高二下数学期中考试试卷

合集下载

2023-2024学年北京市怀柔区高二下学期期中考试数学试卷

2023-2024学年北京市怀柔区高二下学期期中考试数学试卷

2023-2024学年北京市怀柔区高二下学期期中考试数学试卷一、选择题(共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知数列{}n a 满足12a =,121n n a a +=+,则3a =()A.1B.2C.65D.23【正确答案】C【分析】根据数列的递推关系式,逐项递推,即可求解.【详解】由数列{}n a 满足12a =,且121n na a +=+,令1n =,可得212213a a ==+;令2n =,可得322615a a ==+.故选:C.2.某班周一上午共有四节课,计划安排语文、数学、美术、体育各一节,要求体育不排在第一节,则该班周一上午不同的排课方案共有()A.24种B.18种C.12种D.6种【正确答案】B【分析】从4门学科的全排列数中去掉体育排第一节的排列数即可作答.【详解】语文、数学、美术、体育4门学科的全排列数为44A 种,其中体育排在第一节的有33A 种,所以该班周一上午不同的排课方案共有4343A A 18-=(种).故选:B3.若a 、b 、c 成等差数列,则()A.2b a c =+ B.2b ac= C.2b a c=+ D.2b ac=【正确答案】A【分析】由等差数列的性质化简可得结果.【详解】因为a 、b 、c 成等差数列,则b a c b -=-,可得2b a c =+.故选:A.4.在6(2)x +的展开式中二项式系数最大的项是()A.第3项和第4项B.第4项和第5项C.第3项D.第4项【正确答案】D【分析】根据二项式系数的定义计算二项式展开式中各项的二项式系数,进而确定二项式系数最大的项【详解】二项式()na b +展开式中第1r +项的二项式系数为rn C 所以题中二项式展开式的第1r +项的二项式系数为6rC 0r =时,061C =;1r =时,166C =;2r =时,2615C =;3r =时,3620C =;4r =时,4615C =;5r =时,566C =;6r =时,661C =.所以3r =时二项式系数最大,即第四项的二次项系数最大,答案D 正确.故选:D.5.某种灯泡的使用寿命为2000小时的概率为0.85,超过2500小时的概率为0.35,若某个灯泡已经使用了2000小时,那么它能使用超过2500小时的概率为()A.1720B.717 C.720D.317【正确答案】B【分析】直接根据条件概率公式即可求出.【详解】记灯泡的使用寿命为2000小时为事件A ,超过2500小时为事件B ,则若某个灯泡已经使用了2000小时,那么它能使用超过2500小时的概率为()0.357(|)()0.8517P AB P B A P A ===.故选:B .6.为了配合创建全国文明城市的活动,我校现从4名男教师和5名女教师中,选取3人,组成创文明志愿者小组,若男女至少各有一人,则不同的选法共有A.140种 B.84种C.70种D.35种【正确答案】C【分析】通过算没有限制时的总数,减去全是男生或全是女生的情况数即可得解.【详解】从4名男教师和5名女教师中,选取3人,共有39C 种情况.若全为男生,共有34C 种情况;若全为女生,共有35C 种情况.所以若男女至少各有一人,则不同的选法共有33394570.C C C --=故选C.本题主要考查了组合问题,用到了正难则反的思想,属于基础题.7.若离散型随机变量X 的分布列为:X 01P2a 22a 则X 的数学期望()E X =()A.2B.2或12 C.2和12D.12【正确答案】D【分析】由分布列的性质求出a ,再由数学期望公式求解即可.【详解】解:由离散型随机变量X 的分布列可得22012012122a a a a ⎧≤≤⎪⎪⎪≤≤⎨⎪⎪+=⎪⎩,解得1a =,∴X 的数学期望111()01222E X =⨯+⨯=.故选:D .8.某学生回家途中遇到红灯的概率为35,这名学生回家途中共有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,设X 表示这名学生回家途中遇到红灯的次数,则()2P X ≥等于()A.81125B.54125C.36125D.27125【正确答案】A【分析】根据题意,由互斥事件的性质可得(2)(2)(3)P X P X P X ≥==+=,进而计算可得答案.【详解】根据题意,()()()2323323542781223C 555125125125P X P X P X ⎛⎫⎛⎫⎛⎫≥==+==+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:A .9.设{}n a 是首项为正数的等比数列,公比为q ,则“0q <”是“对任意正整数n ,212n n a a ->”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【正确答案】A【分析】根据充分条件和必要条件的定义判断.【详解】{}n a 是首项为正数的等比数列,若公比0q <,则数列中奇数项为正,偶数项为负,一定有212n n a a ->,充分性满足,但是01q <<时,数列各项均为正,2212n n n a a q a -=<,也就是说221n n a a -<时,得不出0q <,不必要.故选:A .10.对任意*m ∈N ,若递增数列{}n a 中不大于2m 的项的个数恰为m ,且12100n a a a +++= ,则n 的最小值为()A .8B.9C.10D.11【正确答案】C【分析】先由条件得出2n a n ≤,进而结合等差数列前n 项和列出不等式,解不等式即可.【详解】由递增数列{}n a 中不大于2m 的项的个数恰为m 可知2n a n ≤,又12100n a a a +++= ,故2462100n ++++≥ ,即()221002n n +≥,解得12n -≤或12n -≥,又*n ∈N ,故n 的最小值为10.故选:C.二、填空题(共5小题,每小题5分,共25分)11.计算:()11111223341n n ++++=⨯⨯⨯+ ______.【正确答案】1nn +【分析】利用裂项相消法求和.【详解】原式111111111...122334111n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭.故1nn +12.261()x x+的展开式中常数项是_________.【正确答案】15【分析】先写出二项展开式的通项公式,令指数为0,再利用组合数公式求常数项.【详解】261()x x+的展开式的通项公式为()()621123166C C k kkkk k T x x x ---+=⋅⋅=⋅,令1230k -=,解得4k =,所以展开式中常数项是426665C =C ==152⨯.故15.13.已知等差数列{}n a 的前n 项和为n S ,且34567150a a a a a ++++=,则9S =_________.【正确答案】270【分析】由等差数列的性质先求得5a ,再根据959S a =即可获解.【详解】等差数列{}n a 的前n 项和为n S 且34567150a a a a a ++++=3456755150a a a a a a ∴++++==解得530a =,()9195992702S a a a ∴=+==故270.14.若实数1,,,4x y 成等差数列,2,,,,8a b c --成等比数列,则y xb-=___________.【正确答案】14-【详解】实数1,,,4x y 成等差数列,则4113y x --==,2,,,,8a b c --成等比数列,则()()22816b =--=.由2,,a b -成等比得:()22b 0a =->,所以b 0<,所以b 4=-.则14y x b -=-.故答案为14-.15.“斐波那契数列”是数学史上的一个著名的数列.在斐波那契数列{}n a 中,11a =,21a =,()*21N n n n a a a n ++=+∈.设数列{}n a 的前n 项和为n S ,若99a λ=,()99R S μλμ=∈,,则100a =__________.【正确答案】1μλ-+【分析】对于()*21Nn n n a a a n ++=+∈分别令1,2,,98n =⋅⋅⋅,得到98个等式,相加化简可得结果.【详解】解:依题意,123a a a +=,234a a a +=,345a a a +=,……,979899a a a +=,9899100a a a +=,以上各式相加得,1239899349899100222a a a a a a a a a a +++⋯⋯++=++⋯⋯+++,∴1299991002a a a a a a ++⋯⋯+=+-,∴99991001S a a =+-,∵99a λ=,()99R S μλμ=∈,,∴1001a μλ=-+.故1μλ-+.三、解答题(共6小题,共85分.解答应写出文字说明,演算步骤或证明过程)16.袋中有大小相同,质地均匀的3个白球,5个黑球,从中任取2个球,设取到白球的个数为X .(1)求()1P X =的值;(2)求随机变量X 的分布列和数学期望.【正确答案】(1)1528(2)分布列见解析;期望为34【分析】(1)直接利用古典概型求解概率即可.(2)得出X 的可能取值,求出对应的概率,列出分布列,即可得出数学期望.【小问1详解】根据题意可知,“1X =”指事件“取出的2个球中,恰有1个白球”,所以113528C C 15(1)C 28P X ===.【小问2详解】根据题意可知,X 的可能取值为:0,1,2.023528C C 5(0)C 14P X ===;113528C C 15(1)C 28P X ===;2328C 3(2)C 28P X ===.所以随机变量X 的分布列为:X12P5141528328则X 的数学期望5153213()012142828284E X =⨯+⨯+⨯==.17.数列{}n a 是等差数列,n S 表示其前n 项之和,26a =,370a a +=.(1)求{}n a 的通项公式;(2)求n S 的最大值.【正确答案】(1)102n a n =-(2)20【分析】(1)设数列{}n a 的公差为d ,然后根据题意列方程组可求出1a 和d ,从而可求出通项公式;(2)由(1)可求出n S ,对其配方后可求出其最大值.【小问1详解】根据题意,设数列{}n a 的公差为d ,由于26a =,370a a +=,则216a a d =+=,①3711126280a a a d a d a d +=+++=+=,即140a d +=②,联立①②,解可得18a =,2d =-;所以数列{}n a 的通项公式为()11102n a a n d n =+-=-;【小问2详解】根据题意,由(1)的结论,102n a n =-,则()212(8102)981(9)92224n n n a a n n S n n n n n ++-⎛⎫===-=-+=--+ ⎪⎝⎭,而*n ∈N ,所以,当4n =或5x =的,n S 取最大值,且其最大值为4520S S ==.18.某中学羽毛球兴趣小组有甲、乙、丙三位组员,在单打比赛中,没有平局,且甲赢乙的概率为0.5,甲赢丙的概率为0.6.甲想挑战乙和丙.于是甲和乙、丙两位组员各自进行了一场比赛.(1)若甲两场比赛都赢了,则挑战成功,求甲挑战成功的概率;(2)设甲赢的场数为随机变量X ,求X 的分布列及数学期望.【正确答案】(1)0.3(2)分布列见解析;期望为1.1【分析】(1)根据题意,利用相互独立事件的概率公式,即可求解;(2)根据题意得到X 的可能取值为0,1,2,求得相应的概率,得出分布列,利用期望的公式,即可求解.【小问1详解】解:由题意知,甲赢乙的概率为0.5,甲赢丙的概率为0.6,根据相互独立事件的概率公式,可得甲挑战成功的概率0.50.60.3P =⨯=.【小问2详解】解:由题意可知,随机变量X 的可能取值为0,1,2,则()()()010.510.60.2P X ==-⨯-=,()()()110.50.60.510.60.5P X ==-⨯+⨯-=,()20.3P X ==,所以随机变量X 的分布列:X012P0.20.50.3则数学期望()00.210.520.3 1.1E X =⨯+⨯+⨯=.19.已知数列{}n a 的前n 项和为n S ,在条件①、条件②、条件③这三个条件中选择一个作为已知.(1)求数列{}n a 的通项公式;(2)若1n n b a ⎧⎫-⎨⎬⎩⎭是公差为2的等差数列,12b =,求数列{}n b 的前n 项和n T .条件①:11a =且()1202n n a a n --=≥;条件②:21n n S =-;条件③:21n n a S -=.注:如果选择多个条件分别解答,按第一个解答计分.【正确答案】(1)12n n a -=(2)21122n n -+-【分析】(1)选①:由题意可得出数列{}n a 是以1为首项,2为公比的等比数列,即可求出数列{}n a 的通项公式;选②③:当1n =时,求出1a ,当2n ≥时,由1n n n a S S -=-,整理可得12n n a a -=,可求出数列{}n a 是以1为首项,2为公比的等比数列,即可求出数列{}n a 的通项公式;(2)由(1)可求出{}n b ,再由分组求和法求出数列{}n b 的前n 项和n T .【小问1详解】选①:因为11a =,且()1202n n a a n --=≥,即12n n a a -=,所以数列{}n a 是以1为首项,2为公比的等比数列,所以12n n a -=;选②:解:(1)当1n =时,111a S ==,当2n ≥时,()11112121222nn n n n n n n a S S ----=-=---=-=,因为当1n =时满足上式,所以12n n a -=;选③:因为21n n a S -=,得21n n S a =-,当1n =时,1121a S -=,得11a =,当2n ≥时,()111212122n n n n n n n a S S a a a a ---=-=---=-,整理得12n n a a -=,所以数列{}n a 是以1为首项,2为公比的等比数列,所以12n n a -=;【小问2详解】因为1n n b a ⎧⎫-⎨⎬⎩⎭是公差为2的等差数列,12b =,所以112(1)21n nb n n a -=+-=-,所以11121212n n n b n n a -=-+=-+,所以数列{}n b 的前n 项和11111135242n n T -=+++++++ 1111[135(21)]1242n n -⎛⎫=++++-+++++ ⎪⎝⎭11 (121)21 212nn n⎛⎫- ⎪+-⎝⎭=+-21122nn-=+-.20.为研究某地区2021届大学毕业生毕业三个月后的毕业去向,某调查公司从该地区2021届大学毕业生中随机选取了1000人作为样本进行调查,结果如下:毕业去向继续学习深造单位就业自主创业自由职业慢就业人数2005601412898假设该地区2021届大学毕业生选择的毕业去向相互独立.(1)若该地区一所高校2021届大学毕业生的人数为2500,试根据样本估计该校2021届大学毕业生选择“单位就业”的人数;(2)从该地区2021届大学毕业生中随机选取3人,记随机变量X为这3人中选择“继续学习深造”的人数.以样本的频率估计概率,求X的分布列和数学期望()E X;(3)该公司在半年后对样本中的毕业生进行再调查,发现仅有选择“慢就业”的毕业生中的a(098)a<<人选择了上表中其他的毕业去向,记此时表中五种毕业去向对应人数的方差为2s.当a为何值时,2s最小.(结论不要求证明)【正确答案】(1)1400(2)分布列见解析;期望为3 5(3)42a=【分析】(1)用样本中“单位就业”的频率乘以毕业生人数可得;(2)先由样本数据得选择“继续学习深造”的频率,然后由二项分布可得;(3)由方差的意义可得.【小问1详解】由题意得,该校2021届大学毕业生选择“单位就业”的人数为5602500=14001000⨯.【小问2详解】由题意得,样本中1000名毕业生选择“继续学习深造”的频率为2001 10005=.用频率估计概率,从该地区2021届大学毕业生中随机选取1名学生,估计该生选择“继续学习深造”的概率为1 5.随机变量X的所有可能取值为0,1,2,3.所以()030311640155125P X C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭,()21311481155125P X C ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭,()22311122155125P X C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭,()30331113155125P X C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭.所以X 的分布列为X 0123P 641254812512125112564481213()01231251251251255E x =⨯+⨯+⨯+⨯=.【小问3详解】易知五种毕业去向的人数的平均数为200,要使方差最小,则数据波动性越小,故当自主创业和慢就业人数相等时方差最小,所以42a =.21.对于给定的正整数m 和实数α,若数列{}n a 满足如下两个性质:①12m a a a α++⋅⋅⋅+=;②对*n N ∀∈,+=n m n a a ,则称数列{}n a 具有性质()m P α.(1)若数列{}n a 具有性质2(1)P ,求数列{}n a 的前10项和;(2)对于给定的正奇数t ,若数列{}n a 同时具有性质4(4)P 和()t P t ,求数列{}n a 的通项公式;(3)若数列{}n a 具有性质()m P α,求证:存在自然数N ,对任意的正整数k ,不等式12N N N k a a a k mα+++++⋅⋅⋅+≥均成立.【正确答案】(1)5(2)1n a =(3)证明见解析【分析】(1)根据题意得到当n 为奇数时,1n a a =,当n 为偶数时,2n a a =,从而()110255S a a +==;(2)根据题干条件得到21n n n a a a ++==,故{}n a 为常数列,结合12344a a a a +++=求出1n a =;(3)对要证明的不等式变形,构造n n b ma α=-,研究其性质,证明出结论.【小问1详解】由题意得:121a a +=,2n n a a +=,则当n 为奇数时,1n a a =,当n 为偶数时,2n a a =,所以数列{}n a 的前10项和()110255S a a +==;【小问2详解】由题意得:12344a a a a +++=,4n n a a +=,对于给定的正奇数t ,12t a a a t ++⋅⋅⋅+=,对*n N ∀∈,n t n a a +=,则令21t k =-,k *∈N ,得:2221214n n k k n k n a a a a +++-+-+===,11212n n k n k n a a a a +++-+===,综上:{}n a 为常数列,由12344a a a a +++=可得:1n a =【小问3详解】要证12N N N k a a a k m α+++++⋅⋅⋅+≥,只需证12N N N k a a a k mα+++++⋅⋅⋅+≥⋅,即证120N N N k a a a m m m ααα+++⎛⎫⎛⎫⎛⎫-+-+⋅⋅⋅+-≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令数列n n b ma α=-,由于{}n a 具有性质()m P α,即12m a a a α++⋅⋅⋅+=,对*n N ∀∈,+=n m n a a ,则12120m mb b b a a a m m m ααα++⋅⋅⋅+=-+-+⋅⋅⋅+-,对*n N ∀∈,n m n m n n b m mb a a αα++=--==,所以{}n b 具有性质(0)m P ,令()123i i S b b b b i N *=+++∈ ,设12,,m S S S 的最小值为()1N S N m ≤≤,对*k N ∀∈,令N k pm r +=+,,,0p r N r m ∈<≤,由于{}n b 具有性质(0)m P ,则有0pm S =,所以123123N k pm r pm pm pm pm pm r r r N S S S b b b b b b b b S S ++++++==+++++=++++=≥ ,所以0N k N S S +-≥,所以12N N N k a a a k mα+++++⋅⋅⋅+≥成立本题数列不等式证明题目,要根据题干中条件对数列进行变形,用到了构造新数列,数论的基础知识,对学生的逻辑思维能力要求较高.。

广东省深圳市人大附中深圳学校2023-2024学年高二下学期期中考试数学试卷(含解析)

广东省深圳市人大附中深圳学校2023-2024学年高二下学期期中考试数学试卷(含解析)

人大附中深圳学校2023-2024学年第二学期期中考试高二年级数学试卷一、单项选择题:本题共小题,每小题分,共分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知,则( )A .B .C .D .2. 已知:,则的充分不必要条件是( )A .B .C .D .3.的展开式中的系数为( )A .8B .12C .10D .154.规定,则函数的值域为A .B .C .D .5.将数字“322469”重新排列后得到不同的偶数个数为( )A .240B .192C .120D .726. 某人有一笔闲置资金想用于投资,现有三种投资时间均为10天的方案,这三种方案的回报预期如下:方案一:风险投资,有的概率获得回报元,有的概率获得回报元;方案二:第一天获得回报元,以后每天获得的回报比前一天多元;方案三:第一天获得回报元,以后每天获得的回报都是前一天的两倍.若为使投资的回报最多,应该选择的投资方案是( )A.方案一 B.方案二 C.方案三 D.都可以7. 校运会组委会将甲、乙、丙、丁4名志愿者随机派往铅球、跳远、跳高三个比赛区域,每个区域至少派1名志愿者,每名志愿者只能去一个区域.A 表示事件“志愿者甲派往铅球区域”;表示事件“志愿者乙派往铅球区域”;表示事件“志愿者乙派往跳远区域”,则( )A .事件A 与相互独立B .事件A 与为互斥事件C .D .8. 从装有3个白球m 个红球n 个黄球(这些小球除颜色外完全相同)的布袋中任取两个球,记取出的白球的个数为X ,若,取出一白一红的概率为,则取出一红一黄的概率为( )A .B .C .D .二、多项选择题:本题共小题,每小题分,共分。

在每小题给出的选项中,有多项符合题目要求,全部选对的得分,部分选对的得部分分,有选错的得分。

9. 2022年4月15日,因疫情原因,市物价部门对5家商场的某商品一天的线上销售量及其价格进行调查,5家商场的售价x (元)和销售量y (件)之间的一组数据如表所示:价格x 99.51010.511销售量y11108658540)13fx =+()f x =()2220x x x -+≥()2241x x x -+≥()2240x x x -+≥()2221x x x -+≥p 2log 1x <p 2x <02x <<01x <<03x <<35(12)(1)x x -+3x ,(0)a b a b ab *=++≥()1f x x =*[1,)+∞(0,1)(1,)+∞[0,)+∞80%40020%80010100.5B C B C ()13P C A =()16P B A =3()5E X =13291341515361860按公式计算,y 与x 的回归直线方程是:,相关系数,则下列说法正确的是( )A .B .变量x ,y 线性负相关且相关性较强C .相应于点(9.5,10)的残差约为0.4D .当x =8时,y 的估计值为14.410.下列论述正确的有( )A .若随机变量满足,则B .若随机事件,满足:,,,则事件与相互独立C .基于小概率值的检验规则是:当时,我们就推断不成立,即认为和不独立,该推断犯错误的概率不超过;当时,我们没有充分证据推断不成立,可以认为和独立D .若关于的经验回归方程为,则样本点的残差为11.如图,已知正方体顶点处有一质点Q ,点Q 每次会随机地沿一条棱向相邻的某个顶点移动,且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q 的初始位置位于点A 处,记点Q 移动n 次后仍在底面ABCD 上的概率为,则下列说法正确的是( )A .B .C .点Q 移动4次后恰好位于点的概率为0D .点Q 移动10次后仍在底面ABCD 上的概率为三、填空题:本题共小题,每小题分,共分.12.已知正实数满足,则的最小值为.13.关于的不等式在上恒成立,则实数的取值范围是 .14.若集合,满足都是的子集,且,,均只有一个元素,且,称为的一个“有序子集列”,若有5个元素,则有多少个“有序子集列”.四、解答题:本题共小题,共分.解答应写出文字说明、证明过程或演算步骤.15. 2024年3月28日,小米SU7汽车上市,24小时预定88898台.小米集团为了了解小米手机用户订购小米SU7的意愿与用户是小米粉丝是否有关,随机抽取了200名小米手机用户进行调查,得到下表.已订购小米SU7未订购小米SU7总计是小米粉丝80非小米粉丝4080总计(1)补全表中数据,依据小概率值的独立性检验,是否能够认为小米手机用户订购小米SU7的意愿与用户是小米粉丝有关?3.2ˆˆyx a =-+0.986r =ˆ41a =,ξη21ηξ=+()2()1=+D D ηξA B ()12P A =()23P B =()56P A B ⋃=A B α2x αχ≥0H X Y α2x αχ<0H X Y y x ˆ0.30.7yx =-()2,3- 1.9-1111ABCD A B C D -n P 259P =12133n n P P +=+1C 10111()232+3515,x y 21x y +=1xx y+x 210x ax -+<1,12⎛⎤⎥⎝⎦a ,,A B C D ,,A B C D A B ⋂B C ⋂A C A B C =∅ (),,A B C D D 5770.005α=(2)小米集团打算从已订购小米SU7的用户中采用按比例分配的分层随机抽样的方式抽取6人,再从这6人中抽取3人听取建议,求这3人中恰有2人是小米粉丝的概率.附:,其中.0.0100.0050.0016.6357.87910.82816. 已知数列的前项和为,且.(1)求数列的通项公式;(2)设,求数列的前项和为.17. 某省2023年开始将全面实施新高考方案.在6门选择性考试科目中,物理、历史这两门科目采用原始分计分:思想政治、地理、化学、生物这4门科目采用等级转换赋分,将每科考生的原始分从高到低划分为A 、B ,C ,D ,E 共5个等级,各等级人数所占比例分别为15%、35%、35%、13%和2%,并按给定的公式进行转换赋分.该省部分学校联合组织了一次高二年级统一考试,并对思想政治、地理、化学、生物这4门科目的原始分进行了等级转换赋分.(1)其中一所学校某班生物学科获得A 等级的共有10名学生,其原始分及转换赋分如表:原始分97959190898785848483赋分99979595949291909090现从这10名学生中随机抽取3人,设这3人中生物的赋分不低于95分的人数为X ,求X 的分布列和数学期望:(2)假设此次高二学生生物学科原始分Y 近似服从正态分布.现随机抽取了100名高二学生的此次生物学科的原始分,后经调查发现其中有一名学生舞弊,剔除掉这名学生成绩后,记ξ为其他被抽到的原始分不低于80分的学生人数,预测当取得最大值时k 的值.附,若,则,.18. 已知函数.(1)讨论在区间上单调性;22()()()()()n ad bc a b c d a c b d χ-=++++n a b c d =+++αx {}n a n n S 34n n S a +={}n a n n b na ={}n b n n T ()266.7,13.3N ()P k ξ=()k +∈N ()2,N ημσ~()0.68P μσημσ-≤≤+≈()220.95P μσημσ-≤≤+≈()2ln ,x af x a x+=∈R ()f x []1,e(2)若恒成立,求实数的取值范围.19. 定义首项为1且公比为正数的等比数列为“数列”.(1)已知等比数列满足:.求证:数列为“数列”;(2)已知各项为正数的数列满足:,其中是数列的前n 项和.①求数列的通项公式;②已知是“数列”,且对任意正整数k ,都有成立,求数列公比的取值范围.参考答案一、单项选择题:本题共小题,每小题分,共分。

山东省青岛第二中学2023-2024学年高二下学期期中考试数学试卷(含简单答案)

山东省青岛第二中学2023-2024学年高二下学期期中考试数学试卷(含简单答案)

青岛第二中学2023-2024学年高二下学期期中考试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则( )A. B. C. D.2. 若关于的不等式成立的充分条件是,则实数的取值范围是( )A B. C. D.3. 下列有关一元线性回归分析的命题正确的是( )A. 若两个变量的线性相关程度越强,则样本相关系数就越接近于1B. 经验回归直线是经过散点图中样本数据点最多的那条直线C. 在经验回归方程中,若解释变量增加1个单位,则预测值平均减少0.5个单位D. 若甲、乙两个模型的决定系数分别为0.87和0.78,则模型乙的拟合效果更好4. 已知,则下列命题为真命题的是( )A. 若,则 B. 若,则C. 若,则 D. 若,则5. 7名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排3名,乙场馆安排2名,丙场馆安排2名,则不同的安排方法共有( )A. 210种B. 420种C. 1260种D. 630种6. 已知一组样本数据的方差为9,且,则样本数据的方差为( )A. 9.2B. 8.2C. 9.8D. 97. 若不等式的解集为,则不等式解集为( )A B. ..{1,2,3,4,5},{1,3,5},{1,2,5}U T S ===()U S T = ð{2}{1,2}{2,4}{1,2,4}x |1|x a +<04x <<a 1a ≤-5a >1a <-5a ≥r ˆ20.5yx =-x ˆy 2R ,,R a b c ∈a b >ac bc>0a b >>0.40.4a b -->a b >1122a cb c++⎛⎫⎛⎫< ⎪⎪⎝⎭⎝⎭0,0a b c >>>b b c a a c+>+125,,,x x x 1324x x x x +=+123451,1,1,1,x x x x x -+-+20ax bx c ++≥[]1,30ax ccx b+≥+(]4,3,3∞∞⎡⎫--⋃+⎪⎢⎣⎭(]4,3,3∞∞⎛⎫--⋃+⎪⎝⎭C. D. 8. 某人在次射击中击中目标的次数为,其中,击中偶数次为事件A ,则( )A. 若,则取最大值时B. 当时,取得最小值C. 当时,随着的增大而减小 D. 当的,随着的增大而减小二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 在的展开式中,下列说法正确的是( )A. 各二项式系数的和为64 B. 常数项是第3项C. 有理项有3项D. 各项系数的绝对值的和为72910. 已知位于第一象限的点在曲线上,则( )A. B. C. D.11. 二次函数是常数,且的自变量与函数值的部分对应值如下表:…-1012……22…且当时,对应的函数值.下列说法正确的有( )A. B. C. 关于的方程一定有一正、一负两个实数根,且负实数根在和0之间D. 和在该二次函数的图象上,则当实数时,三、填空题:本题共3小题,每小题5分,共15分.12. 函数定义域是______.13. 已知集合,,若中恰有一个整数,的43,3⎡⎤-⎢⎥⎣⎦43,3⎡⎫-⎪⎢⎣⎭n ,~(,)X X B n p N*,01n p ∈<<10,0.8n p ==()P X k =9k =12p =()D X 112p <<()P A n 102p <<()P A n 61x ⎛- ⎝(,)a b 111x y+=(1)(1)1a b --=-228a b +≥23a b +≥+221223a b +≥2,(,y ax bx c a b c =++0)a ≠x y x ym n32x =0y <0abc >1009mn >x 20ax bx c ++=12-()112,P t y +()222,P t y -12t <12y y >()ln(21)f x x =+-{}2|60M x x x =+->{}2|230,0N x x ax a =-+≤>M N ⋂则的最小值为_________.14. 已知函数,若对于恒成立,则实数的取值范围是______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15. 2024年4月25日,神舟十八号载人飞船发射升空,并于北京时间2024年4月26日3时32分,成功对接于空间站天和核心舱径向端口,整个自主交会对接过程历时约6.5小时!奔赴星辰大海,中国人探索浪漫宇宙脚步驰而不息,逐梦太空的科学探索也不断向前。

广东省广州市广东实验中学越秀学校2023-2024学年高二下学期期中考试数学试题(含简单答案)

广东省广州市广东实验中学越秀学校2023-2024学年高二下学期期中考试数学试题(含简单答案)

广东实验中学越秀学校2023-2024学年高二下学期期中考试数学本试卷分选择题和非选择题两部分,共4页,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号填写在答题卷上.2.选择题每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将答题卷收回.第一部分选择题(共58分)一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目的要求.)1. 在等差数列中,,则值是()A. 12B. 18C. 24D. 302. 已知函数 的导函数 的图象如图所示,那么对于函数 ,下列说法正确的是( )A. 在 上单调递增B. 在 上单调递减C. 在 处取得最大值D. 在 处取得极大值3. 已知离散型随机变量X 的分布列,则( )A. 1B.C.D.4. 已知等比数列的各项互不相等,且,,成等差数列,则( )的{}n a 3712a a +=72S S -()y f x =()f x '()y f x =(),1∞--()1,∞+1x =2x =(1,2,3,4,5)5k P X ak k ⎛⎫=== ⎪⎝⎭13105P X ⎛⎫<<= ⎪⎝⎭231513{}n a 14a 312a 23a 2021202320202022a a a a -=-A. 1B. 2C. 3D. 45. 老师有6本不同的课外书要分给甲、乙、丙三人,其中甲分得2本,乙、丙每人至少分得一本,则不同的分法有( )A. 248种B. 168种C. 360种D. 210种6. 的展开式中常数项为( )A. 120B. C. 180D. 7. 若函数恰有2个零点,则实数a 的取值范围是( )A. B. C. D. 8. 已知数列的前n 项和为且,若对任意恒成立,则实数a 的取值范围是( )A. B. C. D. 二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 甲,乙,丙,丁,戊五人并排站成一排,下列说法正确的是( )A. 如果甲,乙必须相邻且乙在甲右边,那么不同的排法有24种B. 最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C. 甲乙不相邻的排法种数为82种D. 甲乙丙按从左到右的顺序排列的排法有20种10. 定义“等方差数列”:如果一个数列从第二项起,每一项的平方与它的前一项的平方的差都等于同一个常数,那么这个数列就叫做等方差数列,这个常数叫做该数列的方公差.设数列是由正数组成的等方差数列,且方公差为2,,则( )A. 数列的前60项和B. 数列的前60项和的()62132x x x ⎛⎫-- ⎪⎝⎭120-180-()e x f x a x =-10,e ⎛⎫ ⎪⎝⎭(0,1)1,e ⎛⎫-∞ ⎪⎝⎭(,0)-∞{}n a n S 2n nn a =(1)nn n S a a +>-*N n ∈(,1)(2,)-∞-⋃+∞(1,2)-3(1,)2-3(,1)(,)2-∞-+∞ {}n a 135a =11n n a a +⎧⎫⎨⎬+⎩⎭60S =11n n a a +⎧⎫⎨⎬+⎩⎭605S =C. 数列的通项公式是D. 数列的通项公式是11. 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1000件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为万元,且当该公司在这一品牌服装的生产中所获得的年利润最大时,则有( )A. 年产量为9000件B. 年产量为10000件C. 年利润最大值38万元D. 年利润最大值为38.6万元第二部分 非选择题(共92分)三、填空题:(本题共3小题,每小题5分,共15分.)12 已知数列满足,且对任意,有,则______.13. 设抛掷一枚骰子的点数为随机变量X______.14. 已知定义在上的函数满足,且,则的解集是______.四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数在点处的切线与直线垂直.(1)求的值;(2)求的单调区间和极值.16. (1)若,求的值;(2)在的展开式中,二项式系数最大的项只有第五项,①求的值;②若第项是有理项,求的取值集合;③求系数最大的项.为.{}2n a221n a n =-{}2n a 221n a n =+()R x ()22110.8,010,301081000,103x x R x x xx ⎧-<≤⎪⎪=⎨⎪->⎪⎩{}n a 11a =*n ∈N ()11nn n a a n +=+-⋅22a ==()0,∞+()f x ()()0xf x f x '-<()22f =()e e0xxf ->()21ex x af x -+=()()1,1f 420240x y ++=a ()f x 423401234(2x a a x a x a x a x -=++++1234a a a a +++22nx ⎫-⎪⎭n k k17. 已知数列的前项和为,满足.(1)求的通项公式;(2)删去数列的第项(其中),将剩余的项按从小到大的顺序排成新数列,设的前项和为,请写出的前6项,并求出和.18. 为建设“书香校园”,学校图书馆对所有学生开放图书借阅,可借阅的图书分为“期刊杂志”与“文献书籍”两类.已知该校小明同学的图书借阅规律如下:第一次随机选择一类图书借阅,若前一次选择借阅“期刊杂志”,则下次也选择借阅“期刊杂志”的概率为,若前一次选择借阅“文献书籍”,则下次选择借阅“期刊杂志”的概率为.(1)设小明同学在两次借阅过程中借阅“期刊杂志”的次数为X ,求X 的分布列与数学期望;(2)若小明同学第二次借阅“文献书籍”,试分析他第一次借哪类图书的可能性更大,并说明理由.19. 已知函数在处取得极值.(1)求的值;(2)设(其中),讨论函数的单调性;(3)若对,都有,求n 取值范围.的{}n a n n S 22n n S a =-{}n a {}n a 3i 1,2,3,i =⋅⋅⋅{}n b {}n b n nT{}n b 6T 2n T 1335()ln ()af x x x a x=+∈R 1x =(e)f ()322111()2()2x P x m x x f x x x+=--+m ∈R ()P x [1,3]x ∀∈2164()ln 11nx x f x x n x x +--+-≤-+广东实验中学越秀学校2023-2024学年高二下学期期中考试数学简要答案一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目的要求.)【1题答案】【答案】D【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】D【6题答案】【答案】D【7题答案】【答案】A【8题答案】【答案】C二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)【9题答案】【答案】ABD【10题答案】【答案】BC【11题答案】【答案】AD第二部分非选择题(共92分)三、填空题:(本题共3小题,每小题5分,共15分.)【12题答案】【答案】【13题答案】【14题答案】【答案】四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)(2)单调递减区间为和,单调递增区间为,的极大值为,极小值为.【16题答案】【答案】(1);(2)①;②;③.【17题答案】【答案】(1)(2)前6项为2,,,,,;;【18题答案】【答案】(1)分布列略,(2)小明第一次选择借阅“期刊杂志”的可能性更大,理由略【19题答案】【答案】(1) (2)答案略(3)10-(),ln 2-∞3a =-(),1-∞-()3,+∞()1,3-()f x ()263ef =()212e f -=-88-8n ={}1,3,5,7,91171792T x -=2n n a =22425272826438T =()26817nn T =-2930()1e e ef =+5,2⎡⎫+∞⎪⎢⎣⎭。

天津市河西区2023-2024学年高二下学期期中考试数学试卷(含解析)

天津市河西区2023-2024学年高二下学期期中考试数学试卷(含解析)

天津市河西区2023-2024学年高二下学期期中考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.已知全集,集合,,则( )A. B. C. D.2.对变量x ,y 有观测数据,得散点图1;对变量u ,v 有观测数据,得散点图2.由这两个散点图可以判断( )A.变量x 与y 正相关,u 与v 正相关B.变量x 与y 正相关,u 与v 负相关C.变量x 与y 负相关,u 与v 正相关D.变量x 与y 负相关,u 与v 负相关3.设,则“且”是“”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.即不充分也不必要条件4.的展开式中,系数最大的项是( )项B.第n 项C.第项D.第n 项与第项5.已知随机变量X 服从正态分布,且,则( )A.0.6B.0.3C.0.2D.0.16.设X 为随机变量,,若随机变量X 的数学期望,则等于( ){}1,2,3,4U ={}1,2A ={},32B =()U A B ð{}1,3,4{}3,4{}3{}4(),i i x y ()1,2,,10= i (),i i u v ()1,2,,10i = ,x y ∈R 2x ≥2y ≥224x y +≥()2*1()n x n +∈N 1+1n +1n +()22,N σ()40.8P X <=()02P X <<=1,3X B n ⎛⎫⎪⎝⎭()2E X =()2P X =7.某学习小组共有11名成员,其中有6名女生,为了解学生的学习状态,随机从这11名成员中抽选2名任小组组长,协助老师了解情况,A 表示“抽到的2名成员都是女生”,B表示“抽到的2名成员性别相同”,则( )8.的展开式中各项系数的和为2,则该展开式中常数项为( )A.-40 B.-20 C.20 D.409.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A.243 B.252 C.261 D.279二、填空题10.的展开式中的系数为________.11.命题,的否定是________.12.已知,则________.13.含有3个实数的集合可表示为,又可表示为,则________.14.三位老师分配到4个贫困村调查义务教育实施情况,若每个村最多去2个人,则不同的分配方法有种________.15.某公司有甲、乙两家餐厅,小李第一天午餐时随机地选择一家餐厅用餐,如果第,则小李第二天去乙家餐厅的概率为________.三、解答题16.(1)证明:组合数性质;(2)计算:(用数字作答).17.已知集合,若()|P A B =512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭822x y :p x ∀∈R 210x +>7270127(12)x a a x a x a x -=++++ 1357a a a a +++=,,1b a a ⎧⎫⎨⎬⎩⎭{}20,,a a b +20242024a b +=()1*1C C C ,m m n n n m n π-+=+∈N 2222234100C C C C ++++ {}23100A x x x =--≤(1),,求实数m 的范围;(2),,求实数m 的范围;(3),,求实数m 的范围.18.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(x 吨)与相应的生产能耗y (吨)标准煤的几组对照数据:(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程;(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考:用最小二乘法求线性回归方程系数公式(参考数值:)19.某班主任对班级22名学生进行了作业量多少的调查,数据如下:在喜欢玩电脑游戏的12人中,有9人认为作业多,3人认为作业不多;在不喜欢玩电脑游戏的10人中,有4人认为作业多,6人认为作业不多.(1)根据以上数据填写列联表;关系?参考公式:B A ⊆{}121B x m x m =+≤≤-A B ⊆{}621B x m x m =-≤≤-B A ={}621B x m x m =-≤≤-ˆybx a =+ˆb=ˆy =-3 2.543546 4.566.53242526286⨯+⨯+⨯+⨯=+++=22⨯2K =参考数据:,,,.20.已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出3球所得分数之和.(Ⅰ)求X 的分布列;(Ⅱ)求X 的数学期望E(X).2( 2.072)0.15P K ≥=2( 2.706)0.10P K ≥=2( 3.841)0.05P K ≥=()2 5.0240.025P K ≥=参考答案1.答案:D解析:易知,则,故选:D.2.答案:C解析:变量x 与中y 随x 增大而减小,为负相关;u 与v 中,u 随v 的增大而增大,为正相关.3.答案:A解析:试题分析:若且,则,,所以,即;若,则如满足条件,但不满足且.所以“且”是“”的充分而不必要条件.故选A.4.答案:C解析:在的展开式中,第项的系数与第项的二项式系数相同,再根据中间项的二项式系数最大,展开式共有项,可得第项的系数最大,故选C.5.答案:B解析:由题意,随机变量X 服从正态分布,则正态分布曲线关于对称,又由,根据正态分布曲线的对称性,可得,所以,故选B.6.答案:A解析:因为,得,即.所以故选A 7.答案:A解析:由题意可知{}1,2,3A B = {}()4U A B = ð2x ≥2y ≥24x ≥24y ≥228x y +≥224x y +≥224x y +≥()2,2--2x ≥2y ≥2x ≥2y ≥224x y +≥()()2*1x n n +∈N 1r +1r +21n +1n +22,N σ()2x =(4)0.8P X <=(0)(4)1(4)0.2P X P X P X ≤=≥=-<=1(02)(0)0.50.20.32P X P X <<=-≤=-=()123E X n ==6n =16,3X B ⎛⎫ ⎪⎝⎭()2426112C 133P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭()2265211C C C P B +==()26211C C AB ==所以故选:A.8.答案:D解析:令得.故原式=.的通项,由得,对应的常数项,由得,对应的常数项,故所求的常数项为40,故选D 9.答案:B解析:由分步乘法原理知:用0,1,…,9十个数字组成的三位数(含有重复数字的)共有,组成无重复数字的三位数共有,因此组成有重复数字的三位数共有.10.答案:70解析:设的展开式中含的项为第项,则由通项知.令,解得,的展开式中的系数为.11.答案:,或,解析:全称量词命题的否定是存在量词命题,要注意否定结论,所以命题,的否定是:,故答案为:,12.答案:-1094解析:令,则,,()()()|P AB P A B P B ==1x =1a =5112x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭512x x ⎛⎫- ⎪⎝⎭521552155C (2)()C (1)2r r r r rr r r T x x x ----+=-=-521r -=2r =80=521r -=-3r =80=-91010900⨯⨯=998648⨯⨯=900648252-=822x y 1r +()811882222188C 1C rrr rr r r r r r T xy x y x y -----+--++⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭822r r -+-=4r =∴822x y ()4481C 70-=0x ∃∈R 2010x +≤x ∃∈R 210x +≤:p x ∀∈R 210x +>0x ∃∈R 2010x +≤0x ∃∈R 2010x +≤()7270127()12f x x a a x a x a x =-++++= 0127(1)1a a a a f ++++==- 701273(1)32187a a a a f a -++--==-=所以.故答案为:-109413.答案:1解析:因为有3个实数的集合可表示为,又可表示为,所以,即,则,即或,当时,集合为,与集合元素的互异性矛盾,故,,.故答案为:1.14.答案:60解析:若每个村去一个人,则有种分配方法;若有一个村去两人,另一个村去一人,则有种分配方法,所以共有60种不同的分配方法.解析:设“第1天去甲餐厅用餐“,“第1天去乙餐厅用餐”,“第2天去甲餐厅用餐”,“第2天去乙餐厅用餐”,根据题意得,则则由全概率公式得:,即1357(1)(1)10942f f a a a a --==-+++,,1b a a ⎧⎫⎨⎬⎩⎭{}2,0,a a b +a ≠0=0b =21a =1a =1a =-1a ={1,0,1}{1,1,0}1a =-0b =202420241a b +=34A 24=1234C A 36⨯=1A =1B =2A =2B =1122()()()()P A P B P A P B ====()21|A A =()21|P A B =21(|)P B A =()()()21211|P A B A B P B ==()214152P A B =⨯=()()()2112225|12P A B P B A P A ===()22|B A =21222121222()()()()(|)()(|)P B P A B P A B P A P B A P A P B A =+=+212113()252510P B =⨯+⨯=16.答案:(1)证明见解析;(2)166650解析:(1)证明:;(2)=.17.答案:(1);(2)(3)不存在满足题意的实数m解析:(1);当时,满足,则,解得:;当时,由得:,解得:;综上所述:实数m 的取值范围为.(2)由得:,解得:,即实数m 的取值范围为.(3),,方程组无解,不存在满足题意的实数m .18.答案:(1)见解析;(2);()()1!!!!(1)!C 1!C m m n n n n m n m m n m -+---++=()()()()()!1!1!!1!!1!!1!n n m n n m m n mm n m m n m m n m -+-++=+=-+-+-+()()11!!(1)C !(1)!!1!m n n n n m n m m n m +++===-+-+3223102222223223410044041300C C C C C C C C C C C =+++=+++++++ 22323310010010515100C C 10110099C C C 16665032C ⨯⨯==+++==+=⨯ (],3-∞[]3,4{}()(){}{}2310052025A x x x x x x x x =--≤=-+≤=-≤≤B =∅B A ⊆121m m +>-2m <B ≠∅B A ⊆12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩23m ≤≤(],3-∞A B ⊆62126521m m m m -≤-⎧⎪-≥-⎨⎪≤-⎩34m ≤≤[]3,4A B = 62215m m -=-⎧∴⎨-=⎩∴ˆ0.70.35yx =+(3)19.65吨解析:(1)把所给的四对数据写成对应的点的坐标,在坐标系中描出来,得到散点图如下;(2)由对照数据,计算得,,,,回归方程的系数为,,所求线性回归方程为;(3)由(2)的线性回归方程,估计生产100吨甲产品的生产能耗为(吨,吨,预测比技改前降低了19.65吨标准煤.19.答案:(1)答案见解析;(2)有关系解析:(1)根据题中所给数据,得到如下列联表:1(3456) 4.54x =⨯+++=1(2.534 4.5) 3.54y =⨯+++=4222221345686ii x==+++=∑413 2.543546 4.566.5iii x y==⨯+⨯+⨯+⨯=∑∴266.54 4.5 3.5ˆ0.7864 4.5b -⨯⨯==-⨯ 3.50.7 4.5ˆ0.35a =-⨯=∴ˆ0.70.35yx =+0.71000.3570.35⨯+=)9070.3519.65∴-=22⨯由(1)中的的列联表,可得,所以有充分的理由认为假设不成立,即认为喜欢玩电脑游戏与认为作业多少有关,这种判断出错误的概率不超过0.10.20.答案:(Ⅰ)见解析;解析:(Ⅰ)X 的可能取值有:3,4,5,6.故,所求X 的分布列为22⨯()220.10226943 2.7641 2.7061210139K K ⨯⨯-⨯=≈>=⨯⨯⨯3539C (3)C P X ===215439C C (4)C X ===125439C C (5)C P X ===3439C (6)C P X ===()51051345642211421E X ⨯+⨯+⨯+⨯==。

河北省石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试题(含简单答案)

河北省石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试题(含简单答案)

石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试卷(时间:120分钟,分值150分)一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列函数的求导正确的是()A. B.C. D.2. 设曲线和曲线在它们的公共点处有相同的切线,则的值为()A. 0B.C. 2D. 33. 已知随机变量的分布列如下,随机变量满足,则随机变量的期望E(Y)等于()012A. B. C. D.4. 函数的大致图像是()A. B.C. D.5. 为了培养同学们的团队合作意识,在集体活动中收获成功、收获友情、收获自信、磨砺心志,2023年4月17日,石家庄二中实验学校成功举办了首届“踔厉奋发新征程,勇毅前行赢未来”25公里远足活动. 某班()22x x'-=-()2e2ex x'=()cos cos sinx x x x x'=-()()122xx x-'=⋅()e xf x a b=+()πcos2xg x c=+()02P,+ab cπX Y21Y X=-YXP1613a43835373()(1)ln1f x x x=+-现有5名志愿者分配到3个不同的小组里协助班主任摄影,记录同学们的青春光影,要求每个人只能去一个小组,每个小组至少有一名志愿者,则不同的分配方案的总数为( )A 120B. 150C. 240D. 3006. 的展开式中的系数为( )A B. 17C. D. 137. 设,,,则( )A. B. C. D. 8. 若方程有三个不同的解,则实数的取值范围是( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知,则下列结论正确的是( )A. B. C. D. 展开式中最大的系数为10. 已知函数,下列说法正确的有( )A. 若,,则函数F (x )有最小值B. 若,,则过原点可以作2条直线与曲线相切C. 若,且对任意,恒成立,则D. 若对任意,任意,恒成立,则的最小值是11 已知函数,若且,则有( )...()632x x ⎛- ⎝6x 17-13-35ln 23a =253e 5b =1c =c b a >>a b c >>a c b >>c a b>>()()23ln 12ln x a x ax x x--=a 224e 104e 4e ⎛⎫+ ⎪-⎝⎭,224e 114e 4e ⎛⎫+ ⎪-⎝⎭,()224e 10114e 4e ⎛⎫+⋃ ⎪-⎝⎭,,()224e 1014e 4e ⎧⎫+⋃⎨⎬-⎩⎭,()62601262a a x a x a x =+++⋯+3360a =-()()2202461351a a a a a a a +++-++=(6612622a a a ++⋯+=--2a ()()()2e 114ax F x m x m =++++0m =1a =-1m =-0a ≠()y F x =0a =m ∈R ()0F x >11x -<<R m ∈0x >()0F x ≥a 2e()()y f x x =∈R ()0f x >()()0f x xf x '+>A. 可能是奇函数或偶函数B. C. 当时, D. 三、填空题:本题共3小题,每小题5分,共15分.12. 为弘扬我国古代“六艺文化”,某夏令营主办方计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”,“数”六门体验课程,每周一门,连续开设六周,则课程“御”“书”“数”排在不相邻的三周,共有______种排法.13. 某校辩论赛小组共有5名成员,其中女生比男生多,现要从中随机抽取2名成员去参加外校交流活动,若抽到一男一女的概率为,则抽到2名男生的概率为_____________.14. 若,使得成立(其中为自然对数的底数),则实数的取值范围是_____________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知二项式的展开式中,所有项的二项式系数之和为,各项的系数之和为,(1)求的值;(2)求其展开式中所有的有理项.16. 某学校为了增进全体教职工对党史知识的了解,组织开展党史知识竞赛活动并以支部为单位参加比赛.现有两组党史题目放在甲、乙两个纸箱中,甲箱有个选择题和个填空题,乙箱中有个选择题和个填空题,比赛中要求每个支部在甲或乙两个纸箱中随机抽取两题作答.每个支部先抽取一题作答,答完后题目不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个题目放回原纸箱中.(1)如果第一支部从乙箱中抽取了个题目,求第题抽到的是填空题的概率;(2)若第二支部从甲箱中抽取了个题目,答题结束后错将题目放入了乙箱中,接着第三支部答题,第三支部抽取第一题时,从乙箱中抽取了题目.求第三支部从乙箱中取出的这个题目是选择题的概率.17. 已知函数.(1)求函数的极值;(2)若对任意恒成立,求的最大整数值.18. 张强同学进行三次定点投篮测试,已知第一次投篮命中的概率为,第二次投篮命中的概率为,前的()f x ()()11f f -<ππ42x <<()()cos22sin e cos x f x f x >()()01f >35[]0,2x ∃∈()1eln e e 1ln xa a x x a --+≥-+e 2.71828= a nx ⎛- ⎝a b 32a b +=n 5343222()ln f x x x x =+()f x ()()1k x f x -<1x >k 1312两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,如果前两次投篮均未命中,则第三次投篮命中的概率为.(1)求张强同学三次投篮至少命中一次的概率;(2)记张强同学三次投篮命中的次数为随机变量,求的概率分布.19. 设定义在R 上的函数.(1)若存在,使得成立,求实数a 的取值范围;(2)定义:如果实数s ,t ,r 满足,那么称s 比t 更接近r .对于(1)中的a 及,问:和哪个更接近?并说明理由.石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试卷 简要答案一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C 【2题答案】【答案】C 【3题答案】【答案】C 【4题答案】【答案】B 【5题答案】【答案】B 【6题答案】2315ξξ()()e xf x ax a =-∈R [)01,x ∈+∞()0e f x a <-s r t r -≤-1x ≥ex1e x a -+ln x【答案】C 【7题答案】【答案】A 【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD 【10题答案】【答案】ACD 【11题答案】【答案】BC三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】##【14题答案】【答案】四、解答题:本题共5小题,共77分. 解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)4 (2)【16题答案】【答案】(1) (2)【17题答案】【答案】(1)极小值,无极大值为1441100.121e,e ⎡⎤⎢⎥⎣⎦42135,54,81T x T x T x-===377122e --(2)3【18题答案】【答案】(1);(2)答案略.【19题答案】【答案】(1) (2)比更接近,理由略1115e a >ex1e x a -+ln x。

2023-2024学年天津市高二(下)期中数学试卷(含解析)

2023-2024学年天津市高二(下)期中数学试卷(含解析)

2023-2024学年天津市高二(下)期中数学试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知函数321()23f x x x =-,则()f x 的单调减区间是()A .(4,)+∞B .(0,2)C .(0,4)D .(,0)-∞2.(5分)某厂家生产的新能源汽车的紧急刹车装置在遇到特别情况时需在2s 内完成刹车,其位移h (单位:)m 关于时间t (单位:)s 的函数关系式为340()23h t t t =--+,则h '(1)的实际意义是()A .汽车刹车后1s 内的位移B .汽车刹车后1s 内的平均速度C .汽车刹车后1s 时的瞬时速度D .汽车刹车后1s 时的瞬时加速度3.(5分)已知函数()f x 的图象如图所示,()f x '为()f x 的导函数,根据图象判断下列叙述正确的是()A .12()()f x f x '<'B .12()()f x f x '>'C .12()()0f x f x <'<D .12()()0f x f x '>>4.(5分)已知2x =是2()23f x lnx ax x =+-的极值点则()f x 在1[3,3]上的最大值是()A .9232ln -B .52-C .17238ln --D .224ln -5.(5分)用1,2,3,4,5,6组成没有重复数字的五位数,要求偶数不能相邻,则这样的五位数有()个.A .120B .216C .222D .2526.(5分)若53(2x x-的展开式中的二项式系数和为A ,各项系数和为B ,则(A B -=)A .33B .31C .33-D .31-7.(5分)已知()f x 为定义在(-∞,0)(0⋃,)+∞上的偶函数,()f x '是()f x 的导函数,若当0x >时,()()0f x f x lnx x'+<,则不等式(1)()0x f x -<的解集是()A .(1,)+∞B .(0,1)C .(-∞,0)(1⋃,)+∞D .(,0)-∞8.(5分)已知函数122()x f x e -=,()2g x lnx =+,若()()f m g n =,则m n -的最大值是()A .212ln +-B .14e-C .12ln +D .223ln +二、填空题:本大题共6小题,每小题4分,共24分。

江苏省南京市南京师范大学附属中学2023-2024学年高二下学期期中考试数学试卷

江苏省南京市南京师范大学附属中学2023-2024学年高二下学期期中考试数学试卷

有 1 件次品的抽法有
种.(请用具体数字作答)
13.已知圆 x2 + y2 - 2ax + a2 - 9 = 0 与圆 x2 + y2 = 4 相内切,则实数 a 的值为

( ) ( ) 14.已知存在实数 x,使得不等式 ex2+2 - tex 2 + t x2 - 2x + 2 - 2 ln t £ 0 成立,则实数 t 的取
B.12π 是 f (x) 的一个正周期 D. f (x) 在区间 (0,π) 上单调递增
11.如图,在矩形 ABCD 中, AB = 2 , BC = 4 ,M 是 AD 的中点,将VABM 沿着直线 BM
翻折得到△A1BM .记二面角 A1 - BM - C 的平面角为a ,当a 的值在区间 (0,π) 范围内变化 时,下列说法正确的有( )
【详解】令 f ( x) = ex - x ,则 f ¢( x) = ex -1, 令 f ¢( x) > 0 ,解得 x > 0 ,令 f ¢( x) < 0 ,解得 x < 0 , 所以 f ( x) 在(0, +¥ ) 上单调递增, (-¥ , 0) 上单调递减, 所以 f ( x) = ex - x ³ f (0) = 1 , ex - x ³ 1一定成立,故 A 不合题意;
【详解】根据题意可知, 复数1+ 2i 对应的向量绕原点 O 按逆时针方向旋转 90o 可得
( ) (1+ 2i) cos 90o + isin90o = i (1+ 2i) = i + 2i2 = -2 + i ,
即所得的向量对应的复数为 -2 + i . 故选:A 3.C

吉林省四平市2023-2024学年高二下学期期中质量监测数学试题含答案

吉林省四平市2023-2024学年高二下学期期中质量监测数学试题含答案

四平市2023-2024学年度第二学期期中质量监测高二数学试题(答案在最后)全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:选择性必修第二册第五章,选择性必修第三册第六章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数()23cos f x x x=+的导函数是()A.()6sin f x x x '=+B.()6sin f x x x '=-C.()3sin f x x x'=- D.()3sin f x x x'=+【答案】B 【解析】【分析】利用导数的运算法则即可求解.【详解】()()()23cos 6sin f x x x x x '''=+=-.故选:B.2.5(2)x -的展开式中3x 的系数为()A.40-B.20- C.20D.40【答案】D 【解析】【分析】写出展开式的通项,即可计算可得.【详解】因为5(2)x -展开式的通项为()515C 2rr rr T x -+=-(05r ≤≤且N r ∈),所以5(2)x -的展开式中3x 的系数为225C (2)40⨯-=.故选:D3.某学校广播站有6个节目准备分2天播出,每天播出3个,其中学习经验介绍和新闻报道两个节目必须在第一天播出,谈话节目必须在第二天播出,则不同的播出方案共有()A.108种B.90种C.72种D.36种【答案】A 【解析】【分析】先确定第一天和第二天播放的节目,然后再确定节目的播放顺序,利用分步乘法计数原理可得结果.【详解】第一步,从无限制条件的3个节目中选取1个,同学习经验介绍和新闻报道两个节目在第一天播出,共有1333C A 18=种;第二步,某谈话节目和其他剩余的2个节目在第二天播出,有33A 6=种播出方案,综上所述,由分步乘法计数原理可知,共有186108⨯=种不同的播出方案.故选:A4.已知*0,x n ≠∈N ,则“8n =”是“312nx x ⎛⎫+ ⎪⎝⎭的二项展开式中存在常数项”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】计算二项展开式中存在常数项的等价条件,根据充分条件和必要条件的定义分别进行判断即可.【详解】若8n =,则8312x x ⎛⎫+ ⎪⎝⎭的常数项为()626381C 2112x x ⎛⎫⋅= ⎪⎝⎭;若312nx x ⎛⎫+ ⎪⎝⎭的二项展开式中存在常数项,设二项式的通项为()33411=C22C rn rrn r r n r r nn T x x x ---+⎛⎫⋅=⋅⋅ ⎪⎝⎭,且存在常数项,则340n r -=,34nr =,r 为整数,所以n 能被4整除.所以“8n =”是“312nx x ⎛⎫+ ⎪⎝⎭的二项展开式中存在常数项”的充分不必要条件.故选:A.5.已知曲线2ln y x x =-在点A 处的切线与直线20x y +-=垂直,则点A 的横坐标为()A.2-B.1-C.2D.1【答案】D 【解析】【分析】设点()00,A x y ,根据题意可得()01f x '=,从而求得0x .【详解】设()2ln f x x x =-,点()00,A x y ,则()12f x x x='-,由在点A 处的切线与直线20x y +-=垂直可得()01f x '=,即00121x x -=,又00x >,01x ∴=.故选:D6.已知函数()()22e xf x x ax a =++,若()f x 在2x =-处取得极小值,则a 的取值范围是()A.()4,+∞ B.[)4,+∞ C.[)2,+∞ D.()2,+∞【答案】A 【解析】【分析】利用求导得到导函数的零点2a-和2-,就参数a 分类讨论,判断函数()f x 的单调性,即可分析判断,确定参数a 的范围.【详解】由题意得,()()()()()()222e 4e 242e 22e x x x xf x x ax a x a x a x a x a x ⎡⎤=++++=+++=++⎣⎦',由()0f x '=可得,2ax =-或2x =-,①若22a -=-,即4a =时,()()222e 0x f x x =+≥',显然不合题意;②若22a -<-,即4a >时,当2ax <-或2x >-时,()0f x '>,即()f x 在(,2a -∞-和(2,)-+∞上单调递增;当22a x -<<-,()0f x '<,()f x 在(,2)2a--上单调递减,故()f x 在2x =-处取得极小值,符合题意;③若22a ->-,即4a <时,当<2x -或2x a >-时,()0f x '>,即()f x 在(,2)-∞-和(,)2a -+∞上单调递增;当22a x -<<-,()0f x '<,()f x 在(2,)2a--上单调递减,故()f x 在2x =-处取得极大值,不符题意.综上所述,当4a >时,()f x 在2x =-处取得极小值,故a 的取值范围是()4,∞+.故选:A.7.若()()()()23416321241811N x x x x =+-+-+-+-,则N =()A.()41x - B.()41+x C.()43x - D.()43x +【答案】B 【解析】【分析】利用二项式定理可得答案.【详解】()()()()23416321241811N x x x x =+-+-+-+-413222334444(1)C (1)2C (1)2C (1)22x x x x =-+-⋅+-⋅+-⋅+4(12)x =-+4(1)x =+.故选:B8.若函数()21ln 32f x x ax =++在区间()1,4内存在单调减区间,则实数a 的取值范围是()A.1,16⎛⎫-∞- ⎪⎝⎭B.()1,1,16⎛⎫-∞-+∞ ⎪⎝⎭C.(),1-∞- D.()0,1【答案】A 【解析】【分析】对()f x 求导,分0a ≥和a<0两种情况,结合()f x 在区间()1,4内存在单调减区间,求出a 的取值范围即可.【详解】()21ln 32f x x ax =++,()211ax f x ax x x+'=+=,当0a ≥时,()0f x ¢>,不符合题意;当0a <时,令()0f x '<,解得x >()f x 在区间()1,4内存在单调减区间,∴4<,解得116a <-.∴实数a 的取值范围是1,16⎛⎫-∞-⎪⎝⎭.故选:A .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.A ,B ,C ,D ,E 五个人并排站在一起,下列说法正确的是()A.若A ,B 不相邻,有72种排法B.若A ,B 不相邻,有48种排法C.若A ,B 相邻,有48种排法D.若A ,B 相邻,有24种排法【答案】AC 【解析】【分析】求得A ,B 不相邻时的排法总数判断选项AB ;求得A ,B 相邻时的排法总数判断选项CD.【详解】A ,B ,C ,D ,E 五个人并排站在一起,若A ,B 不相邻,则先让C ,D ,E 自由排列,再让A ,B 去插空即可,则方法总数为3234A A 72=(种).则选项A 判断正确;选项B 判断错误;A ,B ,C ,D ,E 五个人并排站在一起,若A ,B 相邻,则将A ,B “捆绑”在一起,视为一个整体,与C ,D ,E 自由排列即可,则方法总数为2424A A 48=(种).则选项C 判断正确;选项D 判断错误.故选:AC10.在62x⎛⎝的展开式中,下列命题正确的是()A.偶数项的二项式系数之和为32B.第3项的二项式系数最大C.常数项为60D.有理项的个数为3【答案】AC 【解析】【分析】根据题意,由二项式展开式的通项公式以及二项式系数的性质,代入计算,对选项逐一判断,即【详解】偶数项的二项式系数之和为152232n -==,故A 正确;根据二项式,当3r =时36C 的值最大,即第4项的二项式系数最大,故B 错误()()36662166C 21C 2r r rr rr r r T x x---+⎛==-⋅⋅⋅ ⎝,令3602r -=,4r =,∴4256C 260T =⋅=,故C 正确;362r -为整数时,0,2,4,6r =,故有理项的个数为4,故D 错误.故选:AC .11.已知函数()ln xxf x e =,则下列说法正确的是()A.()f x 有且仅有一个极值点B.()f x 有且仅有两个极值点C.当01x <<时,()f x 的图象位于x 轴下方D.存在0x ,使得()01f x e=【答案】AC 【解析】【分析】利用导数与极值、最值的关系求解即可.【详解】由题意知,()1ln xxx f x e -'=,令()1ln h x x x =-,()211h x x x '=--,易得()h x 在()0,∞+上单调递减,又()110h =>,()12ln 202h =-<,所以()01,2x ∃∈,使得()00h x =,所以当00x x <<时,()0f x '>,当0x x >时,()0f x '<,故()f x 在()00,x 上单调递增,在()0,x ∞+上单调递减,所以()f x 有且仅有一个极值点.故A 正确,B 错误;当01x <<时,ln 0x <,e 0x >,所以()0f x <,故C 正确;所以()()0000max 0ln 11ex x x f x f x e x e ===<,故D 错误.三、填空题:本题共3小题,每小题5分,共15分.12.三名学生分别从计算机、英语两学科中选修一门课程,不同的选法有___________种.【答案】8【解析】【分析】利用分步加法计数原理计算即得.【详解】依题意,可由三名学生依次选修课程,故分三步完成,由分步乘法计数原理知,不同的选法有322228⨯⨯==(种).故答案为:8.13.函数()ln f x x x =-的单调减区间为___________.【答案】(]0,1【解析】【分析】首先求出函数的定义域为()0,∞+,再求出()f x ',令()0f x '≤,解不等式即可求解.【详解】函数()ln f x x x =-的定义域为()0,∞+,且()111x f x x x-'=-=,令()0f x '≤,即10x x-≤,解不等式可得01x <≤,所以函数的单调递减区间为(]0,1.故答案为:(]0,1【点睛】本题考查了利用导数研究函数的单调性,解题的关键是求出导函数,属于基础题.14.已知函数()f x 的导函数()f x '满足()()f x f x '>在R 上恒成立,则不等式()()23e 21e 10x f x f x --->的解集是______.【答案】2,3⎛⎫+∞ ⎪⎝⎭【解析】【分析】根据已知关系式可构造函数()()xf xg x =e,可知()g x 在R 上单调递增,将所求不等式转化为()()211g x g x ->-,利用单调性可解不等式求得结果.【详解】令()()x f x g x =e ,则()()()0ex f x f x g x '-'=>,所以()g x 在R 上单调递增,由()()23e 21e 10xf x f x --->,得()()211>1e21ex xf x f x ----,即()()211g x g x ->-,又()g x 在R 上单调递增,所以211x x ->-,解得23x >.所以不等式()()23e 21e 10xf x f x --->的解集是2,3⎛⎫+∞⎪⎝⎭.故答案为:2,3⎛⎫+∞⎪⎝⎭.【点睛】关键点点睛:此类问题要结合代数式的特点,选择适当的函数,通过导函数研究出函数的单调性,从而解不等式即可.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(1)求值:2222310C C C +++ ;(2)解方程:32213A 2A 6A x x x +=+.【答案】(1)165;(2)5x =【解析】【分析】(1)利用组合数性质计算可得原式等于311C 165=;(2)由排列数计算公式可得(32)(5)0x x --=,可得5x =.【详解】(1)因为11C C C m m m n nn -+=+,所以11C C C m m m n n n -+-=,原式()()()()333333333345410911103C C C C C C C C C ++++-+=--- 31111109C 165123⨯⨯===⨯⨯;(2)因为32213A 2A 6A x x x +=+,所以!(1)!!326(3)!(1)!(2)!x x x x x x +⨯=⨯+⨯---,化简可得(32)(5)0x x --=,同时3x ≥,解得5x =.16.已知二项式nx⎛- ⎝的展开式中,所有项的二项式系数之和为a ,各项的系数之和为b ,32a b +=(1)求n 的值;(2)求其展开式中所有的有理项.【答案】(1)4(2)42135,54,81T x T x T x-===【解析】【分析】(1)先利用题给条件列出关于n 的方程,解之即可求得n 的值;(2)利用二项展开式的通项公式即可求得其展开式中所有的有理项.【小问1详解】因为2,(2)n n a b ==-,所以2(2)32n n +-=,当n 为奇数时,此方程无解,当n 为偶数时,方程可化为2232n ⨯=,解得4n =;【小问2详解】由通项公式3442144C (3)C rrr r r r r T x x--+=⋅=-⋅,当342r -为整数时,1r T +是有理项,则0,2,4r =,所以有理项为0442214422143454(3)C ,(3)C 54,(3)C 81T x x T x x T xx --=-==-==-=.17.为庆祝3.8妇女节,某中学准备举行教职工排球比赛,赛制要求每个年级派出十名老师分为两支队伍,每支队伍五人,并要求每支队伍至少有两名女老师,现高二年级共有4名男老师,6名女老师报名参加比赛.(1)高二年级一共有多少不同的分组方案?(2)若甲,乙两位男老师和丙,丁,戊三位女老师组成的队伍顺利夺得冠军,在领奖合影时从左到右站成一排,丙不宜站最右端,丁和戊要站在相邻的位置,则一共有多少种排列方式?【答案】(1)120种;(2)36种.【解析】【分析】(1)利用分类加法计数原理,结合平均分组问题列式计算.(2)按相邻问题及有位置限制问题,利用分步乘法计数原理列式计算即得.【小问1详解】两组都是3女2男的情况有326422C C 60 A ⋅=(种):一组是1男4女,另一组是3男2女的情况有1446C C 60⋅=(种),所以总情况数为6060120+=(种),故一共有120种不同的分组方案.【小问2详解】视丁和戊为一个整体,与甲、乙任取1个站最右端,有13C 种,再排余下两个及丙,有33A 种,而丁和戊的排列有22A 种,所以不同排列方式的种数是132332C A A 36=.18.已知函数()()2212ln 2f x a x x ax a =-++∈R .(1)当1a =时,求曲线()y f x =在()()1,1f 处的切线方程;(2)讨论函数()f x 的单调性;【答案】(1)32y =(2)答案见解析【解析】【分析】(1)代入1a =,求出'(1),(1)f f 即可求得切线方程;(2)函数求导'(2)()()x a x a f x x+-=,对a 分类讨论,进而求得单调性.【小问1详解】当1a =时,()212ln 2f x x x x =-++,'2()1f x x x =-++,所以'3(1)2110,(1)2f f =-++==,曲线()y f x =在()()1,1f 处的切线方程为32y =.【小问2详解】22'2(2)()()x ax a x a x a f x x x+-+-==,①当0a =时,'()0f x x =>,所以函数在(0,)+∞上单调递增;②当0a >时,令'()0f x =,则12x a =-(舍)或2x a =,'()0,0f x x a <<<,当(0,)x a ∈时,函数()f x 单调递减;'()0,f x x a >>,当(,)x a ∈+∞时,函数()f x 单调递增.③当0a <时,令'()0f x =,则12x a =-或2x a =(舍),'()0,02f x x a <<<-,当(0,2)x a ∈-时,函数()f x 单调递减;'()0,2f x x a >>-,当(2,)x a ∈-+∞时,函数()f x 单调递增.综上所述:当0a =时,函数在(0,+∞)上单调递增;当0a >时,当(0,)x a ∈时,函数()f x 单调递减当(,)x a ∈+∞时,函数()f x 单调递增;当0a <时,当(0,2)x a ∈-时,函数()f x 单调递减;当(2,)x a ∈-+∞时,函数()f x 单调递增19.已知函数()ln 32a f x ax x =--,其中0a ≠.(1)求函数()f x 的单调区间;(2)若()10xf x +≥恒成立,求实数a 的取值范围.【答案】(1)答案见解析(2)[)2,+∞.【解析】【分析】(1)利用导数,讨论a 的符号判断函数单调性;(2)问题转化为1ln 3102ax x x x ⎛⎫--+≥ ⎪⎝⎭恒成立,取1x =,有310a -+≥,可得2a ≥,构造函数利用导数求最小值证明1ln 02x x ->,则12ln 30x x x --+≥恒成立,通过构造函数利用导数求最小值证明.【小问1详解】函数()f x 的定义域为()0,∞+,()()2122a x a f x a x x -'=-=,①当0a >时,()0f x '<解得102x <<,()0f x ¢>解得12x >,此时函数()f x 的减区间为10,2⎛⎫ ⎪⎝⎭,增区间为1,2⎛⎫+∞ ⎪⎝⎭,②当0a <时,()0f x ¢>解得102x <<,()0f x '<解得12x >,此时函数()f x 的增区间为10,2⎛⎫ ⎪⎝⎭,减区间为1,2⎛⎫+∞⎪⎝⎭;【小问2详解】不等式()10xf x +≥可化为2ln 3102a ax x x x --+≥,由2ln 3102a ax x x x --+≥恒成立,取1x =,有310a -+≥,可得2a ≥,又由2ln 3102a ax x x x --+≥可化为1ln 3102ax x x x ⎛⎫--+≥ ⎪⎝⎭,令()1ln 2g x x x =-,有()121122x g x x x -'=-=,令()0g x '<解得102x <<,()0g x '>解得12x >此时函数()g x 的减区间为10,2⎛⎫ ⎪⎝⎭,增区间为1,2⎛⎫+∞ ⎪⎝⎭,有()111111ln ln 20222222g x g ⎛⎫≥=-=+> ⎪⎝⎭,可得1ln 02x x ->,可得211ln 2ln 2ln 22ax x x x x x x x x ⎛⎫⎛⎫-≥-=- ⎪ ⎪⎝⎭⎝⎭,下面证明22ln 310x x x x --+≥,即证明12ln 30x x x --+≥,令()12ln 3h x x x x =--+,有()()()222221111212x x x x h x x x x x+---'=--==,令()0h x '<解得01x <<,()0h x '>解得1x >,可得函数()h x 的减区间为()0,1,增区间为()1,+∞,有()()120310h x h ≥=--+=,可得不等式22ln 310x x x x --+≥成立,所以若()10xf x +≥恒成立,则实数a 的取值范围为[)2,+∞.。

辽宁省葫芦岛市东北师范大学连山实验高中2023-2024学年高二下学期期中考试数学试题(含简单答案)

辽宁省葫芦岛市东北师范大学连山实验高中2023-2024学年高二下学期期中考试数学试题(含简单答案)

东北师范大学连山实验高中2023-2024学年高二下学期期中考试数学试卷注意事项:1.本试卷分第I 卷(进择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号、班叙填写在答题卡上.2.回答第I 卷时,进出每小题答案后,用2B 铅笔把答题卡上对应题目的答聚标号涂黑.如需改动,用粮皮擦干净后,再进涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无放.第I 卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只蒋一项是符合题目要求的.1. 在数列中,若,,则( )A B. C. 1D. 42. 已知函数的导函数为,若,则( )A. B. C. 1D. 23. 随机变量,函数没有零点的概率是,则μ的值为( )A. 1B. 2C. 3D. 44. 设是数列的前项和,,,,,则( )A. B. C. D.5. 点A 是曲线上任意一点,则点A 到直线的最小距离为( )A.B.C.D.6. 中国古代许多著名的数学家对推导高阶等差数列的求和公式很感兴趣,创造并发展了名为“垛积术”的算法,展现了聪明才智,如南宋数学家杨辉在《详解九章算法•商功》一书中记载的三角垛、方垛等的求和都与高阶等差数列有关.如图是一个三角垛,最顶层有个小球,第二层有个,第三层有个,第四层有个,则第层小球的个数为( ).{}n a 11a =142n na a +=-12a =2-43-()fx ()f x '()2(1)ln f x xf x '=+(1)f '=2-1-2~(,)N ξμσ()²4f x x x ξ=-+12n S {}n a n 0n a >18a =212log log 1n n a a +-=-312k S =k =567823ln 2y x x =-21y x =-1361025A. B. C. D. 7. 已知函数所有极小值点从小到大排列成数列,则()A.B.C. D. 8. 已知,,,则,,的大小关系为( )A B. C. D. 二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图所示是的导数的图象,下列结论中正确的有( )A. 在区间上是增函数B. 在区间上是减函数,在区间上是增函数C. 是的极大值点D. 是的极小值点10. 公差为的等差数列的前项和为,若,则( )A. B. C. 中最大D. 11. 已知函数,则下列结论错误的是( )A. 函数存在两个不同的零点.324325326395()()2sin 0f x x x x =+>{}n a ()9sin a =1212-4ln 4a =1e b -=5ln 5c =a b c a b c>>c a b >>b c a >>b a c>>()y f x =()y f x '=()f x (3,1)-()f x (2,4)(1,2)-2x =()f x =1x -()f x d {}n a n n S 11120,0S S ><0d >70a >{}n S 6S 49a a <()21e xx x f x +-=()f xB. 函数只有极大值没有极小值C. 当时,方程有且只有两个实根D. 若时,,则t 的最小值为2第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12. 若函数在区间上单调递增,则实数的取值范围为______.13. 已知变量y 关于x 的回归方程为,若对两边取自然对数,可以发现与x 线性相关,现有一组数据如下表所示:x 12345y则当时,预测y 的值为____________.14. 已知,对于数列,有,若存在常数使得对于任意的,都有,则a 的取值范围是________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知公差不为0的等差数列首项,且成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.16. 已知函数.(1)求曲线过点处切线;(2)若曲线在点处切线与曲线在处的切线平行,求的值.17. 为提高居家养老服务质量,某机构组织调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区抽取了500位老年人,统计结果如下:性别需要志愿者不需要志愿者男40160的的()f x e 0k -<<()f x k =[),x t ∈+∞()2max 5ef x =()21e 2xf x ax a =++()0,∞+a 0.6e bx y -=0.6e bx y -=ln y e3e 4e 6e 7e 6x =()e ,0xf x a a =>{}n a ()110,n n a a f a +==0M >N n *∈n a M ≤{}n a 11a =125a a a ,,{}n a 2nn n b a =⋅{}n b n n S ()()3211,ex f x x x g x -+=-++=()y f x =()1,1()y f x =()1,1()y g x =()R x t t =∈t女30270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)中的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的比例?说明理由.附:,0.0500.0100.0013.8416.63510.82818. 已知函数.(1)讨论函数的单调性;(2)设,若存在零点,求实数的取值范围.19. 雪花是一种美丽的结晶体,放大任意一片雪花的局部,会发现雪花的局部和整体的形状竟是相似的,如图是瑞典科学家科赫在1904年构造的能够描述雪花形状的图案,其作法如下:将图①中正三角形每条边三等分,并以中间的那一条线段为一边向形外作正三角形,再去掉底边,得到图②;将图②的每条边三等分,重复上述的作图方法,得到图③;……按上述方法,所得到的曲线称为科赫雪花曲线(Koch snowflake ).的99%22()()()()()n ad bc a b c d a c b d χ-=++++αx α()()e 2,ln 1,xf xg x ax x a =-=+-∈R ()g x ()()()hx f x g x =-()h x a现将图①、图②、图③、…中的图形依次记为、、…、、….小明为了研究图形的面积,把图形的面积记为,假设a 1=1,并作了如下探究:P1P 2P 3P 4…Pn边数31248192…从P 2起,每一个比前一个图形多出的三角形的个数31248…从P 2起,每一个比前一个图形多出的每一个三角形的面积…根据小明的假设与思路,解答下列问题.(1)填写表格最后一列,并写出与的关系式;(2)根据(1)得到的递推公式,求的通项公式;(3)从第几个图形开始,雪花曲线所围成的面积大于.参考数据(,)1P 2P n P n P n P n a 19219319n a ()*1,2n a n n -∈≥N {}n a 797500lg 30.477≈lg 20.301≈东北师范大学连山实验高中2023-2024学年高二下学期期中考试数学试卷简要答案第I卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只蒋一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】D【4题答案】【答案】A【5题答案】【答案】A【6题答案】【答案】B【7题答案】【答案】D【8题答案】【答案】D二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD【10题答案】【答案】CD【11题答案】【答案】BD第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1) (2)【16题答案】【答案】(1)或 (2)【17题答案】【答案】(1)14% (2)有关(3)答案略【18题答案】【答案】(1)答案略 (2)【19题答案】【答案】(1)填表略;(2)(3)第7个[)1,-+∞9e 1(0,e21n a n =-()12326n n S n +=-⋅+230x y +-=430x y -+=12t =[)e 1,∞-+()1*134,249n n n a a n n --⎛⎫=+⨯∈≥ ⎪⎝⎭N ()1*834559n n a n -⎛⎫=-⨯∈ ⎪⎝⎭N。

浙江省宁波市镇海2023-2024学年高二下学期期中考试数学试卷含答案

浙江省宁波市镇海2023-2024学年高二下学期期中考试数学试卷含答案

镇海2023学年第二学期期中考试试题高二年级数学学科(答案在最后)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{230}P x x x =+-<∣,集合3{1}Q x x =>-∣,则P Q = ()A.()3,1- B.()2,1- C.()1,1- D.()1,3-【答案】C 【解析】【分析】先求出集合A ,B ,再结合交集的定义,即可求解.【详解】集合2{|230}{|31}P x x x x x =+-<=-<<,集合{}{}311Q x x x x =-=-,故(1,1)P Q ⋂=-.故选:C .2.已知函数4log ,01()2,1xx x f x x <<⎧=⎨≥⎩,则21()(log 3)4f f +=()A.1B.2C.3D.4【答案】B 【解析】【分析】根据条件,利用指、对数的运算性质,即可求出结果.【详解】因为4log ,01()2,1xx x f x x <<⎧=⎨≥⎩,所以411()log 144f ==-,又2log 31>,所以2log 32(log 3)23f ==,则21((log 3)1324f f +=-+=,故选:B.3.22cos 25sin 25sin110cos 70︒-︒=︒⋅︒()A.1-B.1C.2- D.2【答案】D 【解析】【分析】直接利用三角函数的关系式的变换求出三角函数的值.【详解】22cos 25sin 25cos50cos50sin 40211sin110cos 70sin 70cos 70sin140sin 4022︒-︒︒︒︒====︒⋅︒︒⋅︒︒︒.故选:D .4.在ABC 中,“cos sin A B =”是“90C =︒”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】先证明条件是必要的,再构造反例说明条件不是充分的.【详解】若90C =︒,则()()cos cos 180cos 90sin A C B B B =︒--=︒-=,故条件是必要的;当10A =︒,100B =︒,70C =︒时,有cos cos10sin100sin A B =︒=︒=,7090C =︒≠︒,故条件不是充分的.故选:B.5.函数}}:f →,}}:g →,如图所示,则()(){}x f g x g f x ⎡⎤⎡⎤<=⎣⎦⎣⎦∣()A.{}ln2B.C.{}cos2 D.【答案】A 【解析】【分析】对x =,ln 2x =cos 2x =,分别计算可判断[()][()]f g x g f x <是否成立,可求{|[()][()]}x f g x g f x <.【详解】当x =时,[()](cos 2)ln 20f g x f ==>,[()]cos 20g f x g ==<,不满足[()][()]f g x g f x <,当ln 2x =时,[()](ln 2)cos 20f g x f ==<,[()](cos 2)0g f x g ==>,满足[()][()]f g x g f x <,当cos 2x =时,[()]f g x f ==[()](ln 2)ln 21g f x g ==<,不满足[()][()]f g x g f x <,综上所述:{|[()][()]}{ln 2}x f g x g f x <=.故选:A.6.我们把正切函数在整个定义域内的图象看作一组“平行曲线”,而“平行曲线”具有性质:任意两条平行直线与两条相邻的“平行曲线”相交,被截得的线段长度相等.已知函数()()πtan 06h x x ωω⎛⎫=+> ⎪⎝⎭图象中的两条相邻“平行曲线”与直线2024y =相交于A 、B 两点,且3AB =,则34f ⎛⎫= ⎪⎝⎭()A.B.C.2D.2+【答案】D 【解析】【分析】由“平行曲线”的性质和周期公式求出ω,再代入函数值结合两角和的正切展开式计算即可.【详解】由“平行曲线”的性质可得函数的最小正周期为3T AB ==,所以ππ3T ω==,所以()ππtan 36h x x ⎛⎫=+⎪⎝⎭,所以ππtantan 13π3πππ463tan tan 2ππ43464631tan tan 463f ++⎛⎫⎛⎫⎛⎫=⨯+=+==+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-⨯故选:D.7.如图所示,在梯形ABCD 中,//AB CD ,π2ABC ∠=,点E 是BC 上一点,π24,3CE BE AED ==∠=,ADE V的面积为AD 的长为()A.B. C.8D.【答案】A 【解析】【分析】设,AB x CD y ==,求得24tan(π)124x y AED x y +-∠=-420x y ---=,再由ADE V的面积为2x y +=,x y 的值,即可求解.【详解】由题意,设,AB x CD y ==,则24tan(π)tan()124x y AED AED CED x y +-∠=∠+∠=-,可得2π24tan3124x y x y +==-420x y ---=,又由111()624222x y x y =+⨯-⋅-⋅,即2x y +=联立可得24xy =,联立方程组242xy x y =⎧⎪⎨+=⎪⎩,解得x y ==所以AD ==.故选:A.8.已知0.5log x x =,0.5log yx y =,0.5log zx z =,则()A.z x y <<B.y z x <<C.x y z<< D.y x z<<【答案】D 【解析】【分析】构造函数()0.5log x f x x =-,利用零点存在定理得到112x <<;由0.5log 0yx y =>得01y <<,从而有0.50.5log log y x >,得到y x <,由0.5log zx z =得到log log x x z x <,得到z x >,从而求出结果.【详解】令()0.5log x f x x =-,易得()f x 单调递增,又0.50log 111112222f ⎛⎫=-=-<⎪⎝⎭,()0.511110log f =-=>,所以()f x 在1,12⎛⎫⎪⎝⎭存在唯一零点,因为0.5log x x =,所以112x <<,由0.5log 0y x y =>,知01y <<,所以0.50.5log log yx y x x =>=,又函数0.5log y x =在(0,)+∞上单调递减,所以y x <,由0.5log zx z =,知0z >,所以00.5log 1log zx x z x <=<=,所以z x >,综上,y x z <<.故选:D.【点睛】关键点点晴:本题的关键在于构造函数()0.5log x f x x =-,利用零点存在定理得到112x <<,再利用指对数函数的单调性解决问题.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.9.若2x a x ++-的最小值是1,则实数a 的值可以为()A.1-B.2- C.3- D.4-【答案】AC 【解析】【分析】根据条件,利用绝对值三角不等式,即可求出结果.【详解】因为22x a x a ++-≥+,当且仅当(2)()0x a x +-≥取等号,又2x a x ++-的最小值是1,所以21a +=,解得1a =-或3a =-,故答案为:AC.10.已知函数()1e exxm f x m -⋅=+是定义域上的奇函数,则下列选项中错误..的是()A.1m = B.()1f x =有解C.()()210f f +-=D.()2y f x =+与()4y f x =-的图象关于3x =对称【答案】ABCD【解析】【分析】对于A ,验证1m =-符合题意即可说明选项错误;对于B ,假设()1f x =,再得出矛盾即可说明选项错误;对于C ,利用单调性和奇偶性可验证结论不成立,从而说明选项错误;对于D ,利用图象对称对应的恒等式,验证其不恒成立,即可说明选项错误.【详解】对于A :若1m ≠-,则由0e 0m +≠知()f x 的定义域包含0x =,再由()f x 是奇函数有()00f =,代入得101mm -=+,故1m =,经检验符合题意.若1m =-,则()1e e 11e e 1x x xxf x ++==-+-,其定义域0x ≠关于原点对称,且()()e 11e e 1e 11e e 1x x x x xx f x f x --+++-===-=----,从而()f x 是奇函数.这表明m 的所有可能值是1m =或1m =-,故A 错误;对于B :由上面的结论知()1e 1e x xf x -=+或()e 1e 1x x f x +=-.无论哪种情况,()1f x =都意味着e 1e 1xx+=-,两边同时平方得到22e 2e 1e 2e 1x x x x ++=-+,即4e 0x =,这是不可能的.所以()1f x =无解,故B 错误;对于C :若()1e 1e x x f x -=+,则由()1e 211e 1e x x xf x -==-+++知()f x 单调递减;若()e 1e 1x x f x +=-,则由()e 121e 1e 1x x xf x +==+--知()f x 在()0,∞+上单调递减.无论怎样,都有()f x 在()0,∞+上单调递减,故()()21f f <.所以()()()()21210f f f f +-=-<,故C 错误;对于D :该选项的描述即为()()()264f x f x +-=-(若等号两边都有意义).即()()84f x f x -=-(若等号两边都有意义).但根据上面的论证,知()f x 在()0,∞+上单调递减,故4x <时必有()()84f x f x -<-.故D 错误.故选:ABCD.11.若a ,b 为函数()()2sin 1f x x m x =++-的两个不同零点,令()h m a b =-,则下列命题正确的是()A.π是函数()h m 的一个周期B.02π⎛⎫ ⎪⎝⎭,是函数()h m 的一个单调递减区间C.函数()h m 的图象是轴对称图形 D.函数()h m 的图象是中心对称图形【答案】BC 【解析】【分析】由于此题的零点无法求解,因此联想到数形结合来做,即通过分析特殊值来确定选项A ,再通过24x x m π⎛⎫⎝⎭=--⎪的解来分析选项BC ,利用反证法可判断D .【详解】对于A ,若π2m =时,()2cos 1f x x x =+-,此时()sin 2f x x x '=-+,设()sin 2s x x x =-+,则()cos 20s x x '=-+>,故()f x '为R 上的增函数,而()00f '=,故当0x <时,()0f x '<,当0x >时,()0f x ¢>,故()f x 在(),0∞-上为减函数,在()0,∞+上为增函数,而()00f =,故()f x 仅有一个零点,与题设矛盾,故π2m ≠.同理π2π,Z 2m k k ≠+∈,当3π2m =时,()2cos 1f x x x =-+-,此时()sin 2f x x x '=+,同理可得()f x 在(),0∞-上为减函数,在()0,∞+上为增函数,而()020f =-<,()()223cos 20f f =-=->,故此时()f x 有两个不同的零点,故()h m 的周期不是π,故A 错误.对于B ,()()2sin 1f x x m x =++-的x m =-的零点差的绝对值,其中π2π,Z 2m k k ≠+∈.设()n 24g x x π⎛⎫- ⎪⎝=⎭=,其图像如图所示,根据对称性及A 中讨论,24x x m π⎛⎫⎝⎭=--⎪在ππ,22⎡⎫-⎪⎢⎣⎭上的两个不同零点差的绝对值,其中02m π<<,设该方程较大的零点为b ,较小的零点为a ,则π02b <<,因为πππ222m m g ⎛⎫--=+>=- ⎪⎝⎭,故π2a >-.设1202m m π<<<,1x m =-的两个根为11,a b ,且11ππ22a b -<<<,11m a =-11b m =-11b a +=-.同理()22sin 1y x m x =++-的两边不同的零点22,a b 也满足:22b a +-,其中1212ππ22a ab b <<<-<<,而ππ,22y x ⎡⎫=∈-⎪⎢⎣⎭为减函数,<,<,故2211b a b a -<-即()()12h m h m >,故()h m 在0,2π⎛⎫⎪⎝⎭为减函数,故B 成立.对于C ,结合B 中()g x 的图像关于直线2x π=对称可知22h m h m ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,即函数()h m 的图象关于直线2m π=对称,即选项C 是正确的;对于D ,当R m ∈且π2π,Z 2m k k ≠+∈时,结合()g x 的图像可得()h m 的最小正周期为2π,且()h m 的图象有两类对称轴:π2π,Z 2m k k =+∈,3π2π,Z 2m k k =+∈,若()h m 图像有对称中心()00,m h ,根据()h m 的最小正周期为2π及对称性不妨设0π3π,22m ⎛⎤∈⎥⎝⎦,且()()0022h m m h m n -+=,而()()πh m h m -=,故()()002π2h m m h m n -+-=,故()()002π2h m m h m n -++=,所以()()00042π2π2h m m h m m n -++-+=,故()()042πh m m h m -+=,故()h m 的周期为042m π-,但(]04π,4πm π-∈,结合最小正周期为2π可得042π4πm -=即03π2m =,但直线03π2m =为对称轴,故()h m 的图像无对称中心.故D 错误.故选:BC.【点睛】关键点点睛:复杂函数的零点问题,可利用变换转化为简单函数的图象的交点问题,而抽象函数的性质的讨论,可以依据定义来进行判断.三、填空题:本题共3小题,每小题5分,共15分.12.用列举法表示集合6{|}9x x∈∈-N N 的结果为_____________.【答案】{}1,2,3,6【解析】【分析】根据题意可9x -知为6的约数,求得x 的取值,用列举法表示集合即可.【详解】由6N 9x∈-可知9x -为6的约数,所以91,2,3,6x -=,因为N x ∈,所以8,7,6,3x =,此时,66,3,2,19x=-集合为{}1,2,3,6.故答案为:{}1,2,3,6.13.将函数()π3cos 2y x ϕϕ⎛⎫=+<⎪⎝⎭的图象上各点的横坐标缩短到原来的12(纵坐标不变),再向右平移π3个单位得到曲线C .若曲线C 的图象关于直线π4x =对称,则ϕ的值为_________.【答案】π6##1π6【解析】【分析】先求出曲线C 的解析式π3cos 23y x ϕ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,然后根据图象的对称性即得πcos 16ϕ⎛⎫-= ⎪⎝⎭,最后利用余弦函数的性质及ϕ的范围可求得ϕ的值.【详解】将函数()3cos y x ϕ=+的图象上各点的横坐标缩短到原来的12,得到函数()3cos 2y x ϕ=+的图象;再将函数()3cos 2y x ϕ=+的图象向右平移π3个单位,得到曲线π3cos 23y x ϕ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭.由条件知该曲线关于直线π4x =对称,故对应函数在π4x =处取得最大值或最小值,从而ππcos 2143ϕ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即πcos 16ϕ⎛⎫-= ⎪⎝⎭.从而()ππ6k k ϕ-=∈Z ,即()ππ6k k ϕ=+∈Z .再由π2ϕ<即ππ22ϕ-<<,就得到2133k -<<,从而0k =,故π6ϕ=.故答案为:π6.14.已知1x >,1y >,1z >,且满足log 10log 10log 10log 101x y xy z +=+=,则z 的最大值为_________.【答案】4310【解析】【分析】由已知结合对数的换底公式进行化简,然后结合基本不等式即可求解.【详解】因为1x >,1y >,1z >,且满足log 10log 10log 10log 101x y xy z +=+=,所以111lg lg x y +=,111lg()lg xy z+=,所以2lg lg lg lg lg lg (2x y x y x y +⋅=+≤,当且仅当100x y ==时取等号,所以lg lg 4x y +≥,110lg lg 4x y <≤+,因为111lg()lg xy z+=,所以111311[,1)lg lg()lg lg 4z xy x y =-=-∈+,所以41lg 3z <≤,所以431010z <≤,故z 的最大值为4310.故答案为:4310.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知不等式603xx -≥-的解集为A ,函数()()2lg 2f x x x a =-+的定义域为B .(1)求A ;(2)若A B ⊆,求a 的范围.【答案】(1)(3,6](2)[3,)-+∞【解析】【分析】(1)直接利用分式不等式的解法求出结果;(2)利用对数的定义域和集合间的关系求出参数a 的取值范围.【小问1详解】不等式603x x -≥-,整理得:603x x -≤-,即(3)(6)030x x x --≤⎧⎨-≠⎩,解得:36x <≤,故集合A 的解集为(3,6].【小问2详解】由于(3A =,6],由于A B ⊆,则2()lg(2)f x x x a =-+的定义域满足对(3A ∀=,6],220x x a -+>恒成立,故满足2360a -+≥,整理得3a ≥-,故实数a 的取值范围[3,)-+∞.16.已知定义在R 上的函数()f x 满足()()223f x f x x +-=+.(1)求()f x ;(2)若函数()()()33f x x g x t f t =+⋅-,[]1,1x ∈-,是否存在实数t 使得()g x 的最小值为3-?若存在,求出实数t 的值;若不存在,请说明理由.【答案】(1)()21f x x =+(2)不存在,理由见解析【解析】【分析】(1)将已知中的x 替换为x -,得出方程组,求解即可得到答案;(2)由(1)可得()21323x x g x t +=+⋅,利用换元法令3x u =,结合一元二次函数的单调性讨论即可.【小问1详解】由()()223f x f x x +-=+可得()()223f x f x x -+=-+,联立()()()()223223f x f x x f x f x x ⎧+-=+⎪⎨-+=-+⎪⎩,解得()21f x x =+.【小问2详解】由(1)可得()()21213231323x x x x g x t t t ++=+⋅⨯+-=+⋅,令3x u =,则当[]1,1x ∈-时,1,33u ⎡⎤∈⎢⎥⎣⎦,所以()232g u u tu =+,所以()g u 在,3t ∞⎛⎫-- ⎪⎝⎭上单调递减,在,3t ∞⎛⎫-+ ⎪⎝⎭上单调递增,当133t -≤,即1t ≥-时,()2min111323333g u g t ⎛⎫⎛⎫==⨯+⨯=- ⎪ ⎪⎝⎭⎝⎭,解得5t =-,与1t ≥-矛盾,当33t-≥,即9t ≤-时,()()2min 333233g u g t ==⨯+⨯=-,解得5t =-,与9t ≤-矛盾,当1333t <-<,即91t -<<-时,()2min323333t t t g u g t ⎛⎫⎛⎫⎛⎫=-=⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得1t =±,与91t -<<-矛盾,综上不存在实数t 使得()g x 的最小值为3-.17.已知函数()()2cos 2sin 10f x x x x ωωωω=+->的最小正周期为π.(1)求ω的值及函数()f x 的单调递增区间;(2)若函数()f x 在区间[]π,αα-内既有最大值又有最小值,求α的取值范围.【答案】(1)1ω=,πππ,π,Z 63k k k ⎡⎤-+∈⎢⎣⎦(2)5π,6⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)利用三角恒等变换得π()2sin 26f x x ω⎛⎫=- ⎪⎝⎭,再由周期公式及正弦函数的单调性求解即可;(2)首先根据区间形式得到π2α>,再利用整体法结合正弦函数性质得到不等式组,解出即可.【小问1详解】()2πcos 2sin 12cos 22sin 26f x x x x x x x ωωωωωω⎛⎫=+-=-=- ⎪⎝⎭,由题意可得:2π==π2T ω,则1ω=,∴()π2sin 26f x x ⎛⎫=- ⎪⎝⎭,令πππ2π22π,Z 262k x k k -≤-≤+∈,则ππππ,Z 63k x k k -≤≤+∈∴函数()f x 的单调增区间为πππ,π,Z 63k k k ⎡⎤-+∈⎢⎣⎦;【小问2详解】根据区间形式得παα>-,则π2α>,又因为[]π,x αα∈-,则11πππ222666x αα-≤-≤-,π5π266α->,若()π2sin 26f x x ⎛⎫=- ⎪⎝⎭在区间[]π,αα-内既有最大值又有最小值,则11ππ262α-≤-,解得7π6α≥;或者π3π26211ππ262αα⎧-≥⎪⎪⎨⎪-≤⎪⎩,解得5π6α≥;综上两者取并集得5π6α≥.所以α的取值范围为5π,6⎡⎫+∞⎪⎢⎣⎭.18.已知在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足()sin cos cos cos B c B b C B +=.(1)求B ;(2)若π2C =,且C 的角平分线交AB 于P ,Q 为边AC 的中点,CP 与BQ 交于点D .求cos PDQ ∠;(3)若5b =,求ABC 内切圆半径r 的取值范围.【答案】(1)π3B =(2)42214cos 14PDQ -∠=(3)ABC 内切圆半径r 的取值范围为(0,]6【解析】【分析】(1)由正弦定理可得sin (sin cos sin cos )cos B C B B C A B +=,利用三角恒等变换可得B ;(2)设2BC a =,可求得cos BQC ∠,sin BQC ∠,利用cos cos()PDQ PCQ BQC ∠=∠+∠,可求值;(3)由余弦定理可得2222cos b a c ac B =+-,可求得510a c <+≤,进而可得325acr a c =++,进而计算可求得ABC 内切圆半径r 的取值范围.【小问1详解】由sin (cos cos )cos B c B b C B +=,结合正弦定理得sin (sin cos sin cos )cos B C B B C A B +=,所以sin sin()cos B C B A B +=,所以sin sin(π)cos B A A B -=,所以sin sin cos B A A B =,因为sin 0A ≠,所以sin B B =,所以tan B =,因为(0,π)B ∈,所以π3B =.【小问2详解】当π2C =时,设2BC a =,由(1)可知π3B =,则AC =,因为Q是AC的中点,故QC=,所以BQ==,所以cosCQBQCBQ∠==sin BCBQCBQ∠==,所以πππcos cos()cos()cos cos sin sin444 PDQ PCQ BQC BQC BQC BQC ∠=∠+∠=+∠=∠-∠2214=-=;【小问3详解】由余弦定理可得2222cosb ac ac B=+-,所以222222125()3()3(()24a ca c ac a c ac a c a c+=+-=+-≥+-=+,当且仅当5a c==时取等号,所以10a c+≤,又5a c b+>=,所以510a c<+≤,因为1111sin2222ABCar br cr S ac B++==,由225()3a c ac=+-,可得21[()25]3ac a c=+-,所以213[()25]32(5)25256a cac acr a ca b c a c a c+-====+-++++++,所以06r<≤,所以ABC内切圆半径r的取值范围为(0,6.19.已知函数()2241mx xf xx+=+,函数()22mg x x=+.(1)若0m=,求()f x的值域;(2)若(]0,4m∈:(ⅰ)解关于x的不等式:()()f xg x≤;(ⅱ)设,a b∈R,若实数t满足()()2f a f b t⋅=-,比较()()1g t m g--与18的大小,并证明你的结论.【答案】(1)[]22-,(2)(ⅰ)4,m ∞⎡⎫-+⎪⎢⎣⎭(ⅱ)当2t =且12m =时,()()118g t m g --=;当2t ≠或12m ≠时,()()118g t m g --<,证明见解析【解析】【分析】(1)利用函数的奇偶性和双勾函数的性质可求值域.(2)利用()()()()()221421x mx g x f x x -+-=+即可求出不等式的解集,然后证明2t ≤,再代入解析式证明()()118g t m g --≤,最后判断不等号两边相等的条件即可.【小问1详解】当0m =时,()241xf x x =+,其定义域为R ,而()()241xf x f x x -=-=-+,故()f x 为奇函数,当0x =时,()0f x =;当0x >时,()41f x x x=+,而1y x x=+在()0,+∞上的值域为[)2,+∞,故此时()(]0,2f x ∈,结合()f x 为奇函数可得()f x 的值域是[]22-,.【小问2详解】若(]0,4m ∈:(ⅰ)由于()()()()()()()2222224144412421212121x mx x mx m mx x mx x g x f x x mx x x x x +-+++⎛⎫-=+-=-=-+= ⎪++++⎝⎭,故不等式()()f x g x ≤等价于()()2140x mx -+≥,即40mx +≥或1x =.由4m -是负数,知原不等式的解集为4,m ∞⎡⎫-+⎪⎢⎣⎭;(ⅱ)由于关于x 的方程()2241mx x f a x +=+有解x a =,故关于x 的方程()()()240f a m x x f a --+=有解.如果()0f a m -≠,则该方程是二次方程,所以其判别式非负,即()()()1640f a f a m --≥.从而()0f a m -=和()()()1640f a f a m --≥这两个结论中,至少有一个成立.但当()0f a m -=时,亦有()()()164160f a f a m --=≥.故()()()1640f a f a m --≥一定成立,所以()()()4f a f a m -≤.同理()()()4f b f b m -≤,所以()(),22m m f a f b ⎡-+∈⎢⎥⎢⎥⎣⎦.故()()2422m m t f a f b +-=≥⋅=-,所以22t -≤≤.所以由0m >,2t ≤即可得到()()()()()211111221122228228m m m m g t m g t m t m m m ⎛⎫--=-+--=--≤-=--≤ ⎪⎝⎭.根据上面的证明过程显然能够得出,不等号两边相等当且仅当2t =且12m =.综上,比较的结果为:当2t =且12m =时,()()118g t m g --=;当2t ≠或12m ≠时,()()118g t m g --<.【点睛】关键点点睛:本题的关键点在于将函数的解析式与不等式结合,利用函数的性质即可更容易地解出与之相关的不等式.。

浙江省杭州第二中学2023-2024学年高二下学期期中考试数学试题(解析版)

浙江省杭州第二中学2023-2024学年高二下学期期中考试数学试题(解析版)

2023学年第一学期杭州二中高二期中考试数学1. 两条平行直线1l :注意事项:1.本试卷满分150分,考试用时120分钟.2.答题前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写答题卡上.用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.3.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,多选、错选或不选都给不分.3450x y +−=与2l:6850x y +−=之间的距离是( ) A. 0 B.12C. 1D.32【答案】B 【解析】【分析】利用平行线间距离公式进行求解即可. 【详解】345068100x y x y +−=⇒+−=,12, 故选:B2. 已知圆()()()2122292:x m y m m C −+−=−与圆22288340:x y x C y m +−−+−=,则“4m = ”是“圆1C 与圆2C 外切”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C【解析】【分析】利用两圆相切圆心距与两半径之和相等,分别证明充分性和必要性是否成立即可得出答案. 【详解】根据题意将圆2C 化成标准方程为()()22442x y m −+−=−; 易知20m −>,所以可得圆心()12,2C m m,半径为1r =,圆心()24,4C,半径为2r =可得122C C =−,两半径之和12r r += 若4m=,圆心距12C C =,两半径之和12r r +,此时1212C C r r =+=, 所以圆1C 与圆2C 外切,即充分性成立;若圆1C 与圆2C外切,则2−=4m =或2m =(舍), 所以必要性成立;即“4m =”是“圆1C 与圆2C 外切”的充分必要条件. 故选:C3. 已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m =A. 1±B. C. D. 2±【答案】C 【解析】【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出m 【详解】由题可得圆心为()0,0,半径为2,则圆心到直线的距离d =,则弦长为||MN =, 则当0k =时,MN 取得最小值为2=,解得m =. 故选:C.4. 直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y −+=上,则ABP 面积的取值范围是A. []26,B. []48,C. D.【答案】A 【解析】【详解】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点 ()()A 2,0,B 0,2∴−−,则AB = 点P 在圆22x 22y −+=()上∴圆心为(2,0),则圆心到直线距离1d =故点P 到直线x y 20++=的距离2d 的范围为则[]2212,62ABPS AB d ==∈故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.5. 已知正方形ABCD 的边长为2,点M 在以C 为圆心,1为半径的圆上,则2MB MD +的最小值为( )A.B.C.D.【答案】D 【解析】【分析】建立直角坐标系,取点1(0,)2E ,探讨满足条件||2||M D M E ′′=的点M ′的轨迹,再结合已知,求出两条线段长度和的最小值作答.【详解】依题意,以点C 为原点,直线,CB CD 分别为,x y 轴建立平面直角坐标系,则(2,0),(0,2)B D ,如图,取点1(0,)2E ,设(,)M x y ′,当||2||M D M E ′′=化简整理得221x y +=,即点M ′的轨迹是以C 为圆心,1为半径的圆,而点M 在以C 为圆心,1为半径的圆上,因此||2||MD ME =,显然点B 在圆C :221x y +=外,则22||2||2(||||)2||MB MD MB ME MB ME BE +=+=+≥,当且仅当M 为线段BE 与圆C 的交点时取等号,而||BE ,所以2MB MD +的最小值为2||BE =故选:D【点睛】关键点睛:建立坐标系,取点1(0,)2E 并求出满足条件||2||M D M E ′′=的点M ′的轨迹是解题的关键.6. 设椭圆()222210x y a b a b+=>>的左焦点为F ,O 为坐标原点,过F 且斜率为1的直线交椭圆于A ,B两点(A 在x 轴上方).A 关于x 轴的对称点为D ,连接DB 并延长交x 轴于点E ,若DOF S ,DEF S △,DOE S △成等比数列,则椭圆的离心率e 的值为( )A.B.C.D.【答案】D 【解析】【分析】根据DOF S ,DEF S △,DOE S △成等比数列,得到2EF OF OE =⋅,设直线AB 的方程为:()()()112211,,,,,,y x c A x x c B x x c D x x c =+++−−,与椭圆方程联立,再设直线BD 的方程为:()122221x x c y x cx x x x ++−−=−−,令0y =结合韦达定理,得到点E 的坐标,代入2EF OF OE =⋅求解.【详解】解:如图所示:设,,DOF DEF DOE 分别以OF ,EF ,OE 为底,高为h ,则111,,222DOFDEF DOE S OF h S EF h S OE h === , 因为DOF S ,DEF S △,DOE S △成等比数列,所以2DEFDOF DEF S S S =⋅ ,即2EF OF OE =⋅,设直线AB 的方程为:()()()112211,,,,,,y x c A x x c B x x c D x x c =+++−−,联立22221x y a b y x c += =+,消去y 得()2222222220a b x a cx a c a b +++−=, 由韦达定理得:2121222222222,2x x x x a ca c ab a b a b−+=−=++⋅, 直线BD 的方程为:()1222212x x cy x c x x x x ++−−=−−,令0y =得,()12121222E x x c x x x x x c⋅++=++,则()22121212222222222222222222E x x c x x a x c a c a b a c a b a b a b x x c c c a ⋅−⋅++===−++−++−++, 则2EF OF OE =⋅,即为222a a c c c c ⋅−,则()22222c a ac =−,即422430a c a c −+=,即42310e e −+=,解得2e =e =,故选:D7. 已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,经过1F 的直线交椭圆于A ,B ,2ABF △的内切圆的圆心为I ,若23450++=IB IA IF ,则该椭圆的离心率是( )A.B.23C.D.12【答案】A 【解析】【分析】对23450++= IB IA IF 变形得到2351882IB IF IA +=−,进而得到以22::3:4:5AF BF AB =,结合椭圆定义可求出2AF a =,245,33BF a AB a ==,1AF a =,由余弦定理求解,a c 关系式,求出离心率.【详解】因为23450++= IB IA IF ,所以2351882IB IF IA +=−, 如图,在2BF 上取一点M ,使得2:5:3BM MF =,连接IM ,则12IM IA =−,则点I 为AM 上靠近点M 的三等分点,所以22::3:4:5IAF IBF IBA S S S = , 所以22::3:4:5AF BF AB =设23AF x =,则24,5BF x AB x ==, 由椭圆定义可知:224AF BF AB a ++=,即124x a =,所以3ax =, 所以2AF a =,245,33BF a AB a ==,1AF a = 故点A 与上顶点重合, 在2ABF △中,由余弦定理得:222222222222516399cos 52523a a a AB F A F B BAF AB F A a +−+−∠===⋅×,在12AF F △中,2222243cos 25a a c BAF a +−∠==,解得:c a =故选:A【点睛】对于求解圆锥曲线离心率问题,要结合题目中的条件,直接求出离心率或求出,,a b c 的齐次方程,解出离心率,本题的难点在于如何将23450++=IB IA IF 进行转化,需要作出辅助线,结合内心的性质得到三角形2ABF 三边关系,求出离心率.8. 在平面直角坐标系xOy 中,若抛物线C :y 2=2px (0p >)的焦点为F ,直线x =3与抛物线C 交于A ,B 两点,|AF |=4,圆E 为FAB 的外接圆,直线OM 与圆E 切于点M ,点N 在圆E 上,则OM ON ⋅的取值范围是( )A. 63,925−B. []3,21−C. 63,2125D. []3,27【答案】B 【解析】【分析】由已知及抛物线的定义,可求p ,进而得抛物线的方程,可求A ,B ,F 的坐标,直线AF 的方程,可得圆的半径,求得圆心,设N 的坐标,求得M 的坐标,结合向量数量积的坐标表示,以及辅助角公式和正弦函数的值域,可得所求范围.【详解】解:由题意,设(A ,所以||342pAF =+=,解得2p =,所以抛物线的方程为24y x =,(3,A ,(3,B −,(1,0)F ,所以直线AF 的方程为1)yx =−,设圆心坐标为0(x ,0),所以2200(1)(3)12x x −=−+,解得05x =,即(5,0)E ,∴圆的方程为22(5)16x y −+=,不妨设0M y >,设直线OM 的方程为y kx =,则0k >,4=,解得43k =, 由2243(5)16y x x y= −+=,解得912,55M, 设(4cos 5,4sin )N θθ+,所以364812cos sin 9(3cos 4sin )9555OM ON θθθθ⋅=++=++ , 因为[]3cos 4sin5sin()5,5θθθϕ+=+∈−, 所以OM ON ⋅∈[]3,21−. 故选:B .【点睛】关键点点睛:本题解题的关键点是:首先求出圆的方程为22(5)16x y −+=,然后利用直线OM 与圆E 切于点M ,求出M 点的坐标,引入圆的参数方程表示N 点坐标,再根据向量数量积的坐标表示及辅助角公式,可得所求范围..二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知直线1l :230ax y a ++=和直线2l :()3170x a y a +−+−=,下列说法正确的是( ) A. 当25a =时,12l l ⊥ B. 当2a =−时,12l l ∥C. 直线1l 过定点()3,0-,直线2l 过定点()1,1−D. 当1l ,2l 【答案】AD 【解析】【分析】A 选项:把a 的值分别代入两直线,根据直线垂直时,斜率相乘为1−,直接判断即可; B 选项,把a 的值分别代入两直线,根据直线平行时,斜率相等判断即可; C 选项,把直线的方程变形,根据直线过定点的定义判断即可;D 选项,由直线平行时,斜率相等,可求得a 得值,排除重合情况,再利用平行直线的距离公式直接求解即可.【详解】对于A ,当25a =时,那么直线1l 为262055x y ++=,直线2l 为3237055x y −+−=,此时两直线的斜率分别为115k =−和25k =,所以有121k k ⋅=-,所以12l l ⊥,故A 选项正确;对于B ,当2a =−时,那么直线1l 为30x y −+=,直线2l 为30x y −+=,此时两直线重合,故B 选项错误;对于C ,由直线1l :230ax y a ++=,整理可得: ()320a x y ++=,故直线1l 过定点()3,0-,直线2l :()3170x a y a +−+−=,整理可得:()1370a y x y −+−+=,故直线2l 过定点()2,1−,故C 选项错误;对于D ,当1l ,2l 平行时,两直线的斜率相等,即213a a −−=−,解得:3a =或2a =−,当2a =−时,两直线重合,舍去;当3a =时,直线1l 为3290x y ++=,2l 为3240x y ++=,此时两直线的距离d,故D 选项正确. 故选:AD .10. 已知椭圆2222:1(0)x y C a b a b+=>>的左,右两焦点分别是12,F F ,其中12||2F F c =.直线()():R l y k x c k =+∈与椭圆交于,A B 两点,则下列说法中正确的有( )A. 2ABF △的周长为4aB. 若AB 的中点为M ,则22OMb k k a⋅=C. 若2124AF AF c ⋅=,则椭圆的离心率的取值范围是 D. 若1k =时,则2ABF △【答案】ACD 【解析】【分析】根据椭圆定义可知2ABF △的周长为4a ,可判断A 正确;联立直线和椭圆方程求出点M 的坐标,表示出斜率公式即可得22OMb k k a⋅=−,可得B 正确;由2124AF AF c ⋅= 易知A 点在以()0,0为圆心,半径为的圆上,即可得圆222115x y c +=与椭圆22221x y a b+=有交点,需满足b a ≤≤,可得离心率e ∈,可知C 正确;将1k =代入联立的方程可得2ABF △的面积12S c x x =−,可得D 正确.【详解】由12||2F F c =可知,()()12,0,,0F c F c −;显然直线()():R l y k x c k =+∈过点()1,0F c −,如下图所示:由椭圆定义可知2ABF △的周长为2212214AB AF BF AF AF BF BF a ++=+++=,所以A 正确; 设()()1122,,,A x y B x y ,中点()0,Mx y ;将直线和椭圆方程联立()22221x y a b y k x c += =+ ,消去y 整理可得()2222222222220b a k x a k cx a k c a b +++−=; 由韦达定理可得22122222a k c x x b a k +=−+,所以221202222x x a k cx b a k+==−+,代入直线方程解得20222b cky b a k =+,即222222222,a k c b ck M b a k b a k − ++; 所以2222222222222200OMb ckb ck b b a k k a kc a k c a k b a k −+==−=−−−+, 可得2222OMk b k a k b k a⋅−==⋅−,所以B 错误;根据B 选项,由2124AF AF c ⋅=可得()()2222111111,4,c x y c x y x c y c −⋅=+−−=−−−, 可得222115x y c +=,即A 点在以()0,0圆上; 又A 点在椭圆上,即可得圆222115x y c +=与椭圆22221x y a b+=有交点,根据对称性可知b a ≤≤,即22256c a c ≤≤,所以可得离心率e ∈,即C 正确;若1k =时,由选项B 可知联立直线和椭圆方程可得()2222222220b axa cx a c ab +++−=; 所以可得22222121222222,a c a c a b x x x x b a b a−+=−=++; 所以12x x −==易知2ABF △面积12112212121122S F F y F F y c y y c x x =+=−==− 即可得2ABF△,故D 正确. 故选:ACD【点睛】方法点睛:在求解圆锥曲线与直线的位置关系时,特别是在研究跟焦点三角形有关的问题时,经常将直线和圆锥曲线联立并利用韦达定理求解,注意变量间的相互转化即可.11. 已知斜率为k 的直线交抛物线()220y px p =>于()11,A x y 、()22,B x y 两点,下列说法正确的是( ) A. 12x x 为定值B. 线段AB 的中点在一条定直线上的的C.11OA OBk k +为定值(OA k 、OB k 分别为直线OA 、OB 的斜率) D. AF BF为定值(F 为抛物线的焦点)【答案】BC 【解析】【分析】分析可知,0k ≠,设直线AB 的方程为y kx m =+,将直线AB 的方程与抛物线的方程联立,利用韦达定理可判断A 选项;求出线段AB 中点的纵坐标,可判断B 选项;利用斜率公式结合韦达定理可判断C 选项;利用抛物线的焦半径公式可判断D 选项.【详解】若0k =,则直线AB 与抛物线()220y px p =>只有一个交点,不合乎题意,则0k ≠, 设直线AB 的方程为y kx m =+,联立22y kx m y px=+ = 可得()222220k x km p x m +−+=, ()2222224480km p k m p kmp ∆=−−=−>,对于A 选项,2122m x x k =不一定是定值,A 错;对于B 选项,设线段AB 的中点为()00,P x y ,则12022x x p kmx k+−==, 00p km p y kx m m k k−++为定值,故线段AB 的中点在定直线py k =上,B 对;对于C 选项,()121212122222111222OA OB p kmm k x x m x x y y k k k y y p p p k−+++++=+====为定值,C 对;对于D 选项,21222222222p km p p x x AF k p p BF x x −+−+==++不一定为定值,D 错.故选:BC.12. 已知圆22:(2)1M x y +−=,点P 为x 轴上一个动点,过点P 作圆M 的两条切线,切点分别为A ,B ,直线AB 与MP 交于点C ,则下列结论正确的是( )A. 四边形PAMB周长的最小值为2 B. ||AB 的最大值为2C. 若(1,0)P ,则三角形PAB 的面积为85D.若Q ,则||CQ 的最大值为94【答案】CD 【解析】【分析】首先设||MP t =,对于选项A ,根据题意,表达四边形PAMB 周长关于t 的函数,由t 的取值范围求函数的最小值可判断A 错误;对于选项B ,根据等面积法,求出||AB 关于t 的函数关系,由t 的取值范围求函数的最大值可判断B 错误;对于选项C ,根据题意,计算PAB 底和高,求出面积判断C 正确;对于选项D ,设动点(,0)P m AB 的方程与直线PM 的方程,二者联立消去m 得到二者交点C 的轨迹是圆,||CQ 的最大值为圆心1O 与Q 距离加半径,可判断D 正确. 【详解】对于选项A ,设||MP t =,则||||BP AP ==则四边形PAMB周长为2+,则当t 最小时周长最小,又t 最小值为2, 所以四边形PABM周长最小为2+,故A 错误;对于选项B ,12||||2MAP PAMBS S MP AB ==△四边形,即1121||22t AB ××=,所以||AB =,因为2t,所以)||AB ∈,故B 错误; 对于选项C ,因为(1,0)P,所以||MP =t =,所以||AB ,1||||2AC AB ==,||2AP =,||PC ,所以三角形PAB 的面积为18||||25AB PC =,故C 正确;的对于选项D ,设(,0)P m ,()11,A x y ,则切线PA 的方程为()()11221x x y y +−−=, 又因为直线PA 过点(,0)P m ,代入可得()()112021x m y +−−=化简得11230mx y −+= 设()22,B x y ,同理可得22230mx y −+=, 因此点,A B 都过直线230mx y −+=,即直线AB 的方程为230mx y −+=, MP 的方程为22y x m=−+, 二者联立得,22230y x mmx y =−+−+=①②, 由①式解出22x m y =−,代入②式并化简得227302x y y +−+=, 配方得2271()416x y +−=,2y ≠, 所以点C 的轨迹是以(70,4)为圆心,14为半径的圆, 设其圆心为1O ,所以||CQ的最大值为1119||2444O Q R ++=+=,故D 正确. 故选:CD.【点睛】本题综合性较强,难度较大,具备运动变化的观点和函数思想是解题的关键,对于AB 选项,设变量||MP t =,用t 分别表达周长函数和距离函数求最值,对于D 选项,设出动点(),0P m ,分别表达直线AB 和MP 的方程,联立消去m ,得到动点C 的轨迹,进一步求解答案.三、填空题:本题共4小题,每小题5分,共20分.13. 已知实数0,0a b ><的取值范围是______.【答案】[)2,1−− 【解析】【分析】根据题意,设直线l :0ax by +=的几何意义为,点(1,到直线l 的距离,即可求出取值范围.【详解】根据题意,设直线l :0ax by +=,设点(1,A那么点(1,A 到直线l的距离为:d因为0,0a b ><,所以d =l 的斜率0ak b=−>, 当直线l的斜率不存在时,1d ==,所以1d >,当OA l ⊥时,max 2d OA ===,所以12d <≤,即12<≤,=21−≤<−,故答案为:[)2,1−−.14. 形如()0b y ax b x=+≠的函数图象均为双曲线,则双曲线4135y x x =−的一个焦点坐标为______.【答案】或 【解析】【分析】先确定双曲线的渐近线、对称轴方程,确定焦点位置及实半轴a ,最后由渐近线与对称轴夹角正切值确定b ,利用双曲线性质求出焦点. 【详解】由4135−x y =x 知,其两条渐近线分别为403x x =,y =, 所以双曲线4135−x y =x 的两条对称轴为403xx =,y =的夹角平分线, 令43x y =的倾斜角为0,2πθ ∈,则4tan 3θ=,且一条对称轴倾斜角为42πθ+,而22tan42tan 31tan 2θθθ==−,则22tan 3tan 2022θθ+−=,解得tan 22θ=−(舍去),1tan 22θ=, 所以11+tan 1+22tan ==31421tan 122π +=−−θθθ,即一条对称轴为3y x =, 故另一条对称轴为13y x =−,显然13y x =−与4135−x y =x有交点, 即为双曲线的顶点,则双曲线的实半轴长a = 而渐近线0x =与对称轴13y x =−夹角的正切值为3,3b a =,又因为=a,所以33b =a = 由2222641553+=c =a +b =,设焦点为13 − m,m ,则221433 +−=m m ,所以m =, .故答案为:或.15. 在椭圆2213x y +=上有点31,22P ,斜率为1的直线l 与椭圆交于不同的A ,B 两点(且不同于P ),若三角形ABO 的外接圆恰过点P ,则外接圆的圆心坐标为______. 【答案】71,88 −【解析】【分析】根据题意得到():0AB y x b b =+≠,联立直线AB 与椭圆方程,利用韦达定理求得12x x +,12x x ,12y y +,12y y ;法一:先利用点斜式求得,OP AB 的中垂线方程,联立两者方程即可求得圆心C ,再由半径相等得到2222AC BC OC +=,利用两点距离公式,代入上述式子得到关于b 的方程,解之即可; 法二:根据题意得到圆的方程,联立直线AB 与圆的方程,利用韦达定理求得12x x +,12x x ,进而得到,D E 关于b 的表达式,又由点P 在圆上得到关于b 的方程,解之即可.【详解】依题意,设()11,A x y ,()22,B x y ,直线():0AB y x b b =+≠, 联立2213y x bx y =++=,消去y ,得246330x bx b ++−=, 所以1232x x b +=−,()212314b x x −=, 则121212y y x b b b x ++=+=+,()()2121234b y y x b b x =+−=+, .法一:因为31,22P ,所以10123302OP k −==−,OP 的中点坐标为3,414 ,OP 中垂线的斜率为3−,所以OP 中垂线方程为113:344l y x −=−−,即532y x =−+, 因为AB 的斜率为1,AB 的中点坐标为1212,22x x y y ++ ,即31,44b b− ,所以AB 中垂线的斜率为1−,则AB 中垂线方程213:44l y b x b−=−+,即12y x b =−−, 联立53212y x y x b=−+ =−− ,解得54354b x b y + = + =− ,则圆心坐标535,44b b C ++ − , 因为22222AC BC OC AC +==, 所以222222112253515355354424444b b b b b b x y x y +++++++=−+++−++, 整理得()()22221212121253522044b b x x x x y y y y ++ +−+++++=, 因为1232x x b +=−,()212314b x x −=,1212y y b +=,21234b y y −=, 所以()22222112123624x x x x b x x +=+−+=,()2222211212624y b y y y y y −+=+−+=, 则2203563614242532244b b b b b b ++  −++=  − + +−× , 整理得22530b b ++=,解得32b =−,1b =-, 当1b =-时,直线:1AB y x =−,显然直线AB 过P 点,舍去,当32b =−时,()2299361633361633044b b ∆=−−=×−×−>,直线3:2AB y x =−,满足题意,又535,44b b C ++ −,所以此时圆心坐标71,88C − . 法二:因为圆过原点()0,0O ,所以设圆的方程为220x y Dx Ey +++=()220D E +>,联立220y x b x y Dx Ey =++++=,消去y ,得()22220x b D E x b Eb +++++=, 所以1222b D E x x +++=−,2122b Ebx x =+, 又1232x x b +=−,()212314b x x −=,所以3222b D E b ++−=−,()223142b b Eb −+=, 所以1322D b b=+,1322E b b =−, 因为P 点在圆上,所以913104422D E +++=,即530D E ++=,所以13135302222b b b b +++−=,整理得22530b b ++=,解得32b =−,1b =-, 当1b =-时,直线:1AB y x =−,显然直线AB 过P 点,舍去, 当32b =−时,1332722234D =×−+×−=− ,1332122234E =×−−×−= , 对于方程2246330x bx b ++−=,有()2299361633361633044b b ∆=−−=×−×−>,对于方程()22220x b D E x b Eb +++++=,即29152028x x −+=,有2915Δ42028 =−−××>,满足题意,又因为外接圆的圆心坐标为,22D E −− ,所以圆心为71,88− . 故答案为:71,88 −.【点睛】方法点睛:直线与圆锥曲线位置关系的题目,往往需要联立两者方程,利用韦达定理解决相应关系,其中的计算量往往较大,需要反复练习,做到胸有成竹.16. 已知直线l 过抛物线C :24y x =的焦点F ,与抛物线交于A 、B 两点,线段AB 的中点为M ,过M作MN 垂直于抛物线的准线,垂足为N ,则2324NF AB +的最小值是______.【答案】【解析】【分析】设直线:1AB x my =+,()11,A x y ,()22,B x y ,联立抛物线方程得到关于y 的一元二次方程,得到韦达定理式,求出,M N 坐标,利用弦长公式和两点距离公式得到AB 和NF 的表达式,再利用基本不等式即可得到答案.【详解】显然当直线AB 斜率为0时,不合题意;故设直线:1AB x my =+,()11,A x y ,()22,B x y , 联立抛物线方程有2440y my −−=,则216160m ∆=+>,124y y m +=,124y y =−,则1222My y y m +==,111x my =+,221x my =+, 则()21221224221222M m y y x x m x m ++++====+,则()221,2M m m +,准线方程为=1x −,()1,0F ,则()1,2N m −,()22||41AB y m =−=+,()()()22222||1124441||[4,)NF m m m AB =++−=+=+=∈+∞,所以232||32||||4||4NF AB AB AB +=+==,当且仅当32||||4AB AB =,即()2||41AB m =+=时等号成立,此时m .故答案为:【点睛】关键点点睛:本题的关键是采取设线法联立抛物线方程得到韦达定理式,再利用中点公式得到,M N 点坐标,最后利用弦长公式和两点距离公式得到相关表达式,最后利用基本不等式即可得到答案.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知点()1,0A −和点B 关于直线l :10x y +−=对称. (1)若直线1l 过点B ,且使得点A 到直线1l 的距离最大,求直线1l 的方程; (2)若直线2l 过点A 且与直线l 交于点C ,ABC 的面积为2,求直线2l 的方程.【答案】(1)30x y +−=(2)0y =或=1x − 【解析】【分析】根据对称先求出B 点坐标(1)过点B 到点A 距离最大的直线与直线AB 垂直,从而求出直线方程;(2)画出图像,可求出点C 到直线AB 的距离,又点C 在直线l 上,可设出C 点的坐标,利用点到直线的距离公式求出C ,又直线过点A ,利用两点A 、C 即可求出直线2l 的方程. 【详解】解:设点(),B m n则1102211m nn m −+ +−== + ,解得:12m n = = ,所以点()1,0A −关于直线l :10x y +−=对称的点的坐标为()1,2B(1)若直线1l 过点B ,且使得点A 到直线1l 的距离最大,则直线1l 与过点AB 的直线垂直,所以1k =−,则直线1l 为:()21y x −=−−,即30x y +−=. (2)由条件可知:AB =,ABC 的面积为2,则ABC的高为h =又点C 在直线l 上,直线l 与直线AB 垂直,所以点C 到直线AB. 直线AB 方程为1y x =+,设(),C a b,即1b a =−或3b a =+又1b a =−,解得:10a b == 或12a b =− =则直线2l 为:0y =或=1x −【点睛】本题考查求点关于直线的对称点,考查直线与直线相交的综合应用..方法点睛:(1)设出交点坐标(2)两点的中点在直线上,两点连线与原直线垂直,列方程组; (3)解出点坐标.18. 已知圆221:(1)5C x y +−=,圆222:420C x y x y +−+=.(1)求圆1C 与圆2C 的公共弦长;(2)求过两圆的交点且圆心在直线241x y +=上的圆的方程.【答案】(1)(2)22317222x y −++=【解析】【分析】(1)将两圆方程作差可求出公共弦的方程,然后求出圆心1C 到公共弦的距离,再利用弦心距,半径和弦的关系可求得答案,(2)解法一:设过两圆的交点的圆为()()222242240,1x y x y x y y λλ+−+++−−≠−,求出圆心坐标代入241x y +=中可求出λ,从而可求出圆的方程,解法二:将公共弦方程代入圆方程中求出两圆的交点坐标,设所求圆的圆心坐标为(),a b ,然后列方程组可求出,a b ,再求出圆的半径,从而可求出圆的方程.【小问1详解】将两圆的方程作差即可得出两圆的公共弦所在的直线方程,即()()222242240x y x y x y y +−+−+−−=,化简得10x y −−=,所以圆1C 的圆心()0,1到直线10x y −−=的距离为d ,则22215232AB r d =−=−=,解得AB =所以公共弦长为【小问2详解】 解法一:设过两圆的交点的圆为()()222242240,1x y x y x y y λλ+−+++−−≠−, 则2242240,1111x y x y λλλλλλ−+−+−=≠−+++; 由圆心21,11λλλ− −++ 在直线241x y +=上,则()414111λλλ−−=++,解得13λ=, 所求圆的方程为22310x y x y +−+−=,即22317222x y −++=. 解法二:由(1)得1y x =−,代入圆222:420C x y x y +−+=, 化简可得22410x x −−=,解得x =;当x =时,y =x =时,y =;设所求圆的圆心坐标为(),a b ,则2222241a b a b a b −+=++ += ,解得3212a b ==−;所以222317222r =+−−= ; 所以过两圆的交点且圆心在直线241x y +=上的圆的方程为22317222x y −++=19. 已知双曲线2222:1(0,0)x y E a b a b−=>>的焦距为10,且经过点M .A ,B 为双曲线E 的左、右顶点,P 为直线2x =上的动点,连接P A ,PB 交双曲线E 于点C ,D (不同于A ,B ).(1)求双曲线E 的标准方程.(2)直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由. 【答案】(1)221169x y −= (2)直线CD 过定点,定点坐标为(8,0). 【解析】【分析】(1)方法一:将M 代入方程,结合222+=a b c 求得,a b 得双曲线方程;方法二:根据双曲线定义求得a 得双曲线方程.(2)方法一:设CD 的方程为x my t =+,与双曲线联立,由A 点与C 点写出AC 方程,求出p y ,由B 点与D 点写出BD 方程,求出p y ,利用两个p y 相等建立关系式,代入韦达定理可求得t 为定值.方法二:设CD 的方程为,(2,)x my t P n =+,与双曲线联立,由P 点与A 点写出AC 方程,由P 点与B 点写出BD 方程,将()()1122,,,C x y D x y 代入以上两方程,两式相比消去n 建立关系式,代入韦达定理可求得t 为定值. 【小问1详解】法一.由222225,64271,a b ab += −=解得2216,9a b ==,∴双曲线E 的标准方程为221169x y −=. 法二.左右焦点为()()125,0,5,0F F −,125,28c a MF MF ∴==−=,22294,a b c a ∴===−,∴双曲线E 的标准方程为221169x y −=. 【小问2详解】直线CD 不可能水平,故设CD 方程为()()1122,,,,x my t C x y D x y =+, 联立221169x my t x y =+−= 消去x 得()()2222916189144=0,9160m y mty t m −++−−≠, 12218916mt y y m −∴+=−,21229144916t y y m −=−,12y y −,AC 的方程为11(4)4y yx x ++,令2x =,得1164p y y x =+, 的BD 的方程为22(4)4y yx x −−,令2x =,得2224p y y x −=−,1221112212623124044y y x y y x y y x x −∴=⇔−++=+− ()()21112231240my t y y my t y y ⇔+−+++=()()1212431240my y t y t y ⇔+−++= ()()()()12121242480my y t y y t y y ⇔+−++−−=()22249144(24)180916916m t t mt m m −−⇔−±=−−3(8)(0m t t ⇔−±−=(8)30t m ⇔−±=, 解得8t =3m =±,即8t =或4t =(舍去)或4t =−(舍去), ∴CD 的方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0). 方法二.直线CD 不可能水平,设CD 的方程为()()1122,,,,,(2,)x my t C x y D x y P n =+, 联立22,1,169x my t x y =+ −=,消去x 得()2229161891440m y mty t −++−=, 2121222189144,916916mt t y y y y m m −−∴+==−−, AC 的方程为(4)6nyx =+,BD 的方程为(4)2ny x −−, ,C D 分别在AC 和BD 上,()()11224,462n ny x y x ∴=+=−−, 两式相除消去n 得()211211223462444x y y y x x x y −−−=⇔+=+−, 又22111169x y −=,()()211194416x x y ∴+−=. 将()2112344x y x y −−+=代入上式,得()()1212274416x x y y −−−=⇔()()1212274416my t my t y y −+−+−=()()221212271627(4)27(4)0m y y t m y y t ⇔++−++−=⇔()22222914418271627(4)27(4)0916916t mtm t m t m m −−++−+−=−−. 整理得212320t t +=−,解得8t =或4t =(舍去). ∴CD 方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0). 【点睛】圆锥曲线中直线过定点问题通法,先设出直线方程y kx m =+,通过韦达定理和已知条件若能求出m 为定值可得直线恒过定点,若得到k 和m 的一次函数关系式,代入直线方程即可得到直线恒过定点.20. 已知双曲线22:154x y Γ−=的左右焦点分别为1F ,2F ,P 是直线8:9l y x =−上不同于原点O 的一个动点,斜率为1k 的直线1PF 与双曲线Γ交于A ,B 两点,斜率为2k 的直线2PF 与双曲线Γ交于C ,D 两点.(1)求1211k k +的值;(2)若直线OA ,OB ,OC ,OD 的斜率分别为OA k ,OB k ,,OC k ,OD k ,问是否存在点P ,满足0OA OB OC OD k k k k +++=,若存在,求出P 点坐标;若不存在,说明理由.【答案】(1)94−; (2)存在98(,)55P −或98(,)55P −满足题意.【解析】【分析】(1)设出(9,8)P λλ−,然后计算1211k k +即可得;(2)假设存在,设设00(9,8)P x x −,写出直线AB 方程,设1122(,),(,)A x y B x y ,直线方程代入双曲线方程整理后应用韦达定理得1212,x x x x +,代入到式子OA OB k k +中,同理设3344(,),(,)C x y D x y ,直线CD方程代入双曲线方程,应用韦达定理,代入计算OC OD k k +,然后由条件0OA OB OC OD k k k k +++=求得0x 得定点坐标.的【小问1详解】由已知1(3,0)F −,2(3,0)F ,设(9,8)P λλ−,(0)λ≠, ∴1839k λλ=−−,2893k λλ−=−,121139939884k k λλλλ−−−+=+=−−;【小问2详解】 设00(9,8)P x x −,(00x ≠),∴010893x k x −=+,∴直线AB 的方程是008(3)93x yx x −++,设11(,)A x y ,22(,)B x y ,008(3)93x yx x −++代入双曲线方程得2220203204(69)20(93)x x x x x −++=+, 即222200000(549)480(112527045)0x x x x x x x ++−−++=, 2012200480549x x x x x +=++,20012200112527045549x x x x x x ++=−++, 00121212012012883()33(2)[2]9393OA OB x x y y x x k k x x x x x x x x ++=+=−++=−+++2000200008832(2(2)93932561x x x x x x x =−+=−−++++ 2000220000082(31)16(31)9325612561x x x x x x x x −+−+=⋅=+++++, 同理CD 的方程为008(3)93x yx x −−−,设33(,)C x y ,44(,)D x y ,仿上,直线方程代入双曲线方程整理得:222200000(549)4801125270450x x x x x x x −++−+−=,234200480549x x x x x +=−−+,20034200112527045549x x x x x x −+−=−+, ∴2303400423403400083()83480[2](2)9393112527045OC ODy x x x x x y k k x x x x x x x x −+−⋅+=+=−=−−−−+ 20000220000083216(31)(2)9325613(2561)x x x x x x x x x −−−=−=−−+−+.由0OA OB OC OD k k k k +++=得00022000016(31)16(31)025613(2561)x x x x x x x −+−−+=++−+, 整理得200(251)0x x −=,∵00x ≠,∴015x =±, ∴存在98(,)55P −或98(,)55P −满足题意.【点睛】方法点睛:是假设定点存在,题中设00(9,8)P x x −,写出直线方程,设出直线与双曲线的交点坐标如1122(,),(,)x y x y ,直线方程代入双曲线方程整理后应用韦达定理得1212,x x x x +,代入到式子OA OB k k +中,最后利用已知条件求得0x ,若求不出结果说明不存在.本题考查了学生的逻辑能力,运算求解能力,属于困难题.21. 抛物线2:2(0)C x py p =>的焦点为F ,准线为,l A 为C 上的一点,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点,(1)若90,BFD ABD ∠=的面积为p 的值及圆F 的方程(2)若直线y kx b =+与抛物线C 交于P ,Q 两点,且OP OQ ⊥,准线l 与y 轴交于点S ,点S 关于直线PQ 的对称点为T ,求||FT 的取值范围.【答案】(1)2p =,圆F 的方程为()2218x y +−=(2)(],4p p 【解析】【分析】(1)由焦半径和圆的半径得到2A py FA FD +===,结合ABD △面积求出2p =,圆F 的方程为()2218x y +−=;(2)表达出0,2p S −关于直线PQ 的对称点的坐标,利用垂直关系列出方程,求出2b p =,从而利用两点间距离公式表达出(],2FT p p ==. 【小问1详解】由对称性可知:90,BFD FS BS DS p ∠=°===, 设(),A A A x y,由焦半径可得:2A py FA FD +===,112222ABD A p S BD y p=⋅⋅+=×=解得:2p =圆F 的方程为:()2218x y +−=【小问2详解】由题意得:直线PQ 的斜率一定存在,其中0,2p S−,设0,2p S−关于直线PQ 的对称点为(),T m n ,则12222p n m kp n m k b + =− − =⋅+ ,解得:221212b p m k k b p pn k + =− + +=− + ,联立y kx b =+与22x py =得:2220x pkx pb −−=,设()()1122,,,P x y Q x y ,则12122,2x x pk x x pb +==−, 则()()()2212121212y y kx b kx b k x x kb x x b =++=+++,则()()22121212121x x y y k x x kb x x b +=++++ ()222221220pb k pk b b pb b −+++=−+=,解得:0b =(此时O 与P 或Q 重合,舍去)或2b p =,所以FT =(],4p p ==, 【点睛】圆锥曲线相关的取值范围问题,一般思路为设出直线方程,与圆锥曲线联立,得到两根之和,两根之积,由题干条件列出方程,求出变量之间的关系,再表达出弦长或面积等,结合基本不等式,导函数,函数单调性等求出最值或取值范围.22. 如图,已知点P 是抛物线24C y x =:上位于第一象限的点,点()20A −,,点,M N 是y 轴上的两个动点(点M 位于x 轴上方), 满足,PM PN AM AN ⊥⊥,线段PN 分别交x 轴正半轴、抛物线C 于点,D Q ,射线MP 交x 轴正半轴于点E .(1)若四边形ANPM 为矩形,求点P 的坐标;(2)记,DOP DEQ △△的面积分别为12S S ,,求12S S ⋅的最大值.【答案】(1)(2,P(2)192 【解析】【分析】(1)根据矩形性质,可得对角线互相平分,即AP 的中点在y 轴上,然后点P 在抛物线,即可得(2,P ;(2)联立直线PQ 方程与抛物线C ,根据韦达定理求得,P Q 两点的纵坐标关系,再根据,PM PN AM AN ⊥⊥条件判断MOE △与DON △相似,进而求得,D E 两点的坐标关系,再表示并化简12S S ⋅为关于m 的函数,根据,D E 两点的位置关系,以线段DE 为直径的圆K 与抛物线C 有交点得出关于m 的约束,即可确定12S S ⋅中m 取值范围,最后可得12max ()(4192S S g ⋅=−= 【小问1详解】当四边形ANPM 为矩形时,AP 的中点在y 轴上,则有:2P A x x =−=故(2,P -【小问2详解】设点(,0)D m ,直线PQ 方程:x m ty −=, 显然有0,0m t >≠联立直线PQ 与抛物线C ,得:24x m ty y x −==消去x 得:2440y ty m −−=则有:4P Q y y m ⋅=− 由AM AN ⊥,得:2||||||4OM ON OA ⋅==又由PM PN ⊥,可得:△MOE ∽△DON 则有:||||||||OM OE OD ON = 从而||||||||4OE OD OM ON ⋅=⋅=,即4E D x x ⋅=所以4E x m=,进而有:4||E D DE x x m m =−=− 结合||,4P Q OD m y y m =⋅=−(注:由E D x x >,得4m m >,故有02m <<) 可得:12111(||||)(||||)||||||224P Q P Q S S OD y DE y OD DE y y ⋅=⋅⋅⋅⋅⋅=⋅⋅⋅ 314()444m m m m m m=⋅⋅−⋅=−+ 又由题意知,存在抛物线上的点P 满足条件,即以线段DE 为直径的圆K 与抛物线C 有交点,且易得圆K 方程:24()()0x m x y m−⋅−+=联立抛物线C 与圆K ,得224()()04x m x y my x−⋅−+= = 消去y 得:24(4)40x m x m−+−+= 由0∆≥,结合02m <<,可解得:04m <≤−令3()4g m m m =−+,求导可知()g m在上单调递增又4−≤ 故有:()g m在(0,4−上单调递增因此,12max ()(4192S S g ⋅=−=【点睛】解答直线与抛物线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系;在求解相关最值问题时,通常是先建立目标函数,然后应用函数的知识来解决问题;。

北京市中国人民大学附属中学2023-2024学年高二下学期期中考试数学试题(含简单答案)

北京市中国人民大学附属中学2023-2024学年高二下学期期中考试数学试题(含简单答案)

中国人民大学附属中学2023-2024学年高二下学期期中考试数学说明:本试卷共六道大题,26道小题,共6页,满分150分,考试时间120分钟.第Ⅰ卷(共18题,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1. 已知数列的通项公式是,则是该数列的()A. 第9项B. 第10项C. 第11项D. 第12项2. 若函数,则( )A. B. C. D. 3. 等差数列中,若,,则其公差等于( )A. 2B. 3C. 6D. 184. 如图是函数的导数的图象,则下面判断正确的是( )A. 是区间上的增函数B. 是区间上的减函数C. 1是的极大值点D. 4是的极小值点5. 若是等差数列的前项和,,则()A. B. C. D. 6. 若函数有极值,则实数的取值范围是( )A. B. C.D. {}n a 21n a n =+1222()f x x =0(1)(1)lim x f x f x∆→+∆-=∆1234{}n a 1233a a a ++=45621a a a ++=()y f x =()f x '()f x []3,1-()f x []1,2()f x ()f x n S {}n a n ()*88,N n S S n n >≠∈890,0a a ≥<890,0a a ><890,0=<a a 890,0a a >=()3213f x x x ax =-+a (],1-∞(),1-∞()1,+∞[)1,+∞7. 已知等差数列的公差为2,若成等比数列,则( )A. B. C. 4D. 8. 已知在处可导,在附近x 的函数值,可以用“以直代曲”的方法求其近似代替值:.对于函数的近似代替值( )A. 大于m B. 小于mC. 等于mD. 与m 的大小关系无法确定9. 设为无穷等比数列前n 项和,则“有最大值”是“有最大值”的( )A 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件10. 设函数定义域为D ,若函数满足:对任意,存在,使得成立,则称函数满足性质.下列函数不满足性质的是( )A. B. C. D. 二、填空题(本大题共5小题,每小题5分,共25分.请把结果填在答题纸上的相应位置.)11. 函数,则_____.12. 用数学归纳法证明命题“,时,假设时成立,证明时也成立,可在左边乘以一个代数式______.13. 已知函数,若在区间上是增函数,则实数a 的取值范围是 ________.14. 小杰想测量一个卷纸展开后的总长度,卷纸中的纸是单层的,且卷纸整体呈一个空心圆柱形,即大圆柱在其正中间挖去了一个小圆柱,测得小圆柱底面的直径为5厘米,大圆柱底而的直径为11厘米.由于单层纸的厚度不易测量,小杰利用游标卡尺测得10层纸的总厚度为0.3厘米.试估算这个卷纸的总长度(单位:米)为______.(结果精确到个位,取)15. 与曲线在某点处的切线垂直,且过该点的直线称为曲线在某点处的法线.关于曲线的法线有下列四种说法:①存在一类曲线,其法线恒过定点;的.{}n a 124,,a a a 2a =10-6-4-()f x 0x x =0x ()f x ()()()()000f x f x f x x x '≈+-()f x =()4.001m f =n S {}n a {}n a {}n S ()f x ()f x c D ∈,a b D ∈()()()f a f b f c a b-'=-()f x ΓΓ2()f x x =3()f x x =()xf x e =()ln f x x=()sin 2f x x =()f x '=*n ∀∈N ()()()()1221321nn n n n n ++⋅⋅⋅+=⨯⨯⨯⋅⋅⋅⨯-n k =1n k =+21()2ln 2f x x ax x =+-()f x 1,12⎡⎤⎢⎥⎣⎦π 3.14=②若曲线的法线的纵截距存在,则其最小值为;③存在两条直线既是曲线的法线,也是曲线的法线;④曲线的任意法线与该曲线的公共点个数均为1.其中所有说法正确的序号是______.三、解答题(本大题共3小题,共35分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)16. 已知函数,在处取得极值.(1)求在区间上的平均变化率;(2)求曲线在点处的切线方程;(3)求曲线过点的切线方程.17. 设等差数列的前项和为,,.(1)求的通项公式;(2)设数列的前项和为,求.18. 已知函数,其中.(1)当时,求的极值;(2)讨论当时函数的单调性;(3)若函数有两个不同的零点、,求实数a 的取值范围.第Ⅱ卷(共8道题,满分50分)一、选择题(共4小题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)19. 已知函数满足:对任意,由递推关系得到的数列是单调递增的,则该函数的图象可以是( )A. B.4y x =34e x y =ln y x =sin y x =()2f x x ax =-()f x 0x =()f x []2023,2024()y f x =()()22f ,()y f x =()2,0{}n a n n S 53a =535S ={}n a {}n a n n T 10T ()()22ln f x ax a x x =-++R a ∈1a =-()f x 0a >()y f x =2()()g x f x ax =-1x 2x ()y f x =()10,1a ∈()1n n a f a +={}n aC. D.20. 设数列的前n 项和,若,则( )A. 数列满足B. 数列为递增数列C.的最小值为D. ,,不成等差数列21. 已知正项数列满足为前项和,则“是等差数列”是”的( )A 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件22. 已知无穷数列,.性质,,,性质,,,,给出下列四个结论:①若,则具有性质;②若,则具有性质;③若具有性质,则;④若等比数列既满足性质又满足性质,则其公比的取值范围为.则所有正确结论的个数为( )A. 1B. 2C. 3D. 4二、填空题(共3小题,每小题5分,共15分,把答案填在答题纸上的相应位置.)23. 写出一个满足的函数______.24. 已知函数,设曲线在点处切线的斜率为,若,,均不相等,且,则___.25. 若曲线上两个不同点处的切线重合,则称这条切线为曲线的“自公切线”,则下列曲的.{}n a n S 23n S n n =++{}n a ()1122n n n a a a n -+=+≥{}n a nn S a n+17242S S -64S S -86S S -{}n a 213,n a a S ={}n a n {}n a {}n a 11a =:s m ∀*n ∈N m n m n a a a +>+:t m ∀*n ∈N 2m n ≤<11m n m n a a a a -++>+32n a n =-{}n a s 2n a n ={}n a t {}n a s n a n ≥{}n a s t ()2,+∞()221f x x '=+()f x =()()()()()1230f x a x x x x x x a =--->()y f x =()(),i i x f x ()1,2,3i k i =1x 2x 3x 22k =-1311k k +=()y f x =()y f x =线中,所有存在“自公切线”的序号为______.①;②;③;④.三、解答题(本小题15分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)26. 已知无穷数列满足:①;②.设为所能取到的最大值,并记数列.(1)若数列为等差数列且,直接写出其公差的值;(2)若,求值;(3)若,,求数列的前100项和.的()y f x =22y x x =-3sin 4cos y x x =+13y x x=+y ={}n a ()*1,2,i a i ∈=⋅⋅⋅N ()11,2,,1,2,,3i j i j i j a a a a a i j i j ++≤≤++=⋅⋅⋅=⋅⋅⋅+≥*i a ()1,2,i a i =⋅⋅⋅{}*n a {}n a 11a =d 121a a ==*4a 11a =22a ={}*n a中国人民大学附属中学2023-2024学年高二下学期期中考试数学 简要答案第Ⅰ卷(共18题,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)【1题答案】【答案】C 【2题答案】【答案】B 【3题答案】【答案】A 【4题答案】【答案】D 【5题答案】【答案】B 【6题答案】【答案】B 【7题答案】【答案】C 【8题答案】【答案】A 【9题答案】【答案】D 【10题答案】【答案】B二、填空题(本大题共5小题,每小题5分,共25分.请把结果填在答题纸上的相应位置.)【11题答案】【答案】【12题答案】【答案】2cos 2x 42k【答案】【14题答案】【答案】【15题答案】【答案】①②④三、解答题(本大题共3小题,共35分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)【16题答案】【答案】(1)4047 (2) (3)或【17题答案】【答案】(1) (2)【18题答案】【答案】(1)的极大值为,无极小值. (2)答案略(3).第Ⅱ卷(共8道题,满分50分)一、选择题(共4小题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)【19题答案】【答案】C 【20题答案】【答案】C 【21题答案】【答案】C3,4⎡⎫+∞⎪⎢⎣⎭2544y x =-0y =816y x =-132n a n =-52()f x 3ln24--12,2e⎛⎫-- ⎪⎝⎭【答案】C二、填空题(共3小题,每小题5分,共15分,把答案填在答题纸上的相应位置.)【23题答案】【答案】(答案不唯一)【24题答案】【答案】##【25题答案】【答案】①②④三、解答题(本小题15分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)【26题答案】【答案】(1)或 (2) (3)()ln 21x +120.51237500。

高二第二学期期中考试数学试卷及答案(word版)

高二第二学期期中考试数学试卷及答案(word版)

高二第二学期期中考试数学试卷一、选择题1.适合3(8)x i x y i -=-的实数x ,y 的值为( ) A. 0x =且3y = B. 0x =且3y =- C. 5x =且2y = D. 3x =且0y =2.用分析法证明:欲使①A B >,只需②C D <,这里①是②的( ) A.充分条件 B.必要条件C.充要条件D.既不充分也不必要条件 3.若()()22132x x x i -+++是纯虚数,则实数x 的值是( )A.1B.±1C.-1D.-24.用反证法证明命题“设a ,b 为实数,则方程20x ax b ++=至少有一个实根”时,要做的假设是( ) A.方程20x ax b ++=没有实根 B.方程20x ax b ++=至多有一个实根 C.方程20x ax b ++=至多有两个实根 D.方程20x ax b ++=恰好有两个实根5.用三段论推理:“任何实数的平方大于0,因为a 是实数,所以20a >”,你认为这个推理( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.是正确的6.用数学归纳法证明“111111111234212122n n n n n-+-++-=+++-++L L ”时,由n k =的假设证明1n k =+时,如果从等式左边证明右边,则必须证得右边为( )A.1111221k k k +++++L B. 1111122122k k k k +++++++L C. 1112221k k k +++++L D. 11122122k k k ++++++L7.设62x x ⎛⎫- ⎪⎝⎭的展开式中的3x 系数为A ,二项式系数为B ,则A B =( ) A. 4 B. 4- C. 62 D. 62- 8.曲线1ex y x -=在点()1,1处切线的斜率等于( )A. 2eB. eC. 2D. 19.如图所示,从甲地到乙地有3条公路可走,从乙地到丙地有2条公路可走,从甲地不经过乙地到丙地有2条水路可走.则从甲地经乙地到丙地和从甲地到丙地的走法种数分别为( )A.6,8B.6,6C.5,2D.6,2 10.如果函数()y f x =的导函数的图象如图所示,给出下列判断:①函数()y f x =在区间13,2⎛⎫--⎪⎝⎭内单调递增; ②函数()y f x =在区间1,32⎛⎫- ⎪⎝⎭内单调递减; ③函数()y f x =在区间(4,5)内单调递增; ④当2x =时,函数()y f x =有极小值; ⑤当12x =-时,函数()y f x =有极大值. 则上述判断中正确的是( )A.①②B.②③C.③④⑤D.③11.设11z i i=++,则z = ( )A.12D. 212.设函数2()ln f x x x=+,则( ) A. 12x =为f ()x 的极大值点 B. 12x =为f ()x 的极小值点C. 2x =为f ()x 的极大值点D. 2x =为f ()x 的极小值点 二、填空题13.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖”,乙说“甲、丙都未获奖”,丙说”我获奖了”,丁说“是乙获奖”。

北京市丰台区2023-2024学年高二下学期期中考试数学试卷(B卷)含答案

北京市丰台区2023-2024学年高二下学期期中考试数学试卷(B卷)含答案

丰台区2023-2024学年度第二学期期中练习高二数学(B 卷)考试时间:120分钟(答案在最后)第I 卷(选择题共40分)一、选择题:共10小题,每小题4分.在每小题给出的四个选项中,选出符合题目要求的一项.(1)已知函数()cos 2f x x =,则()f x 的导数()f x '=(A )sin 2x-(B )2sin 2x-(C )sin 2x(D )2sin 2x(2)若随机变量2)(3N σξ~,,则)(3P ξ=≤(A )0.4(B )0.5(C )0.6(D )0.7(3)现有甲、乙、丙、丁4人从宫灯、纱灯、吊灯这三种灯笼中任意选购1种,则不同的选购方式有(A )321⨯⨯种(B )432⨯⨯种(C )43种(D )34种(4)抛掷一颗质地均匀的骰子,事件{}135A =,,,事件{}12456B =,,,,,则|P A B =()(A )15(B )25(C )35(D )45(5)若2340123441a a x a x x a x a x =+++++(),则1234a a a a +++=(A )15(B )16(C )20(D )24(6)某班从3名男同学和4名女同学中选取3人参加班委会选举,要求男女生都有,则不同的选法种数是(A )60(B )45(C )35(D )30(7)某次社会实践活动中,甲、乙两班的同学在同一个社区进行民意调查.甲、乙两班人数之比为5:3,甲班女生占甲班总人数的23,乙班女生占乙班总人数的13.则该社区居民遇到一位进行民意调查的同学恰好是女生的概率为(A )19(B )29(C )12(D )1324(8)某种新产品的社会需求量y 与时间t 存在函数关系()y f t =.经过一段时间的市场调研,估计社会需求量y 的市场饱和水平为500万件,且()f t 的导函数f t '()满足:))500)))(((((0f t kf t f t k ->='.若0f y =(0),则函数()f t 的图象可能为(A )①②(B )①③(C )②④(D )③④(9)已知定义在R 上的函数()f x ,()g x 的导函数分别为()()f x g x '',,且满足()()()()0f x g x f x g x '+<',当a x b <<时,下列结论正确的是(A )()()()()f x g b f b g x >(B )()()()()f x g a f a g x >(C )()()()()f xg x f b g b >(D )()()()()f xg x f a g a >(10)已知函数()ln f x x =和()1g x ax =+.若存在01[,)ex ∈+∞,使得00()()f xg x =-恒成立,则实数a 的取值范围是(A )21[2e,]e-(B )21[,2e]e-(C )21[,e 2e](D )21[,2e]e第Ⅱ卷(非选择题共110分)二、填空题:共5小题,每小题5分,共25分.(11)用1,2,3,4这四个数字可以组成___个无重复数字的四位数.(12)已知离散型随机变量ξ的分布列如表所示,则m =___,()D ξ=___.(13)函数()f x =的导数()f x '=___.(14)已知5*)1((n x n x+∈N 的展开式中存在常数项,写出一个满足条件的n 的值:___.(15)莱布尼茨三角形(如下图)具有很多优美的性质,给出下列四个结论:①第8行第2个数是172;②111111(,2)(1)C (1)C C r r r n n n r r n n n n ++-+=∈-++N ≤;③当2024n =时,中间一项为1012202412025C ;④当n 是偶数时,中间的一项取得最小值;当n 是奇数时,中间的两项相等,且同时取得最小值.其中所有正确结论的序号是___.三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.(16)(本小题14分)已知函数32(2)21x a x x x b f =-++在2x =处取得极小值5.(Ⅰ)求实数a ,b 的值;(Ⅱ)求()f x 在区间[03],上的最小值.(17)(本小题14分)从4名男生和3名女生中选出4人去参加一项创新大赛.(Ⅰ)如果从男生和女生中各选2人,那么有多少种选法?(Ⅱ)如果男生甲和女生乙至少要有1人被选中,那么有多少种选法?(Ⅲ)如果恰有2人获得了本次比赛的冠军、亚军,那么有多少种获奖方式?(18)(本小题14分)为了增加系统的可靠性,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络的服务器采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.如果三台设备各自能正常工作的概率都为0.9,它们之间相互不影响,设能正常工作的设备台数为X .(Ⅰ)求X 的分布列;(Ⅱ)求计算机网络不会断掉的概率.(19)(本小题14分)已知函数()ln f x x x =.(Ⅰ)求曲线()y f x =在点()1(1)f ,处的切线方程;(Ⅱ)求()f x 的极值;(Ⅲ)若关于x 的方程()f x k =有两个实数根,直接写出实数k 的取值范围.(20)(本小题14分)某地旅游局对本地区民宿中普通型和品质型两类房间数量进行了调研,随机选取了10家民宿,统计得到各家民宿两类房间数量如下表:(Ⅰ)若旅游局随机从乙、丙2家民宿中各选取2个房间,求选出的4个房间均为普通型的概率;(Ⅱ)从这10家中随机选取4家民宿,记其中普通型房间不低于17间的有X 家,求X 的分布列和数学期望.(21)(本小题15分)民宿甲乙丙丁戊己庚辛壬癸普通型19541713189201015品质型61210111091285已知函数()()0ekx xf x k =≠.(Ⅰ)若1k =,求()f x 的单调区间;(Ⅱ)若()f x 在区间(11)-,上单调递增,求实数k 的取值范围.(考生务必将答案写在答题卡上,在试卷上作答无效)丰台区2023-2024学年度第二学期期中练习高二数学(B )卷参考答案第Ⅰ卷(选择题共40分)题号12345678910答案BBCBADDBCB第Ⅱ卷(非选择题共110分)二、填空题(每小题5分,共25分)(11)24;(12)23;29(13)22(1)x+-;(14)6;(答案不唯一)(15)①③④.(注:15题给出的结论中,有多个符合题目要求.全部选对得5分,不选或有错选得0分,其他得3分.)三、解答题(共85分)(16)(本小题14分)解:(Ⅰ)因为()26212f x x ax '=-+,且()f x 在2x =处取极小值5,所以()2244120f a '=-+=,得9a =,所以()222912f x x x x b =-++.又因为()245f b =+=,所以1b =.因为()f x 在区间()1,2上单调递减,在区间()2,+∞上单调递增,所以()f x 在2x =时取极小值,符合题意.……………6分(Ⅱ)()3229121f x x x x -+=+,所以()()()612f x x x '=--.令0f x '=(),解得1x =,或2x =.当x 变化时,(),()f x f x '的变化情况如表所示.因此,当2x =时,函数()3229121f x x x x -+=+有极小值,并且极小值为(2)5f =.又由于(0)1f =,(3)10f =,所以函数()3229121f x x x x -+=+在区间[0,3]上的最小值是1.…………14分(17)(本小题14分)解:(Ⅰ)如果从男生和女生中各选2人,选择方法数为:22436318C C =⨯=种…………4分(Ⅱ)如果男生中的甲和女生中的乙至少有1人被选中:男生甲被选中,女生乙没有被选中的方法数为:3510C =种;女生乙被选中,男生甲没有被选中的方法数为:3510C =种;男生甲和女生乙都被选中的方法数为:2510C =种;所以,男生甲和女生乙至少有1人被选中的方法数为30种.…………9分(Ⅲ)恰有2人获得了本次比赛的冠军、亚军的方法数为:4274420C A =种.…………14分(18)(本小题14分)解:(Ⅰ)由题意可知X 服从二项分布,即~(3,0.9)X B .033(0)C 0.9(10.9)0.001P X ==⨯⨯-=,1123(1)C 0.9(10.9)0.027P X ==⨯⨯-=,2213(2)C 0.9(10.9)0.243P X ==⨯⨯-=,3303(3)C 0.9(10.9)0.729P X ==⨯⨯-=,从而X 的分布列为X 0123P0.0010.0270.2430.729…………10分(Ⅱ)要使得计算机网络不会断掉,也就是要求能正常工作的设备至少有一台,即1X ≥ ,因此所求概率为:(1)1(1)1(0)10.0010.999P X P X P X =-<=-==-=≥ .…………14分(19)(本小题14分)解:(Ⅰ)因为()ln f x x x =,所以()1ln f x x '=+,则()11k f '==,()10.f =所以切线方程为10.x y --=……………4分(Ⅱ)由()1ln f x x '=+,()0,x ∈+∞,令()0f x '=即1ln 0x +=,解得1ex =.当x 变化时,(),()f x f x '的变化情况如表所示.所以()f x 在区间1(0,)e 上单调递减,在区间1(,)e+∞上单调递增,当1e x =()f x 有极小值11()e ef =-,无极大值.……11分(Ⅲ)1,0e(-)……14分(20)(本小题14分)解:(Ⅰ)设“从乙家民宿中选取2个房间,选到的2个房间均为普通型为事件A ;“从丙家民宿中选取2个房间,选到的2个房间均为普通型”为事件B ;所以选出的4间均为普通型房间的概率为22542266C C 4()()()C C 15P AB P A P B ==⨯=.……………5分(Ⅱ)记其中普通型房间不低于17间的有X 家,则X 的可能取值为0,1,2,3,4.()()464101346410C 10,C 14C C 81,C21P X P X ======()()()2246410314641044410C C 32,C 7C C 43,C 35C 14,C210P X P X P X =========用表格表示X 的分布列,如下表.158090241()01234 1.6.210210*********E X =⨯+⨯+⨯+⨯+⨯=所以……14分(21)(本小题15分)解:(Ⅰ)2e e 1()e ekx kx kx kx kx kx f x --'==若1k =,则1()ex x f x -'=,令()0f x '=,解得1x =.当x 变化时,(),()f x f x '的变化情况如表所示.所以()f x 的单调递增区间为(,1)-∞,单调递减区间为(1,).+∞……5分(Ⅱ)因为()()0e kx x f x k =≠所以2e e 1().e ekx kx kx kx kx kx f x --'==令()0f x '=,解得1x k=.①0k >时,当x 变化时,(),()f x f x '的变化情况如表所示.所以,()f x 在1(,k-∞上单调递增,在1(,)k +∞上单调递减.②0k <时,当x 变化时,(),()f x f x '的变化情况如表所示.所以,()f x 在1(,k-∞上单调递减,在1(,)k +∞上单调递增.若函数()f x 在区间()1,1-内单调递增,则0k >时,11k≥,即01k <≤;则0k <时,11k-≤,即10k -<≤;所以k 的范围是[1,0)(0,1]- .……………15分。

辽宁省鞍山市2023-2024学年高二下学期期中考试数学试题含答案

辽宁省鞍山市2023-2024学年高二下学期期中考试数学试题含答案

2023-2024学年度下学期期中考试高二数学(A )(答案在最后)时间:120分钟满分:150分命题范围:选择性必修二,选择性必修三结束.第I 卷(选择题,共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设随机变量X 服从正态分布()3,4N ,若()()263P X a P X a >-=<-,则a =()A.2-B.1- C.12D.1【答案】B 【解析】【分析】根据正态分布曲线的对称性即可求得答案.【详解】由题意随机变量X 服从正态分布()3,4N ,即正态分布曲线关于3x =对称,因为()()263P X a P X a >-=<-,故2(63)3,12a a a -+-=∴=-,故选:B2.设等比数列{}n a 的前n 项和为n S ,且213S a =,则公比q=A.12B.13C.2D.3【答案】C 【解析】【分析】将已知转化为1,a q 的形式,解方程求得q 的值.【详解】依题意1113a a q a +=,解得2q =,故选C.【点睛】本小题主要考查利用基本元的思想求等比数列的基本量1,a q ,属于基础题.基本元的思想是在等比数列中有5个基本量1,,,,n n a q a S n ,利用等比数列的通项公式或前n 项和公式,结合已知条件列出方程组,通过解方程组即可求得数列1,a q ,进而求得数列其它的一些量的值.3.已知某公路上经过的货车与客车的数量之比为2:1,货车和客车中途停车修理的概率分别为0.02,0.01,则一辆汽车中途停车修理的概率为()A.1100B.160 C.150D.130【答案】B 【解析】【分析】利用全概率公式可求解得出.【详解】设B 表示汽车中途停车修理,1A 表示公路上经过的汽车是货车,2A 表示公路上经过的汽车是客车,则()123P A =,()213P A =,()10.02P B A =,()20.01P B A =,则由全概率公式,可知一辆汽车中途停车修理的概率为()()()()()11222110.020.013360P B P A P B A P A P B A =+⋅=⨯+⨯=.故选:B.4.函数()sin cos f x x x x =+的导数()f x '的部分图象大致为()A. B.C. D.【答案】D 【解析】【分析】根据已知,利用函数的求导公式以及函数的奇偶性、函数值进行排除.【详解】因为()sin cos f x x x x =+,所以()sin cos sin cos f x x x x x x x '=+-=,令()()cos g x f x x x '==,R x ∈,则()()cos g x x x g x -=-=-,所以函数()cos g x x x =是奇函数,故A ,C 错误;又()ππcos π=-π<0g =,故B 错误.故选:D.5.若(2nx 二项展开式的第二项的二项式系数等于第五项的二项式系数,则该展开式中的含4x 项的系数为()A.80B.14- C.14D.80-【答案】A 【解析】【分析】根据二项式定理,以及组合数的性质,建立方程,可得答案.【详解】由二项式(2nx ,则其展开式的通项()(()()121C 2C 210,N rn n rrrr n rr nnT x xr n r ---+==-≤≤∈,展开式的第二项和第五项的二项式系数分别为1C n ,4C n ,则14C C n n =,解得5n =,则通项为()()155215C 2105,N rr rr T xr r --+=-≤≤∈,令1542r -=,解得2r =,则展开式中含4x 项的系数为()22523554C 2128021-⨯⋅⋅-=⨯=⨯.故选:A.6.有一批灯泡寿命超过500小时的概率为0.9,寿命超过800小时的概率为0.8,在寿命超过,500小时的灯泡中寿命能超过800小时的概率为()A.89B.19 C.79D.59【答案】A 【解析】【分析】由条件概率公式求解即可.【详解】记灯泡寿命超过500小时为事件A ,灯泡寿命超过800小时为事件B ,则()()0.9,0.8P A P AB ==,所以()()()0.88|0.99P AB P B A P A ===.故选:A7.数学活动小组由12名同学组成,现将12名同学平均分成四组分别研究四个不同课题,且每组只研究一个课题,并要求每组选出一名组长,则不同的分配方案的种数为A.333412963C C C B.33341296433C C C A A C.33331296444C C C A D.333312964C C C 【答案】A 【解析】【详解】将这12名同学平均分成四组分别研究四个不同课题,且每组只研究一个课题只需每个课题依次选三个人即可,共有3331296C C C 中选法,最后选一名组长各有3种,故不同的分配方案为:333412963C C C ,故选A.8.已知函数32()1f x x ax x =-+--在R 上是单调函数,则实数a 的取值范围是()A.(,)-∞⋃+∞B.[C.(,)-∞⋃+∞D.(【答案】B 【解析】【分析】由题得()0f x '≤在R 上恒成立,解不等式24120a ∆=-≤即得解.【详解】由题意知,2()321f x x ax '=-+-,因为()y f x =在R 上是单调函数,且()y f x '=的图象开口向下,所以()0f x '≤在R 上恒成立,故24120a ∆=-≤,即a ≤≤故选:B【点睛】结论点睛:一般地,函数()f x 在某个区间可导,()f x 在这个区间是增函数⇒'()f x ≥0.一般地,函数()f x 在某个区间可导,()f x 在这个区间是减函数⇒'()f x ≤0.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.9.对两个变量x 与y 进行线性相关性和回归效果分析,得到一组样本数据:()()()1122,,,,,,n n x y x y x y ⋅⋅⋅,则下列说法正确的是()A.残差平方和越小的模型,拟合的效果越好B.由样本数据利用最小二乘法得到的回归方程表示的直线必过样本点的中心()x yC.用相关指数2R 来刻画回归效果,2R 越小,说明模型的拟合效果越好D.若变量x 与y 之间的相关系数0.80r =,则变量x 与y 之间具有很强的线性相关性【答案】ABD 【解析】【分析】根据残差的平方和的性质判断A ,根据回归方程的性质判断B ,根据相关指数的性质判断C ,根据相关系数的定义判断D.【详解】对于A ,由残差的意义可得,残差平方和越小的模型,拟合的效果越好,A 正确;对于B ,若回归方程为ˆˆˆy bx a =+,则ˆˆy bx a =+,即回归方程表示的直线必过样本点的中心(,x y ,B 正确;对于C ,相关指数2R 越大,说明残差的平方和越小,即模型的拟合效果越好,C 正确;对于D ,变量x 与y 之间的相关系数0.80r =,故相关系数较为接近1,所以变量x 与y 之间具有很强的线性相关性.D 正确;故选:ABD.10.设等差数列{}的前n 项和为n S ,公差为d .已知312a =,100S >,60a <,则()A.数列n n S a ⎧⎫⎨⎬⎩⎭的最小项为第6项B.2445d -<<-C.50a > D.0n S >时,n 的最大值为5【答案】ABC 【解析】【分析】利用数列的单调性结合不等式的基本性质可判断A 选项的正误;根据已知条件列出关于d 的不等式组,求出d 的取值范围,可判断B 选项的正误;利用等差数列求和公式及等差数列下标和性质可判断C ,D 选项的正误.【详解】对于C 选项,由()()110105610=502a a S a a +=+>且60a <,可知50a >,故C 正确;对于B 选项,由53635632122031230252450a a d d a a d d a a a d d =+=+>⎧⎪=+=+<⎨⎪+=+=+>⎩,可得2445d -<<-,故B 正确;对于D 选项,因为100S >,()111116111102a a S a +==<,所以,满足0n S >的n 的最大值为10,故D 错误;对于A 选项,由上述分析可知,当15n ≤≤且*N n ∈时,0n a >;当6n ≥且*N n ∈时,0n a <,所以,当15n ≤≤且*N n ∈时,0nnS a >,当610n ≤≤且*N n ∈时,0nnS a <,当11n ≥且*N n ∈时,0nnS a >.由题意可知{}单调递减,所以当610n ≤≤且*N n ∈时,6789100a a a a a >>>>>,由题意可知{}n S 单调递减,即有6789100S S S S S >>>>>,所以678910111110a a a a a ->->->->->,由不等式的性质可得6789106789100S S S S Sa a a a a ->->->->->,从而可得6789106789100S S S S S a a a a a <<<<<,因此,数列n n S a ⎧⎫⎨⎬⎩⎭的最小项为第6项,故A 正确.故选:ABC.11.如果函数()f x 对定义域内的任意实数,都有()()0f x xf x '+>,则称函数()y f x =为“F 函数”.下列函数不是“F 函数”的是()A.()e xf x = B.()ln f x x =C.()2f x x= D.()sin f x x=【答案】ABD 【解析】【分析】令()()g x xf x =,则()()()0g x f x xf x ''=+>,可得函数()g x 在定义域内是单调递增函数,称函数()y f x =为“F 函数”,逐项验证可得答案.【详解】令()()g x xf x =,则()()()0g x f x xf x ''=+>,即函数()g x 在定义域内是单调递增函数,称函数()y f x =为“F 函数”.对于A ,()e xf x =,()()()e=∈=xg xf x x x x R ,()()e e 1e x x x g x x x '=+=+,当1x >-时,()0g x '>,()g x 单调递增,当1x <-时,()0g x '<,()g x 单调递减,不符合在定义域内是单调递增函数,则函数()e xf x =不是“F 函数”.故A 正确;对于B ,()ln f x x =,()()()ln 0>==g xf x x x x x ,()ln 1g x x '=+,当10e x <<时,()0g x '<,()g x 单调递减,当1ex >时,()0g x '>,()g x 单调递增,不符合在定义域内是单调递增函数,则函数()ln f x x =不是“F 函数”.故B 正确;对于C ,()2f x x =,()()()3=∈=g xf x xx x R ,()203'=≥x x g ,所以()g x 单调递增函数,则函数()2f x x =是“F 函数”.故C 错误;对于D ,()sin f x x =,()()()sin ∈==g x xf x x x x R ,()sin cos g x x x x '=+,当3ππ2<<x 时,()0g x '<,()g x 单调递减,不符合在定义域内是单调递增函数,则函数()sin f x x =不是“F 函数”.故D 正确.故选:ABD.【点睛】关键点点睛:本题解题的关键点是构造函数()()g x xf x =,根据()0g x '>可得函数()g x 在定义域内是单调递增函数,称函数()y f x =为“F 函数”.第Ⅱ卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.12.演讲比赛结束后,4名选手与1名指导教师站成一排合影留念.要求指导教师不能站在两端,那么有______种不同的站法.(用数字作答)【答案】72【解析】【分析】根据题意,分2步进行分析:①,指导教师不能站在两端,易得指导教师有3种站法,②,其4名选手全排列,安排在其他4个位置,由分步计数原理计算可得答案.【详解】根据题意,分2步进行分析:①,指导教师不能站在两端,则指导教师有3个位置可选,有3种站法;②,其4名选手全排列,安排在其他4个位置,有4424A =种情况,则有32472⨯=种不同的站法;故答案为72.【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.13.已知随机变量X ,Y 满足21Y X =+,且随机变量X 的分布列如下:X 012P1613a则随机变量Y 的方差()D Y 等于______;【答案】209##229【解析】【分析】根据分布列中概率和为1可得a ,再由期望、方差公式计算出()D X ,最后利用()()2D aX b a D X +=计算可得答案.【详解】因为11163a ++=,所以12a =,()11140126323=⨯+⨯+⨯=E X ,()22214141450126333239⎛⎫⎛⎫⎛⎫=⨯-+⨯-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D X ,所以()()()520214499=+==⨯=D Y D X D X .故答案为:209.14.若函数()3231f x ax ax =-+有3个不同的零点,则实数a 的取值范围为______.【答案】1,4⎛⎫+∞ ⎪⎝⎭【解析】【分析】由已知()()'23632fx ax ax ax x =-=-,分为0a =、0a <和0a >进行讨论,利用函数的单调区间和()01f =即可得到答案.【详解】由已知()()'23632fx ax ax ax x =-=-,当0a =时,函数()0f x =无解,不符合题意;当0a <时,()'0fx >得02x <<,()'0f x <得0x <或2x >,即函数()f x 的增区间为()0,2,减区间为()(),0,2,-∞+∞,又()01f =,所以函数()f x 有且仅有1个零点,与题意不符;当0a >时,()'0fx >得0x <或2x >,()'0f x <得02x <<,即函数()f x 的增区间为()(),0,2,-∞+∞,减区间为()0,2,又()01f =,要使函数()3231f x ax ax =-+有3个不同的零点,则需()20f <,即81210a a -+<,解得14a >.故答案为:1,4⎛⎫+∞⎪⎝⎭.四、解答题:本题共5小题,共77分.解答应写出文字说阴、证明过程或演算步骤.15.已知数列{}n a 的前n 项和为n S ,123n = ,,,,从条件①、条件②和条件③中选择两个能够确定一个数列的条件,并完成解答.(条件①:55a =;条件②:12n n a a +-=;条件③:24S =-.)选择条件和.(1)求数列{}n a 的通项公式;(2)设数列{}n b 满足n n b a =,并求数列{}n b 的前n 项的和n T 【答案】(1)25n a n =-(2)当12n ≤≤时2=4n T n n -+,当3n ≥时248n T n n =-+【解析】【分析】(1)根据12n n a a +-=可知数列{}n a 是以公差2=d 的等差数列,然后求出首项,即可得通项.(2)由52,12;25,3n n n b n n -≤≤⎧=⎨-≥⎩,分情况讨论即可得nT 【小问1详解】选①②,由12n n a a +-=可知数列{}n a 是以公差2=d 的等差数列,又55a =得13a =-,故()32125n a n n =-+-=-选②③,由12n n a a +-=可知数列{}n a 是以公差2=d 的等差数列,由24S =-可知124,a a +=-13a ∴=-,()32125n a n n =-+-=-选①③,无法确定数列.【小问2详解】52,12;252525,3n n n n n a n b a n n n -≤≤⎧=-∴==-=⎨-≥⎩ ,其中n N ∈,当12n ≤≤,n N ∈时,2=4n T n n-+当3n ≥,n N ∈时,数列{}n b 是从第三项开始,以公差2=d 的等差数列()()21252=4+482n n n T n n +--=-+.16.已知函数()ln 22f x x x =-+-.(1)求曲线()y f x =的斜率等于1的切线方程;(2)求函数()f x 的极值.【答案】(1)1y x =-;(2)极小值ln 21-,无极大值.【解析】【分析】(1)首先求函数的导数,根据()01f x '=,求切点坐标,再求切线方程;(2)根据极值的定义,利用导数求极值.【详解】(1)设切点为()00,x y ,因为()12f x x=-+',所以0121x -+=,01x =,0ln1220y =-+-=,所以切线方程l 为()011y x -=⨯-,即1y x =-.(2)()f x 的定义域为0,+∞.令()0f x '=即120x -+=,12x =,令()0f x '>,得12x >,令()0f x '<,得102x <<,故()f x 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞⎪⎝⎭上单调递增,所以()f x 存在极小值1ln 212ln 212f ⎛⎫=+-=-⎪⎝⎭,无极大值.17.随着人们生活水平的提高,国家倡导绿色安全消费,菜篮子工程从数量保障型转向质量效益型.为了测试甲、乙两种不同有机肥料的使用效果,某科研单位用西红柿做了对比实验,分别在两片实验区各摘取100个,对其质量的某项指标值进行检测,质量指数值达到35及以上的为“质量优等”,由测量结果绘成如下频率分布直方图.其中质量指数值分组区间是:[)20,25,[)25,30,[)30,35,[)35,40,[]40,45.(1)请根据题中信息完成下面的列联表,并判断是否有99.9%的把握认为“质量优等”与使用不同的肥料有关;甲有机肥料乙有机肥料合计质量优等质量非优等合计(2)在摘取的用乙种有机肥料的西红柿中,从“质量优等”中随机选取2个,记区间[]40,45中含有的个数为X ,求X 的分布列及数学期望.附:()()()()()22n ad bc a b c d a c b d χ-=++++.()20P x χ≥0.1000.0500.0100.0050.001x 2.706 3.841 6.6357.87910.828【答案】(1)列联表见解析,有99.9%的把握认为,“质量优等”与使用不同的肥料有关(2)分布列见解析,2()3E X =【解析】【分析】(1)根据已知条件,结合独立性检验公式,即可计算并判断结果.(2)随机变量X 的可能取值有0,1,2,服从超几何分布,利用超几何分布的公式可计算概率值,从而列出分布列并计算期望.【小问1详解】解:由题意可得22⨯列联表为:甲有机肥料乙有机肥料合计质量优等603090质量非优等4070110合计100100200则()()()()()22n ad bc a b c d a c b d χ-=++++2200(42001200)20018.18210.8281001001109011⨯-=≈>⨯⨯=⨯.所以有99.9%的把握认为“质量优等”与使用不同的肥料有关.【小问2详解】由频率分布直方图可得“质量优等”有30个,区间[]40,45中含有10个,随机变量X 的可能取值有0,1,2,021020230C C 19038(0)C 43587P X ====,111020230C C 20040(1)C 43587P X ====,210230C 459(2)C 43587P X ====,随机变量X 的分布列如下:X012P38874087987384092()0128787873E X =⨯+⨯+⨯=.18.已知数列{}n a 满足11a =,11n n S a n +=--.(1)证明:数列{}1n a +是等比数列;(2)设1n n nb a =+,求数列{}n b 的前n 项和n S .【答案】(1)证明见解析;(2)222n nn S +=-.【解析】【分析】(1)利用给定的递推公式,结合12,n n n n a S S -≥=-推理判断作答.(2)由(1)求出n b ,再利用错位相减法求和作答.【小问1详解】当1n =时,122S a =-,解得23a =,当2n ≥时,11n n S a n +=--,1n n S a n -=-,两式相减得11n n n a a a +=--,即121n n a a +=+,即有()1121n n a a ++=+,而21142(1)a a +==+,则N n *∀∈,()1121n n a a ++=+,所以数列{}1n a +是以2为首项,2为公比的等比数列.【小问2详解】由(1)知12nn a +=,于是12n n n n nb a ==+,则231232222n n n S =++++ ,于是231112122222n n n n n S +-=++++ ,两式相减得2311111(1)11222112221212222121n n n n n n n n n S +++-+=++++-=-=--,所以222n n n S +=-.19.设函数()e xf x ax =-,0x ≥且R a ∈.(1)求函数()f x 的单调性;(2)若()21f x x ≥+恒成立,求实数a 的取值范围.【答案】(1)答案见解析(2)e 2a ≤-【解析】【分析】(1)求导后分1a ≤与1a >两种情况讨论即可;(2)方法一:讨论当0x =时成立,当0x >时参变分离可得2e 1x x a x --≤,再构造函数()2e 1x x g x x --=,0x >,求导分析最小值即可;方法二:将题意转化为2max11e x x ax ⎛⎫++≤ ⎪⎝⎭,再构造函数()21e xx ax h x ++=,求导分类讨论单调性与最大值即可.【小问1详解】()e x f x a '=-,0x ≥,当1a ≤时,()0f x '≥恒成立,则()f x 在[)0,+∞上单调递增;当1a >时,[)0,ln x a ∈时,()0f x '≤,则()f x 在[)0,ln a 上单调递减;()ln ,x a ∈+∞时,()0f x '≥,则()f x 在[)0,ln a 上单调递增.【小问2详解】方法一:2e 1x ax x -≥+在0x ≥恒成立,则当0x =时,11≥,显然成立,符合题意;当0x >时,得2e 1x x a x --≤恒成立,即2min e 1x x a x ⎛⎫--≤ ⎪⎝⎭记()2e 1x x g x x --=,0x >,()()()2e 11x x x g x x'---=,构造函数e1xy x =--,0x >,则e 10x y '=->,故e 1xy x =--为增函数,则0e 1e 010x x -->--=.故e 10x x -->对任意0x >恒成立,则()g x 在()0,1递减,在()1,+∞递增,所以()()min 1e 2g x g ==-∴e 2a ≤-.方法二:211e xx ax ++≤在[)0,+∞上恒成立,即2max11e x x ax ⎛⎫++≤ ⎪⎝⎭.记()21e x x ax h x ++=,0x ≥,()()()11e xx x a h x '-+-=-,当1a ≥时,()h x 在()0,1单增,在()1,+∞单减,则()()max 211ea h x h +==≤,得e 2a ≤-,舍:当01a <<时,()h x 在()0,1a -单减,在()1,1a -单增,在()1,+∞单减,()01h =,()21ea h +=,得0e 2a <<-;当0a =时,()h x 在()0,∞+单减,成立;当a<0时,()h x 在()0,1单减,在()1,1a -单增,在()1,a -+∞单减,()01h =,()121eaah a ---=,而1e 11a a -≥-+,显然成立.综上所述,e 2a ≤-.。

广东省广州南方学院番禺附属中学2023-2024学年高二下学期期中考试数学试卷(含简单答案)

广东省广州南方学院番禺附属中学2023-2024学年高二下学期期中考试数学试卷(含简单答案)

广州南方学院番禺附属中学2023-2024学年高二下学期期中考试数学试卷此卷共19题 时间:120分钟 满分:150分一、单选题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项符合题目要求.)1. 已知集合,集合,则图中阴影部分表示的集合为( )A. B. C. D. 2. 已知复数满足:(为虚数单位),则在复平面内对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 展开式中的系数为( )A. 48B. 30C. 60D. 1204. 某校甲、乙、丙、丁4个小组到A ,B ,C 这3个劳动实践基地参加实践活动,每个小组选择一个基地,则每个基地至少有1个小组的概率为( )A.B.C.D.5. 已知双曲线的渐近线方程为,则其离心率为( )A.B. 2C. 3D. 46. 第19届亚运会于2023年9月至10月在杭州举行,来自浙江某大学的4名男生和3名女生通过了志愿者的选拔,若从这7名大学生中选出2人或3人去某场馆担任英语翻译,并且至少要选中1名女生,则不同的挑选方案共有( )A. 15种B. 31种C. 46种D. 60种7 已知,则( )A. B. 的.U =R {}{}2230,02A x x x B x x =+-<=≤≤∣∣()3,0-()1,0-()0,1()2,3z ()20241i 23i z +=+i z 62x x ⎛⎫+ ⎪⎝⎭2x 2913498922221(0,0)x y a b a b -=>>y =32()7701789x a a x a x -=+++ 1237237a a a a ++++= 1-1C. D. 8. 已知函数,且,则( )AB.C.D.二、多选题(本大题共3小题,每小题6分,满分18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 已知为等差数列,满足为等比数列,满足,则下列说法正确的是( )A. 数列的首项为4B.C.D. 数列的公比为10. 已知函数的导函数为,则( )A. 函数的极小值点为 B. C. 函数的单调递减区间为 D. 若函数有两个不同的零点,则11. 我国南宋数学家杨辉在年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.该表蕴含着许多的数学规律,下列结论正确的是( )第0行 1第1行 1 1第2行1 2 1第3行 1 3 3 1第4行 1 4 6 4 1第5行 1 5 10 10 5 1第6行 1 6 15 20 15 6 1…………A. B. ,,,C. 从左往右逐行数,第项在第行第个.63-63()[]()π3cos 20,π3f x x x ⎛⎫=-∈ ⎪⎝⎭()()()121265f x f x x x ==≠12x x +=4π3π353π2π3{}n a 2122,a a -={}n b 241,4b b =={}n a 32a =864b ={}n b 2±()(1)e x f x x =+()f x '()f x 21e -(2)0f '-=()f x (,2)-∞-()()g x f x a =-21,e a ⎛⎫∈-+∞ ⎪⎝⎭12613333434520232024C C C C C ++++= 11111=211121=L 51115101051=2023637D. 第行到第行的所有数字之和为三、填空题(本大题共3小题,每小题5分,第12题第一空2分,第二空3分,满分15分.)12. 随机变量η的分布列如下η123456P0.2x0350.10.150.2则x =________,P (η≤3)=________.13. 有甲、乙两个鱼缸,甲鱼缸中有条金鱼和条锦鲤,乙鱼缸中有4条金鱼和3条锦鲤,先从甲鱼缸中随机捞出一条鱼放入乙鱼缸,再从乙鱼缸中随机捞出一条鱼,若从乙鱼缸中捞出的是金鱼的概率为,则的最小值为__________.14. 若点是曲线上任意一点,则点到直线的最小距离为_______.四、解答题(本大题共5小题,满分80分.解答应写出文字说明、证明过程或演算步骤.)15. 在中,角所对边分别为,且满足.(1)求角;(2)若点在线段上,且满足,求面积的最大值.16. 在某校举办“青春献礼二十大,强国有我新征程”的知识能力测评中,随机抽查了100名学生,其中共有4名女生和3名男生的成绩在90分以上,从这7名同学中每次随机抽1人在全校作经验分享,每位同学最多分享一次,记第一次抽到女生为事件A ,第二次抽到男生为事件B .(1)求,,(2)若把抽取学生的方式更改为:从这7名学生中随机抽取3人进行经验分享,记被抽取的3人中女生的人数为X ,求X 的分布列.17. 如图,在四棱锥中,底面是矩形且为的中点,..的5102024x y 47124x y+P 2ln y x x =-P 4y x =-ABC V ,,A B C ,,a b c ()2sin cos sin cos sin cos A C A C A A C +-=A D BC 3,3BD DC AD ==ABC V ()P B ()P B A P ABCD -ABCD ,BC M =BC ,PA AD PM BD ⊥⊥(1)证明:平面;(2)若,求二面角的余弦值.18. 已知函数.(1)求函数在处的切线方程;(2)当时,求函数的最小值.19. 已知函数,其中.(1)讨论的单调性;(2)若函数有两个不同的零点,.①求实数a 的取值范围;②证明:.PA ⊥ABCD 2PA AB ==A PM D --()()cos 1e xf x x -=-()f x 0x =()0,πx ∈()f x ()()22ln f x ax a x x =-++a ∈R ()f x ()()2g x f x ax =-1x 2x 212e x x >广州南方学院番禺附属中学2023-2024学年高二下学期期中考试数学试卷简要答案一、单选题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项符合题目要求.)【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】C【7题答案】【答案】C【8题答案】【答案】A二、多选题(本大题共3小题,每小题6分,满分18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)【9题答案】【答案】BCD【10题答案】【答案】BC【11题答案】【答案】AC三、填空题(本大题共3小题,每小题5分,第12题第一空2分,第二空3分,满分15分.)【12题答案】【答案】①.②. 【13题答案】【答案】4【14题答案】【答案】四、解答题(本大题共5小题,满分80分.解答应写出文字说明、证明过程或演算步骤.)【15题答案】【答案】(1) (2)【16题答案】【答案】(1) (2)分布列略【17题答案】【答案】(1)证明略(2【18题答案】【答案】(1)(2)【19题答案】【答案】(1)答案略 (2)①;②证明略00.55π3()3,7P B =()12P B A =0y =π2πe 2f -⎛⎫=- ⎪⎝⎭12,2e⎛⎫-- ⎪⎝⎭。

四川省成都市蓉城名校2023-2024学年高二下学期期中考试数学试题

四川省成都市蓉城名校2023-2024学年高二下学期期中考试数学试题

四川省成都市蓉城名校2023-2024学年高二下学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在各项均为正数的等比数列{}n a 中,388a a =,则2427log log a a +=( ) A .2 B .3C .12D .132.已知()()000lim 32x f x x f x x ∆→+∆-=∆,则函数()f x 在0x x =处的导数为( )A .3-B .3C .6-D .63.在数列{}n a 中,111n n a a -=-(2n ≥),若12a =,则2024a =( ) A .2B .12C .12-D .1-4.下列求导运算正确的是( ) A.'=B .1[ln(31)]31x x '+=+ C .211()1x x x '-=-D .2e e e ()22x x xx x x -'=5.函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,记()y f x =的导函数为()(),y f x y f x '=='的图象如图所示,则()y f x =的单调增区间为( )A .31,23⎛⎫-- ⎪⎝⎭,()1,2B .11,2⎛⎫- ⎪⎝⎭,48,33⎛⎫ ⎪⎝⎭C .11,3⎛⎫-- ⎪⎝⎭,4,23⎛⎫ ⎪⎝⎭D .3,12⎛⎫-- ⎪⎝⎭,14,23⎛⎫ ⎪⎝⎭,8,33⎛⎫ ⎪⎝⎭6.已知数列{}n a 满足:()633,7,7n n a n n a a n -⎧--<=⎨≥⎩,(*n ∈N ,0a >),数列{}n a 是递增数列,则实数a 的可能取值为( ) A .2B .157C .167D .47.已知()e xf x x =,()()21g x x a =-++,若1x ∃,2x ∈R ,使得()()21f x g x ≤成立,则实数a 的取值范围是( ) A .[)e,+∞ B .(],e -∞C .1,e ⎡-+∞⎫⎪⎢⎣⎭D .1,e ⎛⎤-∞- ⎥⎝⎦8.如图的形状出现在南宋数学家杨辉所著的《详解九章算术》中,后人称为“三角垛”,“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,第四层有10个球,…….,设从上往下各层的球数构成数列{}n a ,则12320251111a a a a +++⋅⋅⋅+=( )A .20252026B .20251013C .40462025D .20231012二、多选题9.公差为d 的等差数列{}n a ,其前n 项和为n S ,130S >,140S <,下列说法正确的是( ) A .0d <B .70a >C .{}n S 中8S 最大D .510a a >10.已知函数()33f x x mx n =-+,则( )A .当0m ≥时,()f x 有两个极值点B .当1m =,1n =时,()f x 有三个零点C .当1m =,1n =时,直线3y x =-是曲线()f x 的切线D .当1m =时,若()f x 在区间[]1,c -上的最大值为2n +,则12c -<≤11.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”.已知数列{}n b ,11b =,22b =,21n n n b b b ++=+(*n ∈N ),记n S 为数列{}n b 的前n 项和,则下列结论正确的是( )A .68b =B .202520271S b =-C .1352023202520261b b b b b b +++⋅⋅⋅++=-D .2222122023202420232024a a a a b b ++⋅⋅⋅++=三、填空题12.曲线sin cos y x x =+在点()5π,1-处的切线方程为 (用一般式作答). 13.数列{}n a 满足13a =,121n n n a a +-=-(*n ∈N ),则6a = (用数字作答). 14.已知函数()f x 是定义在()(),00,∞∞-⋃+上的偶函数,且()0f x >,其导函数为()f x ',且0x <时,()()20f x xf x '+<恒成立,()4a f =-,()5b f =,()6c f =-,a ,b ,c 的大小关系为 .四、解答题15.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 是正方形,点M 为PC 边上一点,DM PC ⊥,2PA AD ==.(1)证明:平面MBD ⊥平面PCD ; (2)求二面角M BD C --的余弦值.16.已知椭圆C :22221x y a b+=(0a b >>),131,2P ⎛⎫- ⎪⎝⎭,231,2P ⎛⎫ ⎪⎝⎭,(30,P ,()41,1P 四点中恰有三点在椭圆C 上. (1)求椭圆C 的标准方程;(2)过右焦点F 且斜率为1的直线l 交椭圆C 于M ,N 两点,点P 为直线4x =上任意一点,求证:直线PM ,PF ,PN 的斜率成等差数列. 17.已知函数()ln f x x mx =-()0m >.(1)若曲线()y f x =在点()()1,1f 处的切线斜率为1-,求m 的取值和曲线()y f x =在点()()1,1f 处的切线方程;(2)求函数()y f x =在区间[]2,3上的最小值. 18.已知数列{}n a 满足:2112315555n n n a a a a -++++⋅⋅⋅+=(*n ∈N ). (1)求数列{}n a 的通项公式; (2)设()()111511n n n n b a a ++=--(*n ∈N ),数列{}n b 前n 项和为n S ,试比较n S 与23288的大小并证明.19.数列{}n a 满足112a =,112n na a +=-(*n ∈N ).(1)计算2a ,3a ,猜想数列{}n a 的通项公式并证明;(2)求数列(){}13nn a n +的前n 项和;(3)设2n n b a =(*n ∈N ),数列{}n b 前n 项和为n S ,证明:222ln 2n n S n +⎛⎫<- ⎪⎝⎭.。

上海市莘庄中学2023-2024学年高二下学期期中考试数学试卷(含简单答案)

上海市莘庄中学2023-2024学年高二下学期期中考试数学试卷(含简单答案)

上海市莘庄中学2023-2024学年高二下学期期中考试数学试卷(时间:120分钟 满分150分)一、填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 已知曲线在点处瞬时变化率为,则点的坐标为__________.2. 在5名男生和4名女生中选出3人,至少有一名男生的概率为______.3. 已知直线一个方向向量为,平面的一个法向量为,若,则实数__________.4. 已知双曲线的渐近线方程为______.5. 在的二项展开式中,常数项的值为______.6. 已知事件A 与事件B 相互独立,如果,,则______.7. 已知(n 是正整数),,则______.8. 有名同学报名参加暑期区科技馆志愿者活动,共服务两天,每天需要两人参加活动,则恰有人连续参加两天志愿者活动的概率为________.9. 已知函数,若直线与的图像有三个不同的交点,则m 的取值范围是______.10. 某车队有7辆车,现要调出4辆按一定顺序出去执行任务.要求甲、乙两车必须参加,且甲车要先于乙车开出有_______种不同的调度方法(填数字).11. 已知抛物线的焦点为F ,第一象限的A 、B 两点在抛物线上,且满足,,若线段AB 中点的纵坐标为6,则抛物线的方程为______.12. 若函数图象上点A 与点B 、点C 与点D 分别关于原点对称,除此之外,不存在函数图象上的其它两点关于原点对称,则实数a 的取值范围是______.的的的2()21f x x =+()00,M x y 8-M l ()1,2,1d =- α()5,,3n x = //l αx =()2222:10,0x y C a b a b -=>>C 6()0.2P A =()0.7P B =()P A B ⋂=23C C n n =()()()()201222111n n n x a a x a x a x -=+-+-+⋅⋅⋅+-012n a a a a +++⋅⋅⋅+=51()331f x x x =--y m =()y f x =()220y px p =>4BF AF -=AB =322,0e ,0xx x y ax x ⎧≥⎪=⎨⎪<⎩二、选择题(本大题共4题,第13、14题各4分,第15、16题各5分,共18分)13. 在空间直角坐标系中,点关于平面对称点的坐标是( )A. B. C. D. 14. 从装有两个红球和两个白球的口袋内任取两个球,那么互斥而不对立的事件是( )A. 恰好有一个白球与都是红球B. 至多有一个白球与都是红球C. 至多有一个白球与都是白球D. 至多有一个白球与至多一个红球15. 若的展开式中存在常数项,则下列选项中的取值不可能是( )A B. C. D. 16. 在正三棱柱中,,点P 满足,其中,,则( )A. 当时,的周长为定值B. 当时,三棱锥的体积不是定值C. 当时,有且仅有一个点P ,使得D. 当时,有且仅有一个点P ,使得平面三、解答题(本大题共5题,共14+14+14+18+18=78分)17. 已知函数和处取得极值.(1)求的值:(2)求在区间上的最大值.18. 如图,在正四棱柱中,.点分别在棱.在()6,6,6A -xOz ()6,6,6-()6,6,6()6,6,6-()6,6,6--()221210,n n x x n n x x ⎛⎫⎛⎫-++≤≤∈ ⎪ ⎪⎝⎭⎝⎭N n 3456111ABC A B C -11AB AA ==1BP BC BB λμ=+ []0,1λ∈[]0,1μ∈1λ=1AB P △1μ=1P A BC -12λ=1A P BP ⊥12μ=1A B ⊥1AB P ()323f x ax bx x =+-=1x -3x =,a b ()y f x =[]4,4-1111ABCD A B C D -12,4AB AA ==2222,,,A B C D,上,.(1)证明:;(2)点在棱上,当二面角为时,求.19. 一个盒子中装有4张卡片,卡片上分别写有数字1、2、3、4.现从盒子中随机抽取卡片.(1)若一次抽取3张卡片,事件A 表示“3张卡片上数字之和大于7”,求;(2)若第一次抽取1张卡片,放回后再抽取1张卡片,事件B 表示“两次抽取的卡片上数字之和大于6”,求;(3)若一次抽取2张卡片,事件C 表示“2张卡片上数字之和是3的倍数”,事件D 表示“2张卡片上数字之积是4的倍数”,验证C 、D 是独立的.20. 已知椭圆的左、右焦点分别为.(1)以为圆心的圆经过椭圆的左焦点和上顶点,求椭圆的离心率;(2)已知,设点是椭圆上一点,且位于轴的上方,若是等腰三角形,求点的坐标;(3)已知,过点且倾斜角为的直线与椭圆在轴上方的交点记作,若动直线也过点且与椭圆交于两点(均不同于),是否存在定直线,使得动直线与的交点满足直线的斜率总是成等差数列?若存在,求常数的值;若不存在,请说明理由.21. 已知函数.(1)当,求函数的图象在点处的切线方程;111,,AA BB CC 1DD 22221,2,3AA BB DD CC ====2222B C A D ∥P 1BB 222P A C D --150︒2B P ()P A ()P B 2222Γ:1(0)x y a b a b+=>>12F F 、2F 1F B Γ5,4a b ==P Γx 12PF F △P 2,a b ==2F π2Γx A l 2F ΓM N 、A 00:l x x =l 0l C AM AC AN 、、0x ()ln e xf x x x a x=-+-1a =()y f x =()()1,1f(2)若恒成立,求a 的取值范围;(3)证明:若有两个零点,则.上海市莘庄中学2023-2024学年高二下学期期中考试数学试卷 简要答案一、填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)【1题答案】【答案】【2题答案】【答案】【3题答案】【答案】【4题答案】【答案】【5题答案】【答案】【6题答案】【答案】0.56##【7题答案】【答案】32【8题答案】【答案】【9题答案】【答案】【10题答案】【答案】()0f x ≥()f x 12,x x 121x x <(2,9)-20211-y =160-142535()3,1-120【11题答案】【答案】【12题答案】【答案】二、选择题(本大题共4题,第13、14题各4分,第15、16题各5分,共18分)【13题答案】【答案】B【14题答案】【答案】A【15题答案】【答案】C【16题答案】【答案】D三、解答题(本大题共5题,共14+14+14+18+18=78分)【17题答案】【答案】(1), (2)【18题答案】【答案】(1)证明略; (2)1【19题答案】【答案】(1)(2) (3)验证过程略【20题答案】【答案】(1)(2)答案略(3)存在,,理由略【21题答案】212y x=2(,0)e-13a =1b =-53123161204x =【答案】(1)(2)(3)证明过程略ey= (,e1] -∞+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

藤县二中2008—2009学年度下学期段考试卷
高二数学
(答题时间:120分钟 满分:150分)
一、选择题:(本题共12小题,每小题5分,共60分) 1.已知直线a , b , c 和平面α,下列命题中正确的是( ) A . 若a ⊥c, b ⊥c , 则a ∥b B. 若a ∥c, b ∥c , 则a ∥b C. 若a ∥α,b ∥α,则a ∥b D. 若a ∥α,b ⊂α,则a ∥b 2.棱锥的中截面面积与底面面积之比等于( ) A .12:
B .1:2
C .12
2: D .1:4
3.棱长都相等的正四棱锥的侧棱与底面所成的角是( ) A .30︒
B .45︒
C .60︒
D .135︒
4.如图,在正方体ABCD-A 1B 1C 1D 1中,异面直线AC 1 与
BD 所成的角是( )
A .90︒
B .60︒
C .45︒
D .30︒ 5.直棱柱ABCD-A 1B 1C 1D 1的高为3,底面是边长为2的菱形,且∠BAD=60︒,F 是A 1D 1的中点,则BF=( ) A .6
B .23
C .14
D .4
6.底面边长为23,斜高为2的正三棱锥的体积等于( ) A .3
B .9
C .6
D .23
7.n ∈N *,则(20-n )(21-n)……(100-n)等于( )
A .80
100n A -
B .n
n A --20100
C .81
100n A -
D .81
20n A -

D 1
第4题图
8.有5名同学合影,站成一排,现摄影师要甲,乙必须站在一起,则不同排法
的总数是( )
A.72 B.120 C.48 D.24
9.已知菱形ABCD的边长为1,∠DAB=60︒,将这个菱形沿AC折成120︒的二面角,则B、D两点间的距离是()
A.1
2
B.
3
2
C.
3
2
D.
3
4
10.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修
3门,则不同的选修方案共有()
A.36种B.48种C.96种D.192种
11. 把4名中学生分别推荐到3所不同的大学去学习,每个大学至少收一名,
全部分完,不同的分配方案数为()
A. 12
B. 24
C. 36
D. 28
12.设四个点P、A、B、C在同一球面上,且PA、PB、PC两两垂直,PA=3,PB=4,PC=5,那么这个球的表面积是()
A.B

C.25 D.50
二、填空题(本题共4小题,每小题5分,共20分)
13、直棱柱ABC-A 1B 1C 1中,∠ACB=90︒,AC=AA 1=a ,则点A 到截面A 1BC
的距离为 。

14、正四棱锥S-ABCD 的底面边长和各侧棱长都为,点S 、A 、B 、C 、D 都
在同一个球面上,则该球的体积为
15. 由数字1,2,3,4可以组成没有重复数字比1999大的数共有 个 16.(四川卷15)从甲、乙等10名同学中挑选4名参加某校公益活动,要求甲、
乙中至少有1人参加,则不同的挑选方法共有___________种。

三、解答题(本题共6小题,共70分)
17. (满分10分)如图,正三棱柱ABC -A 1B 1C 1,底面边长是4,二面角A -B 1C 1-A 1
为60︒,求这个正三棱柱的体积。

A
A 1
B
C 1
C 1
18. (满分12分)如图,三棱锥P―ABC 中,已知P A ⊥平面ABC , P A =3,
PB = PC = BC = 6 ,求二面角P―BC―A 的正弦值.
19.(满分12分)如图,在正三棱柱ABC —A 1B 1C 1中,AB =AA 1,D 是CC 1
的中点,F 是A 1B 的中点, (1) 求证:DF ∥平面ABC ; (2) 求证:AF ⊥BD 。

20.(满分12分)如图, 在直三棱柱111ABC A B C -中,
13,4,5,4AC BC AB AA ==== ,
点D 为AB 的中点
(1) 求证1AC BC ⊥;
(2) 求异面直线1AC 与1B C 所成角的余弦值
A B C
P 第18题 第17题 第19题
21. (满分12分)如图, 已知直三棱柱ABC —111C B A 中,︒=∠30BAC ,
︒=∠90ACB ,1=BC ,61=AA . (1)求证:面⊥11C AB 面C C AA 11 (2)求1AB 与面C C AA 11所成角的正弦值
22. (满分12分) BD 是边长为a 的正方形ABCD 的对角线,把ABD ∆沿BD
折起,使平面ABD 与平面BCD 成0120的二面角。

(1)求C 到平面ABD 的距离 (2)求二面角A -CD -B 的大小
高二数学段考试题答案
一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
C
C
C
C
二、填空题
题号 13 14 15 16
第20题
第21题
三、解答题
19.⑴取AB中点E,则显然有
FD∥EC DF∥平面ABC ⑵
21. 解(1)∵ ︒=∠90ACB ∴ AC BC ⊥ ∵ ⊥1AA 面ABC ∴ BC AA ⊥1
∴ ⊥BC 面C C AA 11 ∵ 11//C B BC ∴ ⊥11C B 面C C AA 11 ∴ 面⊥11C AB 面C C AA 11
(2)∵ ⊥11C B 面C C AA 11 ∴ A C 1是A B 1在面C C AA 11的射影
∴ 11AC B ∠为1AB 与面C C AA 11所成角
在ABC ∆中,︒=∠90ACB ,︒=∠30BAC ,1=BC ∴ 2=AB ,101=AB
10
10
sin 11=
∠AC B (3)ABC Rt ∆中,︒=∠90ACB ,︒=∠30BAC ,1=BC ∴ 3=AC
即311=
C A C AA Rt 1∆中,61=AA ∴ 2
26
3tan 11=
=
∠AC A M A C Rt 11∆中,2
62111==
C C M C ,311=C A ∴ 11111tan A C M C M A C =
∠2
2= ∴ M A C AC A 1111∠=∠ ︒=∠+∠90111M AA AC A ∴ 11AC M A ⊥ 而1AC 是1AB 在面C C AA 11的
射影 ∴ M A AB 11⊥。

相关文档
最新文档