7.1空间解析几何简介

合集下载

空间解析几何

空间解析几何

图1.1 空间解析几何空间解析几何是在三维坐标系中,用代数方法研究空间曲面和曲线性质的一个数学分支。

这份讲义主要介绍线性空间中向量的线性运算,向量内积、外积和混合积,并讨论直线、平面和各类二次曲面。

这些知识是学习多元微积分的必要准备。

§1 空间直角坐标系我们知道,建立了平面直角坐标系后,平面上的每一点都与其坐标一一对应,这样就定量地确定了平面上的任一点位置。

为了定量地确定空间上每一点的位置,我们需要建立空间直角坐标系。

在空间取定一点O ,过点O 作三条相互垂直的数轴,它们都以O 为原点,且都取相同的长度单位。

这三条数轴通常分别称为x 轴,y 轴和z 轴,统称坐标轴。

它们的正方向要符合右手定则,即以右手握住z 轴,当右手的四个手指从x 轴正向以2/π角度转向y 轴正向时,拇指的指向就是z 轴的正向。

这样的三条坐标轴就组成了一个空间直角坐标系。

点O 称为坐标原点,简称原点。

习惯上把x 轴和y 轴配置在水平面上,而z 轴则铅垂向上,当然它们要符合右手定则。

由x 轴和y 轴确定的平面称为Oxy 平面,由y 轴和z 轴确定的平面称为Oyz 平面,由z 轴和x轴确定的平面称为Ozx 平面。

统称坐标平面。

三张坐标平面把空间分成八个部分,每一部分叫做卦限。

含有x 轴,y 轴和z 轴正半轴的那个卦限称为第I 卦限,第II 、第III 、第IV 卦限在Oxy 平面上方,依逆时针方向依次确定。

第V 、VI 、VII 、VIII 卦限在Oxy 平面下方,由第I 卦限之下的第V卦限,依逆时针方向依次确定。

对于空间上的任一点M ,过点M 作三张平面分别垂直于x 轴,y 轴和z 轴,且与这三个轴分别交于P ,Q ,R 三点(见图1.1),这三点在x 轴,y 轴和z 轴的坐标依次为z y x ,,,那么点M 唯一确定了一个3R 中的元素),,(z y x (此处,我们用行向量来表示向量);反之,对于3R 中的元素),,(z y x ,分别在x 轴,y 轴和z 轴上取坐标为z y x ,,的点P ,Q ,R ,然后通过P ,Q ,R 分别作垂直于x 轴,y 轴和z 轴平面。

人教版数学七年级下册--7.1平面直角坐标系 解析几何简介

人教版数学七年级下册--7.1平面直角坐标系  解析几何简介

解析几何简介十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。

比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体试验着抛物线运动的。

这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,原先的一套方法显然已经不适应了,这就导致了解析几何的出现。

1637年,法国的哲学家和数学家笛卡尔发表了他的著作《方法论》,这本书的后面有三篇附录,一篇叫《折光学》,一篇叫《流星学》,一篇叫《几何学》。

当时的这个“几何学”实际上指的是数学,就像我国古代“算术”和“数学”是一个意思一样。

笛卡尔的《几何学》共分三卷,第一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和“超立体”的作图,但他实际是代数问题,探讨方程的根的性质。

后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。

从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种“普遍”的数学,把算术、代数、几何统一起来。

他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。

为了实现上述的设想,笛卡尔茨从天文和地理的经纬制度出发,指出平面上的点和实数对(x,y)的对应关系。

x,y的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。

这就是解析几何的基本思想。

具体地说,平面解析几何的基本思想有两个要点:第一,在平面建立坐标系,一点的坐标与一组有序的实数对相对应;第二,在平面上建立了坐标系后,平面上的一条曲线就可由带两个变数的一个代数方程来表示了。

从这里可以看到,运用坐标法不仅可以把几何问题通过代数的方法解决,而且还把变量、函数以及数和形等重要概念密切联系了起来。

解析几何的产生并不是偶然的。

在笛卡尔写《几何学》以前,就有许多学者研究过用两条相交直线作为一种坐标系;也有人在研究天文、地理的时候,提出了一点位置可由两个“坐标”(经度和纬度)来确定。

高教社2024高等数学第五版教学课件-7.1 空间解析几何

高教社2024高等数学第五版教学课件-7.1 空间解析几何
(, 0,0) ,y轴上点的坐标为 (0, , 0) ,z轴上点的坐标为 (0,0, ) ;
平面上点的坐标为(, , 0),平面上点的坐标为
(0, , ),平面上点的坐标为(, 0, ).
2.两点间距离公式
类似于平面上任意两点的距离,对于空间直角坐标系中任意
点1 (1 , 1 , 1 ),2 (2 , 2 , 2 )可以推出1 、2 的距离公式为:






( ) = ()
( + ) = +
( + ) →
= →
+→

其中、都是实数.




设 是一个非零向量,常把与 同方向的单位向量记 ,


则 =




,且±




均是与→
平行的单位向量(同向或反向
的两向量称为平行向量).

= {1 , 1 , 1 }.
例2

→ → →


已知 = {2, −1,3}, = {1,2, −2},求 + , − ,


3 + 2 .


解 + = {2 + 1, −1 + 2,3 + (−2)} = {3,1,1},


− = {2 − 1, −1 − 2,3 − (−2)} = {1, −3,5},
定义2
设→
是一个非零向量,是一个非零实数,则→
与的
乘积仍是一个向量,记作 →

7.1空间解析几何基本知识

7.1空间解析几何基本知识
8
由以上规定知道: 坐标原点O的坐标为(0, 0, 0)
z
x轴上点的坐标为(x , 0, 0)
y轴上点的坐标为(0, y, 0)
z轴上点的坐标为(0, 0, z) xy面上点的坐标为(x, y, 0) yz面上点的坐标为(0, y, z) xz面上点的坐标为(x, 0, z)
9
y x
二. 空间两点间的距离
给定空间两点 M1 ( x1 , y1 , z1 )与 M2 ( x2 , y2 , z2 ), 可证明这两点 间的距离 d 为
d M1 M 2 ( x2 x1 )2 ( y2 y1 )2 ( z2 z1 )2
这与平面解析几何中两点间的距离公式是一样的. 过 M1 , M2各作三个分别垂直于三条坐标轴的平面. 这六个平面围成一个以 M1 M 2 为对角线的长方体; (如下图)
F ( x, y, z ) 0或z f ( x, y)
……(7.1.3)
有如下关系: (1) 曲面
Σ 上的任意点 的坐标都满足方程
(7.1.3);
(2) 不在曲面
Σ 上的点的坐标都不满足方程 (7.1.3);
则称方程(7.1.3)是曲面 Σ的一般方程,而曲面 Σ 是方程(7.1.3) 的图形. (如图7.1.5)
从而所求平面方程为 得 消去D,
x y z 1 a b c
该方程称为平面的截距式, 其中 a、b 和 c 分别称为平面在 z x 轴、y 轴和 z 轴上的截距。 c 如图7.1.9 : x
O o
b
图7.1.9
y
23
a
2) 常见二次曲面及方程 (1) 球面 以定点 M0 ( x0 , y0 , z0 ) 为球心,半径为R的球面,可以看作是 动点 M ( x , y , z ) 与球心 M0 ( x0 , y0 , z的距离相等的点的轨迹 ,即 0)

空间解析几何

空间解析几何

空间解析几何空间解析几何是三维空间中研究点、线、面等几何对象的数学分支。

通过坐标系和向量等数学工具,可以描述和分析三维空间中的几何形状、位置关系和运动方式。

本文将介绍空间解析几何的基本概念、坐标系、向量运算和几何性质,并应用于实际问题。

一、空间解析几何的基本概念在空间解析几何中,我们首先需要了解点、直线、平面和空间的基本概念。

1. 点:点是空间中最基本的几何对象,用坐标表示。

在三维空间中,一个点可以由三个坐标确定,分别表示其在x轴、y轴和z轴上的位置。

2. 直线:直线是由无数个点组成的,在空间中没有宽度和厚度。

直线可以由一个点和一个方向向量确定,或者由两个不重合的点确定。

3. 平面:平面是由无数个点组成的,在空间中有宽度但没有厚度。

平面可以由一个点和两个不共线的方向向量确定,或者由三个不共线的点确定。

4. 空间:空间是由所有的点组成的,是点的集合。

在空间中,我们可以研究点、直线、平面和它们之间的相互关系。

二、空间解析几何的坐标系为了方便描述和计算,在空间解析几何中常常使用坐标系来表示点、向量和几何对象。

常用的坐标系有直角坐标系和柱面坐标系。

1. 直角坐标系:直角坐标系由三个相互垂直的坐标轴构成,分别是x轴、y轴和z轴。

在直角坐标系中,点的坐标表示为(x, y, z),它们分别表示点在x轴、y轴和z轴上的投影长度。

2. 柱面坐标系:柱面坐标系由极径、极角和高度构成。

极径表示点到z轴的距离,极角表示点在xy平面上的投影与x轴正半轴之间的夹角,高度表示点在z轴上的投影长度。

三、空间解析几何的向量运算在空间解析几何中,向量是一个有大小和方向的量。

向量可以表示位移、速度、力等物理量,也可以用来表示线段、直线、平面等几何对象。

1. 向量的表示:在空间解析几何中,向量通常用有序数组表示,如a = (a₁, a₂, a₃)。

其中,a₁、a₂和a₃分别表示向量在x轴、y轴和z轴上的分量。

2. 向量的运算:空间解析几何中的向量运算包括加法、减法、数乘和点乘等。

空间解析几何

空间解析几何

空间解析几何.求解答过程谢谢.空间解析几何是一种系统的空间几何学,它使用简单的几何元素,如点、线段、面和体,来推理复杂的空间结构。

求解空间几何问题的基本步骤是:1.准备所需的元素;2.根据定义、定理和原理解释该空间结构的构造;3.对空间变换和其它变换进行适当的推理。

空间解析几何是一门探究物体的定位和形状的学科。

它集合了几何、微积分、代数、物理和计算机科学等多项学科协同创新,并使用数学解决一些空间问题的解决方法。

本文的目的是介绍空间解析几何的基本概念,并通过实例给出求解空间问题的步骤。

一、什么是空间解析几何空间解析几何(Spatial Analytic Geometry)是探究物体的定位和形状的学科,也可以叫做空间几何学。

它集合了几何、算术、代数、物理和计算机科学等多项学科、术语和概念,应用数学解决解析几何问题,研究方式综合多元素、多模态。

它不仅涉及形状和位置的探究,还有基于图像的空间加工、性能分析和可视化的处理,是一门相当丰富的学科。

二、空间解析几何主要概念1、坐标定位:坐标定位是将物体定位于一个特定的位置的表示方法,股票投资者可以使用坐标定位来实现多轴上的测量。

2、几何形体量度:用以测量几何形状的各种参量,如内接圆直径,面积,体积等,常用于测量地形面、工程坑槽等三维物体。

3、平面投影:使用几何学方法将三维物体投射到二维平面上,用以分析物体的位置、形状和尺寸等。

4、位置运算:位置运算是一种基于位置的算法,可以用于分析几何对象之间的关系。

三、空间解析几何求解过程1、收集数据:空间解析几何需要收集几何形状相关的位置数据,并按照特定格式用计算机处理这些数据。

2、定义几何形状:将收集到的数据用定义空间几何形状的方法(如坐标定位、几何沿面记号法等)转换成一系列几何内容。

3、应用计算机:针对这些定义的几何形状,可使用计算机空间分析技术,建立计算机模型,实现物体的分析和可视化。

4、结果统计:根据模拟或实际的空间物体分析数据,进行分析处理,得出完整的结果统计。

《解析几何》课程简介

《解析几何》课程简介

《空间解析几何》课程简介
《空间解析几何》
Spatial Analytic Geometry
课程简介:
《空间解析几何》是高等学校本科数学与应用数学专业的一门专业基础基础课,是初等数学通向高等数学的桥梁,乃数学专业课的基石.空间解析几何是用坐标法,把数学的基本对象与数量关系密切联系起来,它对整个数学的发展起了很大作用.
本课程主要内容为向量与坐标,轨迹与方程,平面与空间直线,柱面、锥面、旋转曲面与二次曲面,二次曲线与二次曲面的一般理论.
通过本课程的学习,使学生能理解和掌握《空间解析几何》的基本知识,基本理论,基本方法;培养学生的空间想象能力,娴熟的向量代数的计算能力和逻辑思维能力,以及解决问题的能力,并为后继课程的学习和进一步深造打下良好的基础.
教材:
《解析几何》第四版,吕林根许子道等编,高等教育出版社,2006年6月.
主要参考书:
1.《解析几何》丘维生编,北京大学出版社,1996年.
2.《空间解析几何》,王敬庚傅若男编,北京师范大学出版社,2004年;
3.《解析几何学习辅导书》,吕林根编,高等教育出版社,2006年5月第一版;
4.《解析几何》[苏]A.B波格列诺夫著,姚志亭译,吴祖基校,人民教育出版社,1982年3月.。

空间解析几何简介

空间解析几何简介

四、空间曲线
空间曲线C可看作空间两曲面的交线 空间曲线 可看作空间两曲面的交线. 可看作空间两曲面的交线
F ( x, y, z ) = 0 G ( x , y , z ) = 0
空间曲线的一般方程 特点: 特点:曲线上的点都满足 方程, 方程,满足方程的点都在 曲线上, 曲线上,不在曲线上的点 不能同时满足两个方程. 不能同时满足两个方程
交线为椭圆. 交线为椭圆
五、常见曲面
(一)椭球面
x2 y2 z2 1 2 + 2 + 2 = a b c
椭球面与 三个坐标面 的交线: 的交线:
2 z2 x2 + 2 = 1 , a c y = 0
2 y2 x2 + 2 = 1 , a b z = 0
2 y2 2 + z2 = 1 . b c x = 0
2 2
2
( x − 2)2 + ( y + 1)2 + ( z − 4)2 , =
化简得所求方程 2 x − 6 y + 2 z − 7 = 0.
2 2 的图形是怎样的? 例4 方程 z = ( x − 1) + ( y − 2) − 1的图形是怎样的?

根据题意有 z ≥ −1
去截图形得圆: 用平面 z = c 去截图形得圆:
z
S1 S2
o
x
C
y
x2 + y2 = 1 表示怎样的曲线? 例1 方程组 表示怎样的曲线? 2 x + 3 y + 3z = 6
解 表示圆柱面, x 2 + y 2 = 1 表示圆柱面, 表示平面, 2 x + 3 y + 3 z = 6 表示平面,

空间解析几何

空间解析几何

空间解析几何1. 引言空间解析几何是解析几何学中的一个分支,主要研究空间中的点、直线、平面之间的关系和性质。

它通过使用代数方法来解决几何问题,是几何和代数相结合的重要工具。

本文将介绍空间解析几何的相关概念和基本原理,并提供一些例题来帮助读者更好地理解和应用这些知识。

2. 空间直角坐标系空间解析几何的基础是空间直角坐标系。

一个空间直角坐标系可以由三条两两相交且相互垂直的坐标轴来确定,通常分别称为x轴、y轴和z轴。

在这个坐标系中,空间中的任意一点P可以通过三个有序实数(x, y, z)来表示,其中x、y和z分别表示P在x轴、y轴和z轴上的坐标。

3. 点、直线和平面在空间解析几何中,点、直线和平面是最基本的几何元素。

3.1 点点是空间中的一个位置,用有序实数(x, y, z)表示。

例如,点P(1, 2, 3)表示坐标为(1, 2, 3)的点P。

3.2 直线直线是由无数个点组成的,其中任意两点可以确定一条直线。

在空间解析几何中,一条直线可以用参数方程或者一般方程来表示。

例如,参数方程为:x = x0 + aty = y0 + btz = z0 + ct其中(a, b, c)是一条方向向量,表示直线的方向,(x0, y0, z0)是直线上的一个点,t为参数。

3.3 平面平面是由无限多个点组成的一个二维空间,其中任意三点不共线可以确定一个平面。

在空间解析几何中,一个平面可以用一般方程来表示。

例如,一般方程为:Ax + By + Cz + D = 0其中A、B、C和D是实数且不同时为零,(x, y, z)是平面上的一个点。

4. 空间解析几何的基本原理在空间解析几何中,有一些基本原理可以帮助我们求解空间几何问题。

4.1 距离公式空间中两点之间的距离可以通过距离公式来计算。

设A(x1, y1, z1)和B(x2, y2, z2)是空间中两点,其距离为:d = √((x2-x1)² + (y2-y1)² + (z2-z1)²)4.2 点到直线的距离设点P(x0, y0, z0)和直线L的参数方程为:x = x1 + aty = y1 + btz = z1 + ct点P到直线L的距离为:d = |(x0-x1)a + (y0-y1)b + (z0-z1)c| / √(a² + b² + c²)其中(a, b, c)是直线L的方向向量。

《高等数学》第7章空间向量与空间解析几何

《高等数学》第7章空间向量与空间解析几何
它们之间的距离为d = |M1M2|. 过点 M1 、M2 各作三个平面分别垂直 z 于三个坐标轴,形成如图的长方体. z2
d 2 M1M2 2
M1Q2QM 22
(△M1QM2 是直角三角形) M 1P2P2 Q Q2 M 2
z1 M1
P
(△M1PQ都是直角三角形)
x1
M 1 P 2P M 2 2Q2 M 2 x2
标式来表示向量M1M 2 与 2M1M2 .
2.已知 O A 4,1,5与O B 1,8,0,求向量AB
与 OAOB的坐标.
7.2 向量的数量积与向量积
掌握向量的数量积和向量积的定 义,能够灵活运用运算规律,并 熟训练使用判断向量平行或垂直 的条件.
7.2.1 向量的数量积
引例 设一物体在常力F 作用下沿直线从点M1移动 到点M2,以S 表示位移M1M 2,则力F 所做的功
C (2, 4, 7), 求 AB 的 C面积.
解:
根据向量积的定义,可
知 ABC 的面积为
S ABC
1 AB 2
AC sin A 1 AB AC . 2
由于 AB 2,2,2,AC 1,2,4,所以
i jk
AB AC 2 2 2 4 i 6 j 2 k
124
于是 S ABC
Oxyz ,点O 叫做坐标原点(或原点).
八封限
每两个坐标轴确定的平面称为坐标
平面,简称为坐标面.x 轴与y 轴所 确定的坐标面称为xOy面,类似地, 有yOz面,zOx面.
z




O
Ⅶx


Ⅵy
这些坐标面把空间分成八个部分,每一个部分称
为一个卦限.x、y、z 轴的正半轴的卦限称为第

7-1[2] 空间解析几何基本知识(1)

7-1[2] 空间解析几何基本知识(1)
2 2
38
例3. 求坐标面 xoz 上的双曲线 轴和 z 轴旋转一周所生成的旋转曲面方程. 解:绕 x 轴旋转 所成曲面方程为
分别绕 x
x y z 1 2 2 a c 绕 z 轴旋转所成曲面方程为
2 2 2
z
x y z 2 1 2 a c 这两种曲面都叫做旋转双曲面.
2 2 2
x
y
令 a cot
两边平方
L

M (0, y, z )
y
z2 a2 ( x2 y2 )
x
41
z 2 a 2 ( x 2 y 2 ) 该曲面叫圆锥面.
方程的特点: 三元二次齐次方程.
z
L
a 1时,z 2 x 2 y 2 叫标准圆锥面.
z x y 是上半圆锥面.
2 2
30
3、旋转曲面
(1)定义 以一条平面
曲线生成的曲面称为 旋转曲面. 这条定直线叫旋转曲 面的轴.曲线叫旋转 曲面的母线.
31
3、旋转曲面
(1)定义 以一条平面
曲线绕该平面上的
一条直线旋转一周
所生成的曲面称为 旋转曲面. 这条定直线叫旋转曲 面的轴.曲线叫旋转 曲面的母线.

2 2 旋转抛物面. x y 21 z
x y z 1 旋转双叶双曲面.
2 2 2
43
四、二次曲面
三元二次方程所表示的曲面称之. 二次曲面的定义: 其基本类型有: 椭球面、抛物面、双曲面、锥面. 相应地平面被称为一次曲面. 讨论二次曲面性状的截痕法: 用坐标面和平行于坐标面的平面与曲面 相截,考察其交线(即截痕)的形状,然后 加以综合,从而了解曲面的全貌. 以下用截痕法讨论几种特殊的二次曲面.

空间解析几何课程简介[共5篇]

空间解析几何课程简介[共5篇]

空间解析几何课程简介[共5篇]第一篇:空间解析几何课程简介空间解析几何课程简介本课程是大学数学系的主要基础课程之一。

主要讲述解析几何的基本内容和基本方法包括:向量代数,空间直线和平面,常见曲面,坐标变换,二次曲线方程的化简等。

通过学习这门课程,学生可以掌握用代数的方法研究空间几何的一些问题,而坐标法、向量法正是贯穿全书的基本方法。

2、选课建议数学专业的同学必选该课程。

该课程要求同学拥有良好的中学数学基础,建议在一年级选学。

3、教学大纲一、课程内容第一章矢量与坐标1.1矢量的概念1.2矢量的加法1.3数量乘矢量1.4矢量的线性关系与矢量的分解1.5标架与坐标1.6矢量在轴上的射影1.7两矢量的数性积1.8两矢量的失性积1.9三矢量的混合积*1.10三矢量的双重矢性积[说明]:本章系统地介绍了矢量代数的基础知识,它实质上是一个使空间几何结构代数化的过程。

为了更好地叙述矢量的向量积与混合积,我们需要补充行列式的一些基本知识。

第二章轨迹与方程2.1平面曲线的方程2.2曲面的方程2.3母线平行于坐标轴的柱面方程2.4空间曲线的方程[说明]:本章先介绍品面曲线平面曲线的方程,后快速过渡到曲面与空间曲线方程的研究,这样不仅使学生对平面轨迹的问题作了复习与提高,而且使得一些看来较为复杂的空间轨迹问题也就迎刃而解了。

第三章平面与空间直线3.1平面的方程3.2平面与点的位置关系3.3两平面的相关位置3.4空间直线的方程3.5直线与平面的相关位置3.6空间两直线的相关位置3.7空间直线与点的相关位置3.8平面束[说明]:本章用代数的方法定量地研究了空间最简单而又最基本的图形,即平面与空间直线,建立了它们的各种形式的方程,导出了它们之间位置关系的解析表达式,以及距离、交角等计算公式。

第四章柱面、锥面、旋转曲面与二次曲面 4.1柱面 4.2锥面4.3旋转曲面4.4椭球面4.5双曲面4.6抛物面4.7单叶双曲面与双曲抛物面的直母线[说明]:本章抓住几何特征很明显的柱面、锥面、旋转曲面去建立它的方程,又对于比较简单的二次方程,用“截痕法”去研究图形的性质。

高职课件《高等数学》第七章空间解析几何课件

高职课件《高等数学》第七章空间解析几何课件
第 7 章 空间解析几何
本章内容
1 空间直角坐标系和向量 2 向量的数量积与向量积 3 空间平面与直线的方程 4 曲面与空间曲线
7.1 空间直角坐标系和向量
7.1.1 空间直角坐标系
在空间取三条相互垂直空间直角坐标系 O-xyz。
利用前述负向量的概念,我们还可以定义两个向量 a 和 b 的差为:
a b = a b
按三角形法则,向量 a 和 b 的差 a b 的求法如下:把 a 与 b
的起点放在一起,则 a b 即是以 b 的终点为起点,以 a 的终点
为终点的向量(如图7-7所示)。
容易验证,向量的加法有下列运算规律:
通常把 x 轴,y 轴放置在水平平面上,z 轴垂直于水平平面,并 规定x 轴,y 轴和z 轴的位置关系遵循右手螺旋法则:右手四指握 拳,指向为x 轴的正向,然后四指沿握拳方向转向y 轴的正向,则大 姆指所指方向为z轴正向(如图7-1所示)
在空间直角坐标系O-xyz 中,点O 称为坐标原点,简称原点; x 轴,y 轴,z 轴又分别称为横轴、纵轴与竖轴,三条数轴统称为 坐标轴;由任意两条坐标轴所确定的平面称为坐标面,共有xOy、 yOz、zOx 三个坐标面;三个坐标面把空间分隔成八个部分,每个 部分依次分别称为第一、第二直至第八卦限,其中第一卦限位于x, y,z 轴的正向位置,第二至第四卦限也位于xOy面的上方,按逆 时针方向排列;第五卦限在第一卦限的正下方,第六至第八卦限
三角形法则还可以推广到求任意有限个向量的和。例如,已
知向量a ,b ,c ,d ,求 a + b + c + d 的和 AB。
根据自由向量的特点,只要依次把后一个向量的起点移至前 一个向量的终点上,然后从a的起点向d 的终点所引的向量就是四

《空间解析几何》课件

《空间解析几何》课件
了解空间解析几何在计算机图形 学中的应用,如3D建模、动画制 作等。
THANKS
感谢观看
通过参数方程表示曲面的形式,如x = x(u, v),y = y(u, v),z = z(u, v)。
曲面方程
表示三维空间中曲面的方程形式,如z = f(x, y)。
空间曲线的方程
1 2
参数曲线
通过参数方程表示曲线的形式,如x = x(t),y = y(t),z = z(t)。
空间曲线
表示三维空间中曲线的方程形式,如F(x, y, z) = 0。
空间解析几何的应用领域
总结词
空间解析几何在许多领域都有广泛的应用。
详细描述
在物理学中,空间解析几何用于描述物理现象的空间关系,如力学、电磁学和光学等领 域。在计算机图形学中,空间解析几何用于建模和渲染三维场景。在工程学中,空间解 析几何用于设计和分析机械、建筑和航空航天等领域中的物体和结构。此外,空间解析
03
空间平面与直线
空间平面的方程
平面方程的基本形式
Ax + By + Cz + D = 0
特殊平面
平行于坐标轴的平面、过原点的平面、与坐标轴垂直的平面
参数方程
当平面过某一定点时,可以用参数方程表示平面的方程
空间直线的方程
直线方程的基本形式
Ax + By + Cz = 0
特殊直线
与坐标轴平行的直线、过原点的直线、与坐标轴垂直的直线
利用代数方法,如向量运算、线性代数等, 求解空间几何问题。
几何意义
将代数解转化为几何意义,解释其实际意义 。
如何理解空间几何中的概念?
向量的概念
理解向量的表示、向量的加法、数乘以及向量的模 等基本概念。

7.1空间解析几何

7.1空间解析几何
b
例1 练习2 例2 练习3 例3 练习4 a 例4
a+b 练习1
二、新授 (二)向量的几何运算 1、向量的加减运算 由于向量是自由向量,即向量可以平行移动, 如果 把向量b平行移动,使向量b的起点与向量a 的终点重合, b 则由a的起点到b的终点的 a-b 向量亦是a与b的和向量 这种求两个向量和的方法称 a 为向量加法的三角形法则 例1 练习1 练习2 例2 练习3 三角形法则还可以推广到求任意有限个向量的和 例3
b a a-b
例1 练习2 例2 练习3 例3 练习4 例4
二、新授 (二)向量的几何运算 1、向量的加减运算 容易验证,向量的加法有下列运算规律 (1) a+b=b+a ; (交换律)
(2) (a+b)+c= a+(b+c); (结合律) (3) a+0= a;
例1 练习1 练习2 例2 练习3 例3 练习4 例4
例3 练习4 例4
§7.1向量及其运算
一、数学文化的介绍: 解析几何的创始人 笛卡尔【法国】
与皮克曼的交往,使笛卡儿对自己的数学 和科学能力有了较充分的认识,他开始认真探 寻是否存在一种类似于数学的、具有普遍使用 性的方法,以期获取真正的知识。
例1 练习1 练习2 例2 练习3 例3 练习4 例4
在中学物理中,我们曾学习过两类性质的量,一 类只有大小没有方向的量,如温度、质量、距离、 面积、体积等,这一类量称为数量(或标量). 既有大小又有方向、如力、速度、加速度等,这 一类量称为向量(或矢量). 向量通常可以用有向线段来表示,有向线段的 长度表示向量的大小,有向线段的方向表示向量 例1 练习1 练习2 B 例2 练习3 的方向(如图).

高等数学第7章 向量代数与空间解析几何

高等数学第7章 向量代数与空间解析几何

30
31
32
7.2.4 向量线性运算的坐标表示
33
34
35
36
7.2.5 向量数量积的坐标表达式 设有两个向量
37
38
39
40
41
42
43
44
习题7.2 A组 1.在空间直角坐标系中,指出下列各点在哪个卦 限.A(1,-2,3),B(2,3,-4),C(2,-3,-4), D( -2,-3,1)。 2.求点p( -3,2,-1)关于坐标面与坐标轴对称点 的坐标。 3.求点A( -4,3,5)在坐标面与坐标轴上的投影 点的坐标。
21
22
23
7.2 空间直角坐标系与向量的坐标表示
7.2.1 空间直角坐标系 在空间中任意选定一点O,过O点作三条相互垂直 且具有相同单位长度的数轴,分别称为x轴、y轴和z轴.x 轴、y轴和z轴要满足右手定则,即右手握住z轴,大拇 指指向z轴的正向,其余四个手指从x轴的正方向。
24
25
7.2.2 向量的坐标表示 设x轴、y轴、z轴正向的单位向量依次为i,j,k,如 图7.17所示。
第7章 向量代数与空间解析几何
空间解析几何是通过点与坐标的对应,把抽象的数 与空间的点统一起来,从而使得人们可以用代数的方法 研究几何问题,也可以用几何的方法解决代数问题.本章 首先介绍向量及其代数运算,然后以向量为工具研究空 间的直线与平面,最后讨论空间曲面与曲线的一般方程 和特点.
1
7.1 向量及其运算
12
13
(6)向量的数量积 1)数量积的概念在物理学中,如果物体受到恒力F 的作用,沿直线发生的位移s,设力F 与位移s的夹角为 θ,则力F对物体所做的功为 W =|F|·|s|·cosθ

空间解析几何简介课件

空间解析几何简介课件

一点 M 的线速度 的表示式 .
解: 在轴 l 上引进一个角速度向量 , 使 , 其
方向与旋转方向符合右手法则 , 在 l 上任取一点 O, 作
向径
它与 的夹角为 , 则
点 M离开转轴的距离
a r sin
a M

符合右手法则
l
v r
O
*三、向量的混合积
1. 定义 已知三向量 a , b , c , 称数量
设 P是 中3一个平面, VP 定义如上,则 中3 与二维子
空间VP 正交的非零向量称为平面P的法向量;平面 P的
所有法向量添上零向量组成 的3 一个一维子空间, 中3
以平面 的P法向量为方向向量的直线称为平面 的法P 线 。
a b c c Pr jc a b c Prjc a Prjc b
c Pr jc a c Pr jc b a c b c
4. 数量积的坐标表示
设 a ax e1 ay e2 az e3 , b bx e1 by e2 bz e3 ,则
( ax e1 ay e2 az e3 ) (bx e1 by e2 bz e3 )
内容小结
设 a (ax , ay , az ) , b (bx ,by ,bz ), c (cx , cy , cz )
1. 向量运算
加减: 数乘: 点积:
a b (ax bx , ay by , az bz )
a (ax ,ay ,az )
a b axbx ayby azbz
叉积:
i jk ab ax ay az
bx by bz
ax ay az
混合积: a b c ( a b ) c bx by bz
2. 向量关系:

高等数学:空间解析几何

高等数学:空间解析几何
定义7-2 向量a和b的模和它们夹角余弦的乘积,称为向量
a和向量b的数量积(内 积),这种运算也称为点乘,记作a·
b,即
由数量积的定义7-2以及向量夹角的定义7-1可以得到:
(1)a·
a=|a|2;
(2)向量a 和向量b 互相垂直的充分必要条件是a·
b=0.
空间解析几何
两个向量的数量积满足下列运算规律:
当向量a和b至少有一个是零向量时,规定其夹角<a,b>可
以在0到π之间任意取值.
空间解析几何
在物理中,我们已经知道,若力F 作用在物体上,使其产生
位移s,则该力所作的功为
即F 所作的功W 是向量F 和s的模相乘再乘以它们夹角的余
弦.这种运算在其他问题中也 会遇到,因此我们引入向量的结
构性运算.
空间解析几何
例7-13 设一平面与x 轴、y 轴和z 轴的交点分别为
P(a,0,0)、Q(0,b,0)和 R(0,0,c),求这个平面的方程,其中a ≠0,b
≠0,c ≠0.
解 设所求平面的一般方程为
空间解析几何
由 题意可知P(a,0,0)、Q(0,b,0)和R(0,0,c)三点都在该平
面上,所以这三点的 坐标都满足一般方程,即有
空间解析几何

例7-16 求点(1,-2,-1)到平面2x +y-2z+4=0的距离.
解 由式(7-13)可得
空间解析几何
7.4 空间直线方程
一、 直线方程
如图7-10所示,在空间直角坐标系中给定一条直线L,任一
个与这条直线平行的非零向量s={a,b,c}称为该直线的方向向
量.在直线L 上取一个定点M0(x0,y0,z0),设M(x,y,z)是直线L上任
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间直角坐标系与向量的坐标
一、空间直角坐标系 二、向量及向量运算的坐标表示 三、向量的方向角与方向余弦 四、向量在坐标轴上的投影
一、空间直角坐标系
竖轴 z
k
定点O i
j纵轴 y
横轴 x
三个坐标轴的正方 向符合右手法则.
空间直角坐标系 Oxyz 或[O;i, j, k].

yoz 面

xoy 面

示式为
(bx ,by ,bz ) (ax , ay , az ),
也就是向量b 与向量a 对应的坐标成比例:
bx by bz .
如果 ax
ax 0, ay、az
a
y
0,
az 上式
应理
解为
bbxy
a y
0, bz
az
;
如果 ax
ay=0, az
0,
上式
应理
解为
bx by
0, 0.
3.数量积 设 a axi ay j azk,b bxi by j bzk,则 a b (axi ay j azk) (bxi by j bzk) axi (bxi by j bzk) ay j (bxi by j bzk)
设 a (ax , ay , az ), b (bx ,by ,bz ),

a axi ay j azk, b bxi by j bzk.
那么 a b (ax bx )i (ay by ) j (az bz )k
(ax bx ,ay by ,az bz ).
向量 r 的坐标分解式, xi、yj、zk 称为向量沿三个
坐标轴方向的分向量.
z
zR
K
H O
x xP
M(x, y,z)
Q y
y
N
M r OM xi yj zk ( x, y, z).
数 x, y, z 称为点M 的坐标, 依次称 x、y 和 z 为点
M 的横坐标、纵坐标和竖坐标.
azk (bxi by j bzk) axbxi i axbyi j axbzi k
aybx j i ayby j j aybz j k
azbxk i azbyk j azbzk k. 注意到i j j k k i 0, j i k j i k 0, i i j j k k 1,所以
a b axbx ayby azbz .
由于a b a b cos ,所以当a、b 都不是零向量
时, 有
cos a b ,
ab
从而可得两向量夹角余弦的坐标表示式
cos
axbx ayby azbz
.
ax2
a
2 y
a
2 z
bx2 by2 bz2
4.向量积 设 a axi ay j azk,b bxi by j bzk,则 a b (axi ay j azk) (bxi by j bzk) axi (bxi by j bzk) ay j (bxi by j bzk)
1.向量的模
z
R
设 r ( x, y, z), 作 OM r, 则 H
r OM OP 2 OQ 2 OR 2
O
P
x
由于 OP xi, OQ yj, OR zk,
所以 OP x , OQ y , OR z ,
K
M
Qy
N
于是向量模的坐标表示式为 r x2 y2 z2.
2.线性运算
将点M 记为M (x, y, z).
数 x, y, z 也称为向量r 的坐标,记为r (x, y, z).
一些特殊点的坐标
坐标轴上的点 P,Q, R; 坐标面上的点 A, B,C;
坐标原点 O(0,0,0).
z z R(0,0, z)
B(0, y, z)
C( x,0, z)
M(x, y,z)
a b (ax bx )i (ay by ) j (az bz )k
(ax bx , ay by , az bz ).
a (ax )i (ay ) j (az )k (ax ,ay ,az ) 其中 为实数.
当向量a 0时,向量 b // a 相当于b a ,坐标表
O
y
x
d 2 M1 P 2 PN 2 NM 2 2 .
d 2 M1 P 2 PN 2 NM 2 2 . M1P x2 x1 , PN y2 y1 , NM 2 z2 z1 ,
d M1P 2 PN 2 NM2 2 ( x2 x1 )2 ( y2 y1 )2 (z2 z1 )2 . M1 M 2 ( x2 x1 )2 ( y2 y1 )2 (z2 z1 )2 . 空间两点间距离公式
azk (bxi by j bzk) axbx (i i) axby (i j) axbz (i k)
aybx ( j i) ayby ( j j) aybz ( j k)
azbx (k i) azby (k j) azbz (k k). 由于 i i j j k k 0;
x

z zox 面

O
yⅠ
Ⅵ Ⅴ
空间直角坐标系共有八个卦限.
z
R
M
O
xP
Q
y
一一对应
M
(x, y, z)
各卦限中点的坐标的特点
卦限 Ⅰ Ⅱ Ⅲ Ⅳ
点的坐标(x, y,z) x 0, y 0, z 0 x 0, y 0, z 0 x 0, y 0, z 0 x 0, y 0, z 0
卦限 Ⅴ Ⅵ Ⅶ Ⅷ
点的坐标(x, y,z) x 0, y 0, z 0 x 0, y 0, z 0 x 0, y 0, z 0 x 0, y 0, z 0
二、向量及向量运算的坐标表示
z
zR
K
Hale Waihona Puke H Ox xPM(x, y,z)
Q y
y
N
r OM OP PN NM OP OQ OR xi yj zk.
O(0,0,0)
yQ(0y, y,0)
x
x P( x,0,0)
A( x, y,0)
空间两点间的距离公式
设 M1 ( x1 , y1 , z1 ) 和 M 2 ( x2 , y2 , z2 ) 为空间两点.
d M1M2 ? z M2 M1
P
N
在直角ΔM1PN 和 直角 ΔM1 NM 2 中 使用勾股定理
相关文档
最新文档