硅质原料利用电厂产生粉煤灰;硅质校正原料利用河砂;铁质校正原料利用铁粉。 ⑶燃料 燃料利用原煤。 ⑷供电 电源由地区变电站10kV双回线路架空引至本生产线。 ⑸供水 水源供水由城市建设总管网接入,水源有保证,满足本项目的生产、生活、消防用水要求。 2.生产工艺 2.1 生产纲领 2.1.1 工厂规模 年产熟料56万吨,水泥70万吨。 2.1.2 设计产量 熟料强度:≥55.5MPa 熟料产量:每小时产量79吨,日产量1900吨,年产量56.75万吨。熟料烧成年运转率300天。 2.1.3 生料配合比

⑴煤灰掺入量:1.68%。 ⑵干燥原料配合比:电石渣(电石炉灰)76.5%,河砂12.0%,粉煤灰8.5%。铁粉3.0%, 2.1.4 熟料烧成消耗量 生料理论料耗:1.23t/t熟料;熟料烧成热耗:3135kJ/kg熟料;熟料烧成实物煤耗:0.14t/t熟料;熟料标准煤耗:0.127t/t熟料。 2.2 物料平衡 表1 2.3原燃料技术要求: ⑴本项目采用30万吨PVC化工厂的电石渣、当地的河砂、电厂的粉煤灰及当地的铁粉四组分配料,采用熟料率值正常,熟料矿物组分好,工厂可以生产高标号水泥。建议采用熟料KH:0.90±0.02, SM:2.50±0.1, IM:1.50±0.1。 ⑵燃煤质量的波动对熟料质量及烧成工艺、热工制度的稳定性影响极大,供煤点多使煤的质量难以预先控制,本项目为了克服烟煤来源较复杂、多点供煤,不利于回转窑热工制度的稳定,因此设置煤的预均化设施。

电石渣替代石灰石新型干法水泥熟料生产技术

电石渣替代石灰石 “干磨干烧”新型干法水泥熟料生产技术 合肥水泥研究设计院 二○○七年一月

1. 前言 电石渣是电石法生产乙炔过程中产生的工业废渣,2005年我国电石渣的排放量超过1400万吨,历年积存的电石渣量逾亿吨。随着电石渣的存量和年排放量的增加,长期堆放占用土地资源、污染环境,对电石渣的有效利用日益迫切。近年来有关电石渣的应用技术研究取得一定进展,如代替石灰用于火电厂烟气脱硫、用于生产硅钙板和墙体材料、作为生产涂料的添加剂等, 但所使用的电石渣数量均较小, 难以消化掉历年积存和正在排放的全部电石渣。水泥工业作为大宗原材料基础工业具有消化大量工业废渣的潜力, 采用电石渣替代石灰石生产水泥不仅能大量有效利用电石渣变废为宝, 节约不可再生的石灰石资源, 实现资源综合利用, 促进循环经济发展。而且可以保护环境, 一方面减排,另一方面治理废渣污染。利用一吨电石渣可节省1.28吨石灰石,减少CO2气体排放0.56吨,经济效益和社会效益显著。 国内采用电石渣作为钙质原料生产水泥始于上世纪七十年代,当时主要采用传统的湿法长窑生产工艺,之后又出现立窑、立波尔窑,由于这些生产工艺能耗高、产量低、环境差,各项技术经济指标相对落后,不符合国家相关的产业政策等问题,已经自动退出历史舞台。 随着技术的发展和节能的需要,后来又出现了滤饼直接入湿法长窑和“湿磨干烧”的预分解窑、“湿磨干烧”的干法长窑(不带预热器和分解炉)以及“干磨干烧”的五级旋风预热器窑等生产工艺。2002年国内首条1000t/d“干磨干烧”新型干法预分解水泥回转窑生产线在皖维高新材料股份有限公司成功投产(电石渣掺量15%),2005年国内首条1200t/d电石渣高掺量“干磨干烧”新型干法水泥生产线在山东淄博宝生环保建材有限公司顺利投产,使电石渣替代石灰石生产水泥走上了新型干法之路。2.新型干法“干磨干烧”的技术路线 新型干法水泥生产工艺从20世纪50年代兴起,经过几十年的历程不断发展成熟,特别是从20世纪90年代以后新型干法水泥生产在我国有了突飞猛进的发展,其生产规模不断扩大,多条10,000t/d熟料的新型干法水泥生产线正在稳定运行,显示出良好的经济效益和社会效益,预计到2020年新型干法水泥的产量将达到我国水泥总产量的90%甚至更高。 新型干法水泥生产具有三大特点:一是以悬浮预热技术和预分解技术为核心;二是将数控技术应用于原料的破碎和预均化、生料的粉磨和均化、熟料的煅烧及水泥

电石渣制水泥熟料烧结性能与新工艺

电石渣制水泥熟料烧结性能与新工艺 摘要:随着城市化建设步伐的加快,对水泥的需求持续增加。水泥有着广阔的市场和前景。年产10万吨pvc生产企业一年30万吨电石渣。电石渣作为制水泥的熟料,即解决了环境污染的问题,又增加了企业的效益。本文对电石渣制水泥的烧结性能及新工艺做了分析。 关键词:电石渣水泥熟料新工艺 Abstract: with the construction pace of urbanization, the acceleration of the cement demand continues to increase. Cement has broad market and prospect. An annual output of 100000 tons of PVC production enterprise 300000 tons a year calcium carbide slag. Calcium carbide slag cement clinker as system, which could solve the problem of environmental pollution, and add the efficiency of enterprises. In this paper, the calcium carbide slag cement system of sintering performance and new technology are analyzed. Keywords: calcium carbide slag cement clinker new technology 一、电石渣生料的烧结性能 在电石渣生料烧结性能实验中,其配料率值为:KH=0.9,SM=2.7,LM=1.6,同时进行了空白样对比实验,其中一组石灰质颜料100%为电石渣,一组石灰质原料全部采用石灰石,其他矿物组分一样。对烧成试样进行了fCaO分析、X射线衍射分析及扫描电镜分析。 1.1 fCaO分析 电石渣样的fCaO的含量较高,对比空白样的fCaO指标较低,因而后者显示出良好的易烧性,前者的易烧性较差。 影响试样易烧性的因素较多,试样中每种物料的物化性质都对易烧性构成影响,试验的结果与以前一些文献(1)的报道刚刚相反,说明了对易烧性我们不能仅仅根据其中某一种物质做出判断,其易烧性的好坏需由实验来确定。

电石渣

电石渣是电石与水反应生成乙炔气体的过程中产生的工业废弃物,含有大量的氧化钙和少量的硅、铁、铝、钙、镁及碳渣,其溶液中一般还含有硫化物、磷化物、镁、乙炔等其它杂质,可广泛用于材料生产,如水泥、陶瓷、涂料等。 碱性的电石渣具有黏度高、粒度细、易流淌等物理特性,传统利用方式不仅基建费用高、占地面积大,而且滴、淌、粘、挂,严重污染周围环境。由我公司设计研发的电石渣资源化利用系统成功解决了这一制约电石渣综合利用的难题。 电石渣资源化利用—高温煅烧制水泥工艺: 脱水后的电石渣经搅拌、均浆、除杂等预处理工艺后进入储料仓中缓存;然后通过正压给料、泵送等工艺环节将电石渣送入水泥窑尾,经水泥窑高温煅烧,从而达到利用电石渣中Ca、Si等成分制备水泥的目的。 特点: 1、制成的水泥品质高; 2、节约了大量的石灰石资源; 3、全套工艺密闭、洁净、环保,无二次污染; 4、系统自动化程度高,全程可实现远程调控、实时监控,运行成本低。

电石水解获取乙炔气后的以氢氧化钙为主要成分的废渣。乙炔(C2H2)是基本有机合成工业的重要原料之一,以电石(CaC2)为原料,加水(湿法)生产乙炔的工艺简单成熟,至今已有60余年工业史,目前在我国仍占较大比重。1t电石加水可生成300多kg乙炔气,同时生成10 t含固量约12%的工业废液,俗称电石渣浆。它的处置一直令生产厂头痛。 乙炔是生产onclick="g('聚氯乙烯');">聚氯乙烯树脂(PVC)的主要原料,按生产经验,每生产1 t PVC产品耗用电石1.5~1.6t,同时每t电石产生1.2 t电石渣(干基),电石渣含水量按90%计,那么每生产1 t PVC产品,排出电石渣浆约20t。由此可见,电石渣浆的产生量大大超过了PVC的产量。大多数PVC生产厂家将电石渣浆经重力沉降分离后,上清液循环利用;电石渣经进一步脱水,其含水率仍达40%~50%,呈浆糊状,在运输途中易渗漏污染路面,长期堆积不但占用大量土地,而且对土地有严重的侵蚀作用。要想从根本上解决问题,只有在技术上谋求突破,寻求新的治理工艺,综合利用,化害为利,变废为宝。 在电石乙炔法生产'聚氯乙烯'产品时,电石(CaC2)加水生成乙炔和氢氧化钙,其主要化学反应式如下: CaC2+2H2O C2H2+ Ca(OH)2+127.3 KJ/克分子 在电石和水反应同时,电石中杂质也参与反应生成氢氧化钙和其他气体: CaO+ H2O Ca(OH)2 CaS+ 2H2O Ca(OH)2 +H2S↑ Ca3N2+ 6H2O 3Ca(OH)2 +2NH3↑ Ca3P2+6H2O 3Ca(OH)2 +2PH3↑ Ca2Si+4H2O 2Ca(OH)2 + SiH4↑ Ca3As2+ 6H2O 3Ca(OH)2 + 2AsH3↑ Ca(OH)2在水中溶解度小,固体Ca(OH)2微粒逐步从溶液中析出。整个体系由真溶液向胶体溶液、粗分散体系过渡,微粒子逐步合并、聚结、沉淀,在沉淀过程中又因粒子互相碰撞、挤压,促使颗粒进一步结聚、长大、失水,沉淀物逐步变稠,俗称电石渣浆。此外电石中不参加反应的固体杂质如矽铁、焦炭等也混杂在渣浆中。副反应产生的气体部分进入乙炔气体,部分溶解在渣浆中。 电石渣浆为灰褐色浑浊液体。在静置后分成三部分,澄清液、固体沉积层及中间胶体过渡层。三者比例随静置时间及环境条件变化呈可逆变换。固体沉积物即是我们常说的电石废渣。 干电石废渣中主要含Ca(OH)2 ,可以作消石灰的代用品,广泛用在建筑、化工、冶金、农业等行业。但当电石废渣含水量>50%时,其形态呈厚

利用电石渣生产水泥

利用电石渣生产水泥 1 引言 建设节约型社会、发展循环经济已成为人们的共识,处理电石渣的传统方式已不能适应社会发展的要求,甚至被政府环保部门明令禁止,如何有效地处理电石渣已经成为各生产厂可持续发展的“瓶颈”问题。只有水泥工业把电石渣作为代替石灰石质原料,对电石渣消耗量最大、最为彻底、技术上也最为成熟,因此作为原料生产水泥成为综合利用电石渣的主要途径。有效地综合利用电石渣,对保护环境、节约土地和水资源及实现经济可持续发展具有显著的生态和社会效益。合肥水泥研究设计院十分注重水泥行业的循环经济发展,研究各种工业废渣在水泥生产中的综合利用,一直致力于用电石渣生产水泥的综合技术与装备的开发研究,采用多种水泥生产工艺消化电石渣并取得显著成绩;继在安徽皖维高新材料股份有限公司成功采用电石渣掺量15%干磨干烧工艺生产水泥的基础上,适时地提出能否用新型干法生产工艺煅烧高掺量电石渣的新课题,即用电石渣替代70~80%石灰石或全部石灰石生产水泥熟料,该课题的意义在于: 1.1、由于电石渣的特性和电石渣配料生料的特殊性,业内人士一直有新型干法生产工艺不适合煅烧高掺量电石渣生料的观点,如果该项技术有所突破,将为预分解技术处理其它工业废渣带来新的启迪,

为形成一套优质、高效、节能、环保以及单条生产线规模大型化的现代水泥生产方法提供良好的示范。 1.2、该项技术与带压滤湿法回转窑生产工艺相比节煤30%,同时每生产1吨熟料节水0.15吨,与湿磨干烧生产工艺相比节水0.66吨。对于煤炭储采比不足百年的中国来说节能尤其重要,不能以处理电石渣消耗大量能源为代价。 1.3、生产1吨熟料需要消耗1.28吨优质石灰石,同时向大气中排放0.57吨CO2,用电石渣替代石灰石生产水泥熟料,可以减轻我国石灰石矿的开采和减少CO2排放。 1.4、随着煤化工行业科学技术的不断进步,生产过程中电石渣以干基(含水分10-12%)排放,将为新型干法生产工艺煅烧高掺量电石渣提供捷径。 2 利用电石渣生产水泥熟料的技术进步 在我国利用电石渣生产水泥熟料始于上世纪七十年代,当时主要采用湿法长窑生产工艺,随后利用电石渣生产水泥熟料的工艺多种多样,不仅有立窑、湿法长窑以及立波尔窑,而且还有五级旋风预热器窑生产工艺,但这些生产工艺的技术经济指标相对落后,不符合国家的相关产业政策,目前广泛采用以下几种生产工艺: 2.1 带压滤湿法回转窑生产工艺 将成分基本稳定的电石渣浆直接送入已磨好的其它组分的料浆库中制成混合均匀的生料料浆,通过机械脱水成为含水分34%左右的料饼,送入回转窑煅烧成水泥熟料。

电石渣制水泥熟料

电石渣制水泥熟料开发报告 编写: 审核: 2006-12-08

目录 第一章电石渣制水泥熟料技术进展 (1) 1.1前言 (1) 1.2 电石渣的用途 (1) 1.3利用电石渣作石灰质原料制水泥熟料的技术进展 (2) 1.3.1 电石渣脱水技术的发展 (2) 1.3.2 利用电石渣作石灰质原料制水泥熟料的烧成工艺技术进展 (3) 1.4 电石渣制水泥熟料生产技术发展阶段总结 (6) 1.5 电石渣制水泥熟料生产线实例介绍 (6) 1.5.1 立窑与传统湿法长窑生产实例 (6) 1.5.2 半湿法生产实例 (7) 1.5.3干法中空窑生产实例 (7) 1.5.4新型干法生产线实例 (8) 第二章电石渣的性质 (11) 2.1. 电石渣的保水性能 (11) 2.1.1电石渣干燥实验 (11) 2.1.2 电石渣脱水设备(陶瓷过滤机)在电石渣脱水中的应用可行性考察 (20) 2.2. 电石渣的粒度 (25) 2.3.电石渣的热性能 (32) 2.3.1电石渣粉体的差热分析实验 (32) 2.3.2 电石渣粉体在高温下的热稳定性实验 (33) 2.4.电石渣的烧结性能 (37) 2.4.1利用电石渣配制生料的易烧性实验 (37) 2.4.2电石渣配制生料的易烧性空白对比实验 (42) 2.4.3 利用电石渣配制生料的易烧性评价 (45) 第三章电石渣制水泥熟料新型干法开发方案 (46) 3.1 电石渣制水泥熟料湿磨干烧方案 (46) 3.1.1方案特点 (46) 3.1.2.系统参数 (46) 3.1.3.工艺流程 (46)

3.1.2主机一览表: (48) 3.2电石渣制水泥熟料干法烧成方案 (49) 3.2.1方案特点 (49) 3.2.2.系统参数设定 (50) 3.2.3工艺流程简介 (50) 3.2.4主机设备表 (52) 3.2.5 热工计算 (53) 第四章电石渣制水泥熟料开发总结 (56) 4.1电石渣的物理性质 (56) 4.1.1 电石渣的保水性能 (56) 4.1.2电石渣的粒度 (56) 4.1.3电石渣的热性能 (56) 4.2电石渣配制的生料的易烧性 (56) 4.3电石渣制水泥熟料的工艺方案 (56) 4.3.1新型干法湿磨干烧方案: (56) 4.3.2新型干法干磨干烧方案 (57)

电石渣100%代替石灰石生产熟料的优化改进措施

电石渣100%代替石灰石生产熟料的优化改进措施我公司有2条3000t/d电石渣制熟料生产线,一线为三级预热器,从2010年采用电石渣100%代替石灰石生产以来,由于经验不足,生产中遇到了不少问题。本文主要介绍我公司熟料生产中出现的质量问题和采取的相应措施。 1.工艺流程 化工厂生产PVC后的电石渣,经压滤含水在30%左右,输送至烘干锤式破碎机,利用窑尾预热器废气烘干,经过旋风分离器分离后电石渣干粉入干粉库,电石渣干粉通过库底计量与硅质原料、铁质校正原料调配后,100%替代石灰石配料生产水泥熟料。 2.存在的问题 1)熟料外观发黄,黄心率平均占50%,回转窑易掉窑皮,熟料结粒不均齐,fCaO含量高,生产的水泥与外加剂相容性差。 2)熟料易结大球,篦冷机易被压死,回转窑常结后圈,C3下料管易堵塞。 3)熟料3d抗压强度高,平均为33.0MPa,28d抗压强度较低,平均为52.5MPa。 电石渣化学成分见表1,熟料成分及物理性能见表2、表3。 表1电石渣的化学成分% 表2熟料成分

表3熟料物理性能 3.原因分析 1)由于没有设计单独存放的窑灰库,把窑灰与烘干后的干电石渣存放在1号干粉库内,电石渣不能与窑灰混合均匀,造成生料三率值波动,生料均化库均化系数仅为1.6,入窑生料成分的波动造成熟料结粒难以均齐,表2中>20mm结粒料含量为50%,大结粒球不易烧透,基本上为黄心料,影响熟料质量。 2)化工电石渣压滤时将废水再利用,增大了电石渣的氯离子含量,表2中熟料氯离子含量为0.105%。 3)煅烧操作时对电石渣配料的操作方法掌握不全面,有些工艺操作参数还与石灰石配料时的相同。 4)湿电石渣入烘干破碎机烘干时,不能均匀上料,导致窑系统负压变化大,稳定性差。 4.改进措施 1)协调化工厂将电石渣压滤用水改为一次性用水,控制电石渣中的氯离子含量≤0.04%。湿电石渣每4h取样做氯离子检验,若氯离子含量超0.04%时,湿电石渣外排单独存放。 2)稳定湿电石渣的上料,在电石渣下料仓锥体底改装可调速皮

优化电石渣制水泥工艺的建议

优化电石渣制水泥工艺的几点建议 2010-8-27 9:30 来自:张海峰[鄂尔多斯] 本人已经参与两条电石渣制水泥生产线筹建及生产调试。工作期间积累的一些工作经验、一些心得体会,针对工艺设计、设备选型、生料配料、生产调试等方面的问题,对目前电石渣制水泥生产线的工艺设计提出一些个人的建议,与水泥业界的各位同行们探讨,不妥之处,请同行们提出宝贵意见,共同促进电石渣制水泥这一项宏伟事业不断向前发展! 一、严格控制电石渣中的Cl-含量 经分析大部分氯碱企业的电石渣中的氯离子普遍偏高,Cl-含量在0.023%-0.3%之间波动,有的氯碱企业在这方面做的很好,而有些氯碱企业的电石渣却Cl-含量居高不下。 我认为从源头上对电石渣中Cl-含量进行严格控制,包括减少次氯酸钠循环次数等措施,因为一旦在化工厂无法降低电石渣中的Cl-含量,那么意味着会造成水泥厂无法使用或减少电石渣的掺加比例,同时会增加预热器结皮堵塞的频率及严重时使水泥生产无法进行。 目前电石渣中的Cl-含量仍是制约大多数电石渣制水泥生产线正常运行的瓶颈,可以说是决定电石渣制水泥项目是否建设的或者采用部分掺加电石渣替代石灰石的工艺设计依据。二、降低电石渣中的水份 该项工作仍然得从源头抓起,化工厂电石渣压滤车间优化操作,尽量降低电石渣中的水份含量,包括适当提高压滤压力、延长保压时间,严禁将冲洗滤布的水带入压滤好的电石渣里,从而造成电石渣的水分上升;这些工作只要在日常生产过程中严格执行操作规程,就完全能够实现降低电石渣水份的目的。 对于湿电石渣的输送,目前比较可行的方案是采用胶带输送,但是电石渣水份高了,会造成皮带表面以及托辊、滚筒大量粘附电石渣,造成皮带跑偏,缩短皮带机的使用寿命,同时给日常操作带来困难;所以说努力降低电石渣的水份非常有利于下道工序的操作,同时能够明显提高烘干破碎机的产量及运转率。现在国家产业政策要求乙炔法生产PVC采用干法乙炔工艺,为干排电石渣,这样就基本不需要对电石渣进行预烘干了,干法乙炔产生的电石渣水份在10%以下。 三、尽量使用一台烘干破碎机,同时设置增湿旁路 在一台烘干破碎机能够满足生产要求的情况下,尽量不要选用两台烘干破碎机,一是可以降低投资额度;其二可以减少系统漏风点,减少无谓的热损失;其三、可以避免胶带输送机入两台烘干破碎机时难以实现均匀分料的难题。 可以考虑在烘干破碎机由于故障停车时,为了不影响窑系统正常运行,设置旁路管道,采用管道增湿或设置增湿塔,出预热器热风经旁路管道增湿或增湿塔增湿直接入高温风机,可以确保在烘干破碎机停车时实现窑系统的正常运行,避免窑系统的运转率受烘干破碎机的影响或制约。

电石渣浆代替生石灰用于纯碱蒸氨的工艺方案

电石渣浆代替生石灰用于纯碱蒸氨的工艺方案 李永新1,宋爱军2 Ξ(1.唐山三友集团冀东化工有限公司,河北唐山063021;2.唐山三友集团,河北唐山063021) [关键词]PVC;电石渣浆;纯碱生产 [摘 要]介绍了电石渣浆在氨碱法纯碱生产中代替生石灰用于蒸氨工艺的可行性和初步方案,实验证明该方案是可行的,具有较好的环境效益及经济效益。 [中图分类号]TQ325.3;X78 [文献标识码]A [文章编号]1009-7937(2005)03-0041-02 P rocess for th e digestion of ammoni a in th e p rodu ction of sod a by substituting carbid e slu rry for caustic sod a L I Yong-xin1,SON G Ai-jun2 (1.Jid ong Chemical Industry C o.,Ltd.of T angshan Sany ou G roup,T angshan063021,China; 2.T angshan Sany ou G roup,T angshan063021;Chian) K ey w ords:PVC;calcium slurry;the production of s oda Abstract:The processibility of the process for the digestion of amm onia in the production of s oda by substituting carbide slurry for caustic s oda was introduced as well as the primary plan.Through experiments,it was proved that this plan was feasible and had g ood environmental effect and econ omic effect. 随着我国聚氯乙烯市场的快速发展,聚氯乙烯装置的扩建、新建又达到一个高潮,其采用的路线主要是电石法。然而,随着装置的逐渐扩大,电石法中电石渣的污染问题却日益突出,电石渣浆的综合利用成了必须解决的问题。唐山三友集团依托150万t/a纯碱装置建设的10万t/a聚氯乙烯装置拟将其产生的电石渣作为纯碱生产的原料全部消耗,彻底解决污染问题。 1 纯碱蒸氨工艺简介 在氨碱法纯碱生产中,NH3作为中间介质在生产过程中循环使用,而这一循环是借助蒸馏过程实现的。制碱后的母液中的NH3和CO2主要以两种形式存在,其中游离氨(包括碳酸氨和氢氧化氨)可以直接加热蒸煮去除,但是氯化铵或硫酸铵形式的固定氨则必须加入石灰乳用化学方法分解后再进行加热蒸馏才行。因此,蒸氨塔设计成预热、蒸馏两个塔段,分别用于脱除溶液中的游离氨、二氧化碳和固定氨。 正压蒸氨工艺流程为:含氨溶液由储罐用泵送至高位槽,该槽配备有溢流管以保持恒定的液位。母液通过定量自动调节阀被送入蒸氨塔的冷凝器,与塔内的氨气进行间接换热,初步升温的母液温度可达60~70℃,然后进入蒸氨塔的预热段。母液在预热段里与蒸馏段和预灰桶来的气体继续逆流直接换热,升温到100℃左右。将溶液中的碳酸盐分解,CO2基本除净。预热母液离开预热段后,自流压入预灰桶。往预灰桶内加入石灰乳,经搅拌混合,再次利用位差溢流入蒸氨塔的蒸馏段。蒸馏段的底圈通入新鲜蒸汽,塔内气、液逆流接触,将液相中的氨通过复分解和升温提馏蒸出。预灰桶桶底的积砂间断地放入蒸馏段一起处理;而桶顶反应生成的氨气与蒸馏段蒸出的氨气分别进入到蒸氨塔的预热段。蒸馏废液送氯化钙车间制氯化钙或排入废液、废渣处理场。 蒸馏段的主要化学反应有: 2N H4Cl+Ca(OH)2CaCl2+2N H3+2H2O, Ca(OH)2+H2CO3CaCO3+2H2O, (N H4)2SO4+Ca(OH)2CaSO4+2N H3+ 2H2O, Na2SO4+CaCl2CaSO4+2NaCl。 过滤母液组成见表1。 14 2005年第3期No.3,2005 聚氯乙烯 P olyvinyl Chloride 三废处理与综合利用 Ξ[收稿日期]2004-08-26 [作者简介]李永新(1972—),女,工程师,1996年毕业于河北工业大学化工系,从事氯碱生产、设计工作。

电石渣综合利用水泥生产线项目可行性研究报告

电石渣综合利用水泥生产线项目 可行性研究报告

目录 第1章总论 0 第2章市场分析 (21) 第3章原料与燃料 (28) 第4章生产工艺 (36) 第5章总图运输 (60) 第6章电气及生产过程自动化 (64) 第7章建筑工程 (73) 第8章给水、排水 (81) 第9章采暖、通风及空调 (88) 第10章节约与合理利用能源 (90) 第11章环境保护 (94) 第12章劳动安全与工业卫生 (106) 第13章消防 (111) 第14章组织机构及劳动定员 (116) 第15章建设进度安排设想 (119) 第16章投资估算 (121) 第17章技术经济分析与评价 (127) 第1章总论 1.1 项目概况和背景 1.1.1 项目概况 项目名称:电石渣综合利用水泥生产线项目 建设地点:寿阳县制氧厂

建设单位:XXXX市XXXX能源化工有限公司 法人代表:XXXX 1.1.2 企业概况 XXXX市XXXX能源化工有限公司是由内蒙古XXXX有限责任公司在XXXX 市组建的新公司,内蒙古XXXX有限责任公司是在原内蒙古黄河化工集团公司的基础上,经国家经贸委批准以债转股的方式于2002年3月26日组建的有限责任公司,是乌海市大化工基地的骨干企业,也是内蒙古自治区60户重点企业之一,有着多年氯碱、聚氯乙烯生产经验,和有着强大的技术队伍。注册资金为18615万元。经营范围PVC树脂、烧碱、电石、液氯、盐酸、编织袋;机械加工修理、非标件制作、白灰生产。主要产品PVC树脂、烧碱。公司下设氯碱厂、树脂厂、电气厂、机修厂,共有职工400人,专业技术人员123人,经过多年的化工生产技术改造,培养和锻炼了一批技术过硬、经验丰富的专业技术力量。目前企业经营正常,效益良好。 XXXX有限责任公司坐落在内蒙古西部著名的资源性工业城市乌海市,该地区矿产资源丰富,交通便利,黄河流经市区、包兰铁路、京藏高速、110、109国道穿市而过,新建的乌海飞机场正式投入使用。该市是内蒙古自治区依托资源开发,发展循环经济的重要基地。 1.1.2项目背景 2005年,XXXX有限责任公司投资5000多万元,对PVC生产线进行技改,现年产PVC树脂5万吨,烧碱5万吨及液氯、盐酸等,该生产线每年排电石渣8万吨(干基)。在“西部大开发”战略的指引下,XXXX有限责任公司将继续以技术创新为动力,不断增强市场竞争力,扩大企业生产规模。

利用电石渣生产水泥工艺设计完稿

利用电石渣生产水泥工艺设计完稿 1 2020年5月29日

学号: 河北联合大学成人教育 毕业论文(设计说明书) 论文题目: 利用电石渣生产水泥工艺设计 学院: 河北联合大学继续教育学院 专业: 班级: 2020年5月29日

姓名: 张裕源 指导教师: 年 9 月 4 日 河北联合大学成人教育毕业论文(设计说明书) 利用电石渣生产水泥工艺设计 学院: 河北联合大学继续教育学院 专业: 班级: 姓名: 1 2020年5月29日

指导教师: 年 9 月 4 日 摘要 水泥是一种重要的基本建设物质,水泥不但大量应用于工业与民用建筑,还广泛应用于交通、水利、农林以及海港等工程,水泥工业具有广阔的前景。 本文设计内蒙古某公司年产200万吨电石渣制水泥项目,本项目使用内蒙古某氯碱公司生产聚氯乙烯所产生的废料电石渣,解决了电石渣占用大量的土地,污染环境的问题。本文对该水泥企业各工艺流程进行设计并依据化工原理对水泥厂各系统化工反应及物料配比进行设计,并说明利用电石渣生产水泥各个化工参数的控制及调整。 结果表明,该项目充分利用内蒙古地区丰富的煤电优势、石灰石资源,利用附近工厂的电石渣,处理了环境污染,同时变废为宝,取得较好的经济效益。该项目技术可靠,装置布置合理,经济效益显著,建设该项目是可行的。 2 2020年5月29日

关键词:水泥,电石渣,化工设计,工艺设计 目录 1 前言 (6) 2 硅酸盐水泥的技术指标 (6) 2.1制造水泥的组分材料 (6) 2.2硅酸盐水泥的标号 (7) 2.3硅酸盐水泥的技术指标(品质指标) (7) 2.4硅酸盐熟料的组成 (9) 3 2020年5月29日

电石渣中氯离子对水泥窑生产的影响的报告

电石渣中氯离子对水泥窑生产的影响的报告我公司从5月份起,频繁出现预热器堵塞事故,针对这种情况,公司组织技术人员进行分析,从原材料和操作多方面进行分析研究,发现造成预热器频繁堵塞主要原因是生料中氯离子严重超过行业内控制范围,针对生料中氯离子来源做调查,发现主要是电石渣带来的。 利用电石渣生产水泥,需要严格控制电石渣中氯离子含量,大量研究结果表明,原料中过高的氯离子含量会严重影响预分解窑的稳定生产,其主要表现为预热器系统的频繁堵料,窑尾烟室结皮堵塞,甚至下料溜筒结皮,窑内长厚窑皮,结圈等,经过长期试验和生产经验,水泥窑生产中生料的氯离子含量要小于0.015%到0.020%,如果超过0.020%就会容易出现预热器堵塞,大连小野田公司和山西新绛威顿水泥都遇到该种情况,其生料氯离子含量在0.020%到0.025%。目前我公司就面临这个问题,由于电石渣中的氯离子含量严重超过设计院给定指标0.03%,导致生料中氯离子也超过0.015%到0.020%多倍,导致目前预热器频繁出现堵塞,严重影响生产线的运行。 对于5月份到目前的数据进行统计如下: 表一我公司5月份进厂电石渣中氯离子含量

表二5月份预热器堵塞情况

表三我公司6月份12日进厂电石渣中氯离子含量 表四预热器堵塞及堵塞物料氯离子含量 由于原材料电石渣带入的氯离子过高,再生产过程又出现富集,

造成入窑生料的氯离子含量比行业内控制要求都高很多,具体如下:表五入窑生料氯离子含量 国外部分重要水泥设计和水泥公司对生料中氯离子有害成分含量的规定 生料中的氯离子在预热器中与碱形成氯化碱,氯化碱的熔点低,最低熔点在650到700度,其以熔融态粘附在物料表面形成液相粘膜,

电石渣制水泥迎来机遇

电石渣制水泥迎来机遇 由于我国石油资源短缺,而煤炭和石灰石资源较为丰富,结合目前氯碱行业的现状,采用电石法生产PVC,在我国PVC行业具有十分重要的意义,但电石渣对环境的影响一直是电石法生产PVC的难题。早在2005年,发改委、科技部和环保总局共同发布的《国家鼓励发展的资源节约综合利用和环境保护技术》中,电石渣综合利用技术就榜上有名。随着循环经济理念日渐深入人心,利用电石渣生产水泥也成为电石法PVC企业关注的焦点,电石渣制水泥生产线也纷纷上马,一些水泥生产厂家还争相从氯碱企业购买电石渣。 昔日废渣今受宠 近两年,电石法PVC生产企业通过技术改进和加强管理,在节能降耗等方面取得了很大进步,电石法PVC产品品质已经基本可以与乙烯法路线相抗衡。但电石渣却仍是制约电石法PVC企业发展的瓶颈,每生产1吨PVC就要产生1.5~1.9吨固态的氢氧化钙,不仅需要占用大量的土地,还会造成水源污染。具有一定规模的电石法PVC生产企业每年生成的电石渣非常可观,许多企业就因为无法处理这些副产品而影响生产规模的扩大。 而随着城市化建设步伐的加快,对水泥的需求持续增加,水泥行业有着广阔的市场和发展前景。年产10万吨PVC生产企业一年大约产生30万吨电石渣(含水40%),可将乙炔发生器的溢流液和排渣液初步沉淀除去杂质后,经过滤装置压滤得到含水30%的电石渣和滤液,电石渣再送去烧制水泥,滤液经过冷却后返回代循环水使用。 利用电石渣制水泥,既解决了环境污染问题,又给企业带来新的效益,很多电石法PVC生产企业配套电石渣制水泥项目,水泥生产厂家也争相购买电石渣。企业以前处理电石渣要花费大量的资金,而现在刚产生出来的电石渣就被运走了,昔日的废渣如今成了香饽饽。 企业争吃香饽饽 电石渣生产水泥主要有干法和湿法两种工艺。因为干法要增加电石渣烘干工艺,增加投资,且含 水40%的湿电石渣颗粒较细,较难烘干,烘干后又易吸收水分返潮,能耗较大,国内生产企业多采用湿法生产工艺。 前不久在新疆乌鲁木齐奠基的利用电石渣替代石灰质天然原料制水泥项目,由新疆天山水泥股份有限公司和中泰化学股份有限公司共同投资建设,计划于年底投产。中泰化学生产PVC所产生的废料电石渣,正是天山股份生产水泥所需要的主要原料,这一项目建成后,一个完全按照“资源―生产―产品―消费―废弃物―再资源化”模式进行生产的新型水泥生产企业将正式诞生,每年可节省石灰质天然原料60万吨,年生产熟料48万吨,对电石渣的综合利用将达到最大化。 此外,新疆天业与20万吨PVC项目配套的35万吨电石渣制水泥生产线于去年投产,产品深得用户好评,今年还要配套40万吨PVC项目新上75万吨熟料和100万吨水泥项目。宜宾天原投入巨资开发引进先进的电石渣生产水泥工艺,建成全废渣制水泥生产线,用电石渣造出了高标号水泥,每年的经济效益可观。 专家指点发展路 中国水泥协会专家指出,发展电石渣在水泥制造方面的应用,重点要强调技术与经济相结合。2006年我国水泥产量突破12亿吨,已经连续多年位居世界第一。一方面水泥需求总量减缓,小水泥供给过量;另一方面大量的道路、桥梁、高层建筑等大型基础设施工程与结构所需的高标号水泥不能满足需求。

用电石渣代替生石灰与石灰石的研1

用电石渣代替生石灰与石灰石的研究 藏疆文张群王梅菊 摘要本文从电石渣的理化性能、对烧结矿产质量的影响、烧结矿的矿物组成与显微结构、烧结矿成本等方面研究了用电石渣代替生石灰与石灰石生产烧结矿的可行性,结果表明,可以用电石渣代替部分或全部石灰石与生石灰。用电石渣代替石灰石时,原料成本变化不大;用电石渣代替生石灰时,每配加1t电石渣,可降低烧结矿生产成本62.40元。1.引言 我国电石主要用于生产乙炔,然后进一步用于生产聚氯乙烯(PVC)、醋酸乙烯、氯丁橡胶、三氯乙烯、四氯乙烯、双氰胺等化工产品,以及用于金属加工业(切割焊接等)。我国2004年共消费电石540万t,其中:生产聚氯乙烯消耗电石约340万t,生产醋酸乙烯等其它化工产品消耗电石约100万t,金属加工业消耗电石约100万吨. 电石渣是由电石加水生成乙炔气过程中产生的废渣,电石渣的主要成分是Ca(OH)2,它的化学反应式为CaC2十H2O=C2H2 + Ca(OH)2 根据计算,每使用1t纯电石,大约要生成1.16t电石渣。仅2004年,我国就产生600多万t电石渣。目前,对电石渣的利用主要有两个方面,一是用于建筑工业,如制水泥、煤渣砖等;另一方面是用于环境治理,如酸性污水处理、污泥脱水、烟气脱硫等。通过这些途径仅利用了部分电石渣,仍有大量电石渣未被利用。电石渣的大量堆放既占用了大量的土地资源,又污染了环境。因此,如何合理利用电石渣是一个待解决的问题。 在生产烧结矿过程中,需在烧结料中配加碱性熔剂,其目的在于:(1)获得一定碱度烧结矿,使高炉冶炼时不加或少加熔剂,以利于提高高炉冶炼强度,降低焦比;(2)在烧结过程中,熔剂中的碱性物质CaO及MgO可以与矿粉中的酸性脉石Si02及Al2O3组成低熔点物质,从而在燃料消耗较低的情况下,获得足够的液相以改善烧结矿的强度及冶金性能(还原性);(3)烧结配加生石灰,可以改善混合料的成球性。 目前,烧结生产过程中使用的碱性熔剂包括:白云石、石灰石及生石灰等。电石渣的主要成分为Ca(OH)2,而生石灰加水反应后生成物的主要成分也为Ca(OH)2;石灰石的主要化学成分为CaCO3,纯石灰石的理论CaO含量为56%,CO?为44%。因此,从 成分上看,可以用电石渣代替生石灰与石灰石生产烧结矿。 与生石灰、石灰石相比,用电石渣作熔剂有如下优点:(1)电石渣是化工厂急需处理的废渣,如能在生产烧结矿的过程中加以利用,则一方面可以避免电石渣占用大量土地,另一方面可以解决电石渣对环境的污染;(2)电石渣的价格较低,可以降低烧结矿生产成本。 为寻找电石渣对烧结生产的影响规律,我们开展了用电石渣代替生石灰与石灰石的研究。 2原料条件 本次试验所用原料均取自生产现场,原料的化学成分见表1。由表1知,电石渣的CaO 含量较高,Si02等杂质含量较低。 表1原料的化学成分

电石渣综合利用水泥生产线项目可行性研究报告

电石渣综合利用水泥生产线项目 可 行 性 研 究 报 告

目录 第1章总论0 第2章市场分析20 第3章原料与燃料26 第4章生产工艺33 第5章总图运输59 第6章电气及生产过程自动化63 第7章建筑工程72 第8章给水、排水79 第9章采暖、通风及空调86 第10章节约与合理利用能源87 第11章环境保护91 第12章劳动安全与工业卫生104 第13章消防108 第14章组织机构及劳动定员113 第15章建设进度安排设想117 第16章投资估算119 第17章技术经济分析与评价125 第1章总论1.1 项目概况和背景 1.1.1 项目概况 项目名称:电石渣综合利用水泥生产线项目 建设地点:寿阳县制氧厂

建设单位:XXXX市XXXX能源化工XX 法人代表:XXXX 1.1.2企业概况 XXXX市XXXX能源化工XX是由XXXXXXXX公司在XXXX市组建的新公司,XXXXXXXX公司是在原XX黄河化工集团公司的基础上,经国家经贸委批准以债转股的方式于2002年3月26日组建的XX公司,是XX市大化工基地的骨干企业,也是XX自治区60户重点企业之一,有着多年氯碱、聚氯乙烯生产经验,和有着强大的技术队伍。注册资金为18615万元。经营X围PVC 树脂、烧碱、电石、液氯、盐酸、编织袋;机械加工修理、非标件制作、白灰生产。主要产品PVC树脂、烧碱。公司下设氯碱厂、树脂厂、电气厂、机修厂,共有职工400人,专业技术人员123人,经过多年的化工生产技术改造,培养和锻炼了一批技术过硬、经验丰富的专业技术力量。目前企业经营正常,效益良好。 XXXXXX公司坐落在XX西部著名的资源性工业城市XX市,该地区矿产资源丰富,交通便利,黄河流经市区、包兰铁路、京藏高速、110、109国道穿市而过,新建的XX飞机场正式投入使用。该市是XX自治区依托资源开发,发展循环经济的重要基地。 1.1.2项目背景 2005年,XXXXXX公司投资5000多万元,对PVC生产线进行技改,现年产PVC树脂5万吨,烧碱5万吨及液氯、盐酸等,该生产线每年排电石渣8万吨(干基)。在“西部大开发”战略的指引下,XXXXXX公司将继续以技术创新为动力,不断增强市场竞争力,扩大企业生产规模。

电石渣代替石灰在氧化铝生产中的研究

第32卷第1期2017年2月 资源信息与工程 V〇i.32 M>1 February 2017电石渣代替石灰在氧化铝生产中的研究 夏杰,潘军,王亚莉,韩敏霞,李海鹏 (内蒙古鑫旺再生资源有限公司,内蒙古鄂尔多斯014300) 摘要:研究了固体废弃物电石渣代替生石灰在氧化铝中的应用,主要对电石渣应用于拜耳法氧化铝生产中的可 行性、安全性、经济性进行了研究,分析能否利用电石渣代替生石灰,以达到降低生产成本的目的。 关键词:电石渣;生石灰;拜耳法;氧化铝 中图分类号:TQ161 文献标识码:A文章编号:2096-2339(2017)01-0084-02 目前在拜耳法氧化铝生产中,普便采用生石灰来去 除铝土矿中的杂质。生石灰的主要有效成分是CaO,电石渣的主要有效成分是Ca(OH)2,生石灰在循环母液中 与水会首先生成Ca(O H)2,理论上两种化学性质相同的 物质应该能相互代替。但目前国内氧化铝厂中还没有这 方面成熟的经验,加上电石渣里含有大量的杂质,可能会 影响溶出性能。其中含有少量CaC2与水反应能产生可 燃气体乙炔C2H2,如果出现在溶出工序后的乏汽中,可 能存在安全隐患。虽然两者性质相同,但加人电石渣后 溶出赤泥A/S、N/S能否达到要求都是我们需要探讨的。1实验内容 1.1对电石渣筛分实验 在电石渣化灰过程中,有一部分大颗粒需要振筛机 除去,实验模拟的工业振筛机,用50*、140*、200#筛对电 石渣进行分级筛选,观察电石渣中的大颗粒和杂质能否 进人粗粒度部分,从而将杂质分离出来。取电石渣配制 150~200 g/L的固含,搅拌均匀后倒人50#、140#、200#筛 中,得到筛上物成分分析如表1所示。 表1筛上物成分分析 样品名称叫/%CaO/%质量/g 实验电石渣 2.5956.0571.28 50#筛上电石渣 3.4445.7112.41 140#筛上电石渣 2.7955.2210.84 200#筛上电石渣 2.4258.3530.73 实验结果:筛分后得到,粒度越小杂质越少,50#筛中 的CaO含量明显较低,可以用振动筛去除,筛出粗颗粒 占17.41%,在50#筛下成分与筛分前相差不大,实际应用 中选用50#筛振筛机可满足要求。 1.2模拟预脱硅过程中排出气体实验 由于电石渣中还含有一部分CaC2,在碱性环境中会 生成Ca(OH)2 *C2H2,模拟氧化铝生产95丈脱硅槽中,用循环母液与电石渣混合,能释放的气体的速度和体积,观察在脱硅槽有效停留时间内,能否让电石渣中余下的 CaC2反应完成。 把= 240 g/L的循环母液300 mL倒人500 m L的锥形瓶中,再加人6.12 g干电石渣。把锥形瓶用塞子盖 好后放人恒温水浴锅中,温度设定95丈恒温,量筒装满 水倒扣人水槽,测量不同时间进人气体的体积如表2 所示。 表2不同时间的气体体积 时间/m in体积/mL 50.5 1015 2024 2541 3063 3575 4085 45115 55135 60160 70180 90180 120180 实验表明:每1g干电石渣能够释放出41 mL气体,在95丈温度下,前70 min—直以平稳的速度释放气体,70 min达到终点,氧化铝生产预脱硅时间为6~8 h,说明 在脱硅槽内有充足的时间反应,这部分气体不会进人溶 出的乏气系统,乙炔气体在预脱硅槽中排放到空气中。1.3模拟电石渣代替石灰进行溶出实验 (1)模拟在脱硅槽加人电石渣溶出实验。取电石渣 直接配料加人,相当于把电石渣不经过磨机,直接加人脱 硅槽。下表显示是不同电石渣配比时,对溶出赤泥A/S 和N/S的影响,同时作了电石渣和石灰在同等溶出条件 下的对比,如表3所示。 作者简介:夏杰(1982-),男,重庆人,本科,工程师,从要从事氧化铝生产相关的研究 —84 —

相关文档
最新文档