初中数学:勾股定理的多种证明

合集下载

证明勾股定理的六种方法

证明勾股定理的六种方法

证明勾股定理的六种方法嘿,朋友们!今天咱就来聊聊证明勾股定理的六种超厉害的方法!咱先说说第一种,拼图法。

这就好像搭积木一样,把一些图形巧妙地拼在一起,然后哇塞,勾股定理就出现啦!你看,通过把几个直角三角形和正方形拼来拼去,就能发现它们之间的奇妙关系,这多有意思呀!第二种呢,是面积法。

就好像我们分蛋糕一样,把图形的面积算来算去,嘿,就找到勾股定理的秘密啦!通过比较不同部分的面积,那真理就藏不住咯!还有一种叫相似三角形法。

哎呀,这就像找朋友一样,找到那些相似的三角形,然后从它们的关系里一点点挖出勾股定理。

这可需要我们有一双善于发现的眼睛呢!接着说第四种,射影定理法。

这听起来是不是有点高深莫测呀?哈哈,其实也不难理解啦!就好像是光线照下来留下的影子,从影子里能看出很多奇妙的东西哦,勾股定理就是其中之一呢!再讲讲第五种,余弦定理法。

这就像是解开一道复杂的谜题,通过余弦定理这个工具,一点点推导,最后得出勾股定理。

是不是很神奇呀?最后一种,是梯形面积法。

把图形变成梯形,然后通过计算梯形的面积,哈哈,勾股定理就蹦出来啦!这六种方法,各有各的奇妙之处,各有各的乐趣。

就好像是打开知识大门的六把钥匙,每一把都能让我们看到不一样的精彩。

证明勾股定理,不只是为了得到一个结果,更是在享受探索的过程呀!我们在这个过程中可以感受到数学的魅力,感受到思维的跳动。

想想看,我们的老祖宗们是多么聪明呀,能发现这么神奇的定理,还能想出这么多种方法来证明它。

我们作为后人,是不是也应该好好去研究、去体会呢?数学的世界就是这么奇妙,勾股定理只是其中的一小部分。

还有很多很多的奥秘等着我们去发现呢!所以呀,大家可不要小瞧了数学,它里面的乐趣可多着呢!我们要带着好奇的心,去探索,去发现,去感受数学带给我们的惊喜和快乐!这六种证明勾股定理的方法,不就是最好的例子吗?难道不是吗?。

初中数学-勾股定理16种证明方法

初中数学-勾股定理16种证明方法

勾股定理的16种证明方法【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b,斜边长为c,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +. ∴()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜D 边作四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+. 【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º. ∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +.∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P . ∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD, ∴ ∠EGF = ∠BED,C∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD .∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上. 过点Q 作QP ∥BC,交AC 于点P . 过点B 作BM ⊥PQ,垂足为M;再过点F 作FN ⊥PQ,垂足为N .∵ ∠BCA = 90º,QP ∥BC, ∴ ∠MPC = 90º, ∵ BM ⊥PQ, ∴ ∠BMP = 90º,∴ BCPM 是一个矩形,即∠MBC = 90º. ∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c, ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF . 从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结 BF 、CD . 过C 作CL ⊥DE,交AB 于点M,交DE 于点L . ∵ AF = AC,AB = AD,∠FAB = ∠GAD, ∴ ΔFAB ≌ ΔGAD,∵ ΔFAB 的面积等于221a,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a .同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b,斜边AB 的长为c,过点C 作CD ⊥AB,垂足是D .在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90º,∠CAD = ∠BAC, ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB, 即 AB AD AC •=2.同理可证,ΔCDB ∽ ΔACB,从而有 AB BD BC •=2. ∴ ()222AB AB DB AD BC AC =•+=+,即 222c b a =+. 【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC,AF 交GT 于F,AF 交DT 于R . 过B 作BP ⊥AF,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E,DE 交AF 于H .∵ ∠BAD = 90º,∠PAC = 90º, ∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c,∴ Rt ΔDHA ≌ Rt ΔBCA .K∴ DH = BC = a,AH = AC = b . 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b,AP= a,从而PH = b ―a .∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a,下底BP= b,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 = ab b 212-, 985S S S +=,∴824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +.∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º,∴ ∠TBH = ∠ABE .又∵ ∠BTH = ∠BEA = 90º,BT = BE = b, ∴ Rt ΔHBT ≌ Rt ΔABE .∴ HT = AE = a . ∴ GH = GT ―HT = b ―a . 又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º,∴ ∠GHF = ∠DBC.R∵ DB = EB ―ED = b ―a, ∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM,而AB = AQ = c,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM,又得QM = AE = a,∠AQM = ∠BAE . ∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE, ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c , 即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a,AC = b,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC •=2=()()BD AB BE AB -+=()()a c a c -+= 22a c -,即222a cb -=,∴ 222c b a =+.【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a,AC = b,斜边AB = c (如图). 过点A 作AD ∥CB,过点B 作BD ∥CA,则ACBD为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•, ∵ AB = DC = c,AD = BC = a, AC = BD = b,∴ 222AC BC AB +=,即 222b a c +=,∴ 222c b a =+.【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a,AC = b,斜边AB = c . 作Rt ΔABC 的内切圆⊙O,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF,BF = BD,CD = CE,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42, 又∵ AO C BO CAO B ABC S S S S ∆∆∆∆++= = brar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+.【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b,斜边AB 的长为c,过点C 作CD ⊥AB,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中,∵ ∠A = ∠A,∴ 若 AD :AC ≠AC :AB,则∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B, ∴ 若BD :BC ≠BC :AB,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a,连结DA 、DC,则 AD = c .∵ EM = EH + HM = b + a , ED = a, ∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a, ∠AED = 90º, AE = b, ∴ Rt ΔAED ≌ Rt ΔDMC . ∴ ∠EAD = ∠MDC,DC = AD = c .∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC,CB ∥DA,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º,D D∴ ∠BAF=∠DAE .连结FB,在ΔABF 和ΔADE 中,∵ AB =AD = c,AE = AF = b,∠BAF=∠DAE, ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中, ∵ AB = BC = c,BF = CG = a, ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++=2c ∴ 222c b a =+.。

勾股定理六种证明方法

勾股定理六种证明方法

勾股定理六种证明方法嘿,朋友们!今天咱来聊聊勾股定理的六种证明方法呀!先来说说第一种,拼图法。

这就好比是搭积木,把不同的图形拼在一起,嘿,奇迹就出现啦!通过巧妙地组合,就能直观地看出勾股定理的奥秘。

第二种呢,是面积法。

把图形的面积算来算去,就像在玩数字游戏,突然之间,哇哦,勾股定理就被发现啦!你说神奇不神奇?然后是赵爽弦图法。

这个方法就像是一个神奇的魔法阵,通过那些线条和图形的排列组合,一下子就把勾股定理给呈现出来了。

还有总统证法呢!连总统都来研究勾股定理啦,这多有意思呀!想象一下,总统在那苦思冥想,终于找到了证明的方法,是不是很有画面感?再有就是相似三角形法。

就好像在一群相似的小伙伴中找不同,找到那些关键的点,就能解开勾股定理的秘密啦。

最后一种是射影定理法。

这就像是一束光打在墙上,影子的变化中藏着勾股定理的答案呢。

哎呀,这六种证明方法,每一种都有它独特的魅力和乐趣呀!它们就像是打开数学宝藏的不同钥匙,每一把都能让我们看到勾股定理不一样的精彩。

你说数学是不是很神奇呢?它就像一个无边无际的宇宙,等着我们去探索,去发现那些隐藏在其中的奥秘。

通过这些证明方法,我们可以更深刻地理解勾股定理,而不仅仅是记住一个公式。

这就像是了解一个人的内心,而不只是看到他的外表一样。

当我们真正理解了勾股定理,我们就能在数学的世界里更加自由地遨游,解决各种难题,发现更多的惊喜。

所以呀,朋友们,不要害怕数学,不要觉得它很难。

只要我们用心去探索,去尝试,就一定能发现它的乐趣和美妙。

勾股定理的六种证明方法就是一个很好的例子呀,它们让我们看到,数学并不是枯燥无味的,而是充满了智慧和惊喜的呢!让我们一起在数学的海洋里畅游吧!。

勾股定理的所有证明方法

勾股定理的所有证明方法

勾股定理的所有证明方法勾股定理是数学中的一个重要定理,它描述了直角三角形的两条短边和长边之间的关系,是中学数学必学内容。

勾股定理有多种推导方法,本文将介绍其中几种比较经典的证明方法。

证明方法一:图形法在平面直角坐标系中,假设有一个直角三角形,三个顶点分别为A(0,0)、B(a,0)、C(0,b),其中AB为直角边,AC为短边,BC为长边。

根据勾股定理,有:AB²+AC²=BC²即a²+ b² = c²这一定理可以通过勾股定理图像证明。

证明方法二:代数法假设直角三角形ABC为直角三角形,角ACB为直角,线段AB为直角边,BC和AC分别为长边和短边。

假设长边为c,其中AC长度为a,BC长度为b。

那么由勾股定理得:c² = a² + b²移动式子的顺序,得a² = c² - b²然后得a = (c² - b²)¹/²同样的,b = (c² - a²)¹/²因此,假设c² = a² + b²,那么a = (c² - b²)¹/², b =(c² - a²)¹/²的证明结束。

证明方法三:相似性质法由于三角形ABC与其相似的三角形ABC’(BC=BC’)可以通过旋转,翻转或缩放在三角形平面内重叠,因此,我们可以确保AB/CB等于AB’/C’B’。

我们可以推出:AB/BC = C’B’/BC’这是三角形ABC和AC’B’C之间的相似性质。

而对于三角形ABC,根据勾股定理有:AB² + BC² = AC²在代入上述比例式之后有:AB² + BC² = AC²AB² + BC² =(C’B’*BC/BC’)² + (CB –C’B’)²(AB/BC)² + 1=C’B’² / BC’² + (1-C’B’/BC’)²(AB/BC)² + 1= C’B’² / BC’² + (BC’-C’B’)² / BC’²将BC’ =AB,BB’=BC,AC’=C’B’(AB/BC)² + 1 = AC’² / BB’² + (BB’ –AC’)² / BB’²(AB/BC)² + 1 = a² / c² + (c - a)² / c²(AB/BC)² + 1 = a² / c² + (a²) / c² - 2a / c + 1(AB/BC)² + 1= 2a² / c² - 2a / c + 2因此,就得到了AB/BC的值,将其代入勾股定理公式中,就可得到其证明方法。

勾股定理五种证明方法

勾股定理五种证明方法

勾股定理五种证明方法
1. 代数证明:假设直角三角形的两条直角边分别为a和b,斜
边为c。

根据勾股定理,我们有a^2 + b^2 = c^2。

将三条边的
长度代入该等式,进行计算验证即可证明。

2. 几何证明:通过绘制直角三角形,并利用几何原理证明。

例如,可以画一个正方形,然后在其两条相对边上各画一个相等的直角三角形,再使用平行四边形的性质可以得出a^2 + b^2
= c^2。

3. 相似三角形证明:假设两个直角三角形,已知其斜边比例为m:n,利用相似三角形的性质可以得出直角边的比例也是m:n,进而得到a^2 + b^2 = c^2。

4. 平行四边形法证明:利用平行四边形的性质,可通过画出一个具有相等对边的平行四边形来证明勾股定理。

通过平行四边形的性质可以得出a^2 + b^2 = c^2。

5. 微积分证明:利用微积分的知识可以证明勾股定理。

通过对直角三角形边长进行微分,并进行适当的运算,可以得到a^2 + b^2 = c^2。

这种证明方法比较复杂,需要较高的数学知识和
技巧。

初中勾股定理16种证明方法

初中勾股定理16种证明方法

初中勾股定理16种证明方法姓名: __________指导: ___________日期: __________【证法1】(课本的证明)勾股定理的证明a b做8个全等的贞角三角形, 设它们的两条百角边长分别为冬b,斜边I 三个边长分别为a 、b. c 的正方形,把它们像上图那样拼成两个正方形. 从图匕可以看到.这两个正方形的边长都是a + b.所以而积相等.即 / "2 + 4x —= /+4X —" , 、 、 2 2 ,整理得“""I 【证法2】(邹元治证明)以3、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三 等于2 •把这四个宜角三角形拼成如图所示形状,使八E 、B 三点在-条£ C 三点在一条直线上.C 、G 、D 三点在一条直线上. V RtAHAE 竺 RtAEBI ; ••• ZAHE = ZBEF. ••• ZADI 十 ZAIIE = 90°, ••• ZAEH 4 ZBEF = 9『・ ••• ZHEF = 180°-9(T= 90°. •••四边形EFG1I 是个边心为c 正方形. V RIAGDH ••• ZHGD = ••• ZHGD + ••• ZEIIA 十 乂 I ZGHE 二 ••• ZDHA = 它的而积等于c ・ M RIAI1AE, ZEI1A. ZGHD 二 90°, ZGIID = 90°. 9(T, 9(T + 90° 二 180\ ••• ABCD 是•个边长为a + .=4x 丄"力十 F • • 2 • 【证法3】(赵爽证明) 以。

、b 为直角边(b>a ),边作四个全等的直角三角形,则每个貢角L ab三角形的而积等于2 •把这四个自角:.角形拼成如图所示形状•・• Rt ADAH 仝Rt AABE,••• ZHDA = ZEAB.••• ZUAD + ZHAD = 90°,••• ZE AB + ZHAD = 90°,••• ABCD是f边长为c的正方形,它的而积等丁• JI EF = FG =GH =HE = b-a ,ZIIEH = 90°.・•・EFGH是•个边长为b—“的正方形,它的血枳等门力-“匚4x丄“5+(力一“尸二疋• • 2 ••••【证法4】(1876年美国总统Garfield证明)以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的而积等于2 .把这两个/iff] •:角形拼成如图所示形状.使A、卜Rt AEAD 也Rt ACBE,ZADE = ZBEC.ZAED + ZADE = 90°,ZAEI) + ZBEC = 90°.ZDEC = 180°-9Cf = 90°•A DEC是一个等腰直角三角形.丄,它的面积等于产•乂••• /DAE = 9(T, ZEBC - 90°,B [点在一条直线上.ABCD 是•个直角梯形,它的面积爭Jd"勿【证法5】(梅文鼎证明)做四个全等的rt角上角设它们的两条直角边长分别为a. b ,斜边长为c.把它们拼成如图那样的•个多边形. 点P.••• D、E.【;在-•条直线匕使D、E、F在条直线上.过C作AC的延长线交DF于ILRt AGEF 丝RtAEBD,••• ZEGF 二 NRED,I ZEGF + ZGEF = 90° , ••• ZBED + NCEF = 90° , ••• ZBEG =180°-90°= 90°.又••• AB ■ BE ••• ABEG 是 ••• ZABC 十 T RtAABC /. ZABC = ••• ZEBD + 即 ZCBD= 90°.XV ZBDE = 9(T, ZBCP = 90% BC = BD = a.••• BDPC 是•个边长为a 的正方形・ 同理,HPFG 是•个边长为b 的正方形. 设多边形GHCBE 的面积为S,则/ +力’ =S+2x 丄 “A 2c 2 =5"+ 2x 丄“力2 , 宀宀【证法6】(项明达证明)做两个金筹的直角三角形. c.再做•个边长为c 的正方形. 直线上过点Q 作QP/ZBC,交AC 于点P.过点B 作BM 丄PQ,垂足为再过点 F作FN 丄PQ,垂足为N.•/ ZBCA = 90% QP//BC,・•・ Z\1PC - 90%V BJI 丄 PQ,••• ZBMP = 90°,••• BCPM 是一个矩形,即ZHBC =I ZQBM 十 ZMBA 二 ZQBA 二 9『,ZABC + ZMBA = ZM13C = 90°, ••• ZQBM = ZABC,XV ZBMP = 9(f, ZBCA = 90°, BQ = BA = c, ••• RtABMQ 9 RtABCA.同理可证RtAQNF 丝RtAAEF.=EG = GA = c,•个边长为c 的疋方形.ZCBE = 90°. 9 RtAEBD,ZEBD. ZCBE 二 90°. 设它们的两条fi 角边长分别为“ b (b>a ) •斜边K 为把它们拼成如图所示的多边形,使E. A. C 三点在•条D 90°(从而将问题转化为【证法4】(梅文勵证明)•【证法7】(欧几里得证明)做三个边长分别为肚b. c 的正方形.把它们拼成如图所示形状,使H 、C 、B 三点 在一条直线匕连结 BE. CD.过 C作 CLIDE, 交 AB J :点 \〔,••• AF 二ZFAB ••• A EAB 9 A GAD, I A FAB 的面积等于2 ,△ GAD 的面积等于矩形ADLH的而积的一半.•••矩形ADLM 的面积同理可证,矩形MLEB 的而积二几•••止方形ADEB 的闻枳二矩形ADUI 的面积+矩形MLEB 的面积.・• C :=店",即仗七什二c\ 【证法8】(利用相似三角形性质证明)如图,/ERtAABC 中,设直角边AC 、BC 的长度分别为a 、b,斜边AB 的长为c,过 点C 作CD 丄AB,垂足是D.在AADC 和厶ACB 中,••• ZADC = ZACB = 90°,ZCAD = ZBAC,••• A ADC s A ACB.AD : AC = AC : AB,[!|J AC ^AD ・AB.同理可证,ACDB s AACB,从而有BC ・BD •人B.g * BC^1 -(AD ♦ ・4B ・4圧.即/十夕二丁.【证法9】(杨作玫证明) '做两个全等的宜角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c. 再做•个边长为c 的正方形・把它们拼成如图所示的多边形.过A 作AF 丄AC, AF 交GT FF, AF 交DT 于R.过B 作BP 丄AH 垂足为P.过I )作DE 与CB 的延长线垂直,韭足为 氏 DE 交 AF fll.AC, AB 二 AIX =ZGAD, M BED••• ZBAl) = 9(T , ZPAC = 90°, ••• ZDAll ZBAG9(T.又I ZDHAAD = AB••• RtADHA 9 RtABCA.••• DH = BC = a, AH = AC = b.由作法可知• PBCA是•个矩形,所以Rt AAPB 竺RtABCA 即PB =CA = b, AP= a,从而PH = b—a.••• Rt ADGT < RtABCA ,RtADHA 竺RtABCA.:• Rt ADGT 竺RtADHA •••• DH = DG = a, ZGDT = ZHDA •又丁ZDGT = 9(T, ZDHF = 90°.ZGDH = ZGDT + ZTDH = ZHDA+ ZTDII = 9(T,••• DGEII是一个边长为a的止方形.•I(;F = HI = a• TF±AF・ Tl; = GT-GF = h-a .••• TPPB 是•个直角梯形,上底TF=b-a, F底BP= b, ?^5FP=a + (b-a)• 用数字农示而积的编号(如图).则以c为边长的正方形的面积为• • d" _扣十(力-“)卜二护_*=力 2 ■丄“力■ £ A? C C ~/. 1 2 J b -S\-S、.②把②代入①.得=力• + £ + 5;=沪 + /.【证法10】(李鋭证明)设苴角三角形两直角边的长分别为a、b (b>a),斜边的长为c•做・:个边长分别为a.b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上•用数字表示面积的编号(如图).V ZTBE = ZABII = 90° >••• ZTBH = ZABEe乂I ZBTH = ZBEA = 90\ BT - BE =b,/. RtAHBT 9 RtAABE.A 1IT = AE = a.••• GH = GT-HT = b-a.XV ZGHF + ZBirr = 90°, ZDBC +ZBirr = zrBH +••• ZGIIF = ZDBC ・I DB = EB-ED = b-a,NHGF = ZBDC = 90°,••• RtAHGE 竺RtABDC.即禺讥过Q 作QM1AG,垂足是M.由ZBAQ - ZBEA - 90°,可知ZABE =ZQAM,而八B = AQ = c,所以Rt AABE 竺RtAQAM • 乂RtAHBT 竺RtAABE.所以RtAHBT 3 RtAQAM.即III Rt A ABE 丝RtAQAM,又得QM = AE = a. ZAQM 二ZBALT ZAQM + ZEQM = 90°, ZBAE + ZCAR = 90\ ZAQM = ZBAE, ••• ZEQM = ZCAR.又••• ZQME = ZARC = 9(T , QM = AR = a,A RtAQMF 竺RtAARC.即•• w = 5^ + £ + 4人 + 6 + 送"'=$+£ 斤=s、* s. * s*又・.•刀•+ 力’=£ + £ + £ + ・久+ £二£ + £ + 5 + 二 4V,即夕+力'* •【证法11](利用切割线定理证明)d:RlAABC«|^设血和边BC = a, AC = b,斜边AB = c.如图,以B为阴I心s为半径作圆,交AB及AB的延长线分别FD、E,则BD = BE二BC = a.因为ZBCA = 90°, 点C在OB h,所以AC是OB的切线.由切割线定理.得AC = AE・AD/ERtAABC中.设直角边BC = a, AC = b,斜边AB二c (如图).过点A作AD〃CB 过点B作BD〃CA・贝ij ACBD为矩形,矩形ACBD内接于-个隊根期多列米定理,鬪内按四边形对处线的乘积等于两对边乘积Z和,有DC = BO AC^ BD ,••• AB = DC = c, AD = BC 二a.AC = BD = b-/.击=ffc 1 +必,即K =宀几 ••• W".【证法13】(作直角三角形的内切圆证明)在 RtAABC 中,设直角边 BC = a, AC = b,斜边 AB = c.作 RtAABC 的内 VJMOO. 切点分别为D 、E 、F (如图人设G«0的半径为r.T AE = AF, BF = BD, CD = CE,••• AC^ RC - AB =( //£+ 8 + (加 + 8 - (B 叭二 CE* CD 二 r + r = 2r,-(2r+r+r )r 、 =2 =/・・+“,:.4(X +“) = 45;%彳尸+胡=2“力/ + 力'+ 2“力=2a/> + c 2 9 /. / + 力‘ =c :.【证法14】(利用反证法证明) ^如图,在Rt AABC 中.设直角边AC 、BC 的长度分别为a. b,斜边AB 的肉为c,过 点C 作CD 丄AB,垂足是D.假设“ 即假设,心+必则由ABr = AB 二個BD\二 A/i .川)-AB ・ 8D可知 Ae^AB^AD.或者 BC ,丰 AB ・BD.即 AD : ACHAC : AB,或者 BD : BCHBC : AB.AAI)C 和 AACR 中.V ZA = ZA,・••若 AD : ACMAC : AB,则 ZADCHZACB.ACDB 和厶 ACB 中,I ZB = ZB,•••若 BD : BCHBC : AB,则ZCDB^ZACB. =S WB + \£(H + SEl|j “十力一°=2/・,/. c 、化 s +力):=(2/・w)[即 </:4•力'* 2"力一 4|r'4 /r| +/ Mb = AS 、叫乂 ••• ZACB = 90P,••• ZADC^90°, ZCDB^90°.这9作法CI )丄冊孑盾•所以,(广+力工力的假设不能成'匕:.MM".【证法⑸(辛卜松证明)设直角三角形两直角边的长分别为a.b,斜边的长为c •作边长是a+b 的正方形ABCD. 把正方形ABCD 划分成L :方左图所示的儿个部分,则止方形ABCD 的面枳为 (“+砺=/+,+ 2巾:把|F 方形ABCD 划分成I ••方右图所示的儿个部分,则iF •方形ABCD 的 而积为 ■ • •(“ +丹=4x ・“力+ " 〉2 =2“ +几a' + fy + 2" = 2〃力+ e, b 的正方形(b>a),把它们拼成如图所示形状, 示而积的编号(如图〉•在EH = b 上截取ED = a,连结DA 、DC, 则 AD = c. EM = EH + HM = b + a ,ED = a EM-ED - “+")-a - b. A 9CT, CM = a, 9Cf , AE - b, 幻 RtADMC. ZNDC, DC - AD - c ・ E ZADC+ ZMI)C =18(T , ZNDC = ZADE + ZEAD = 9(T , 9(T. •••作AB 〃DC, CB 〃DA,则ABCD 是一个边长为c 的正方形. ab*ab【证法16】(陈杰证明)设颠三角形两奁角边的长分别为a. b (b>a ),斜边的长为c.做两个边长分别为a. H> M 0点在•条直线上•用数字农 ••• DMXV ZCMD = ZAED = ••• RtAAED ••• ZE AD - ••• ZADE + ZADE + ••• ZAI)C = 使E. b b••• ZBAF + ZFAD 二ZDAE + ZFAD 二90°, ・•• ZBAF二ZDAE.连结FB,在A ABF和△ ADE中,••• AB =AD = c, AE = AF = b, ZBAF二ZDAE, ••• A ABF 9 A ADE.・•• ZAFB 二ZAED 二90°, BE = DE = a.•・・点B、F、G、H在一条直线上•在Rt AABF 和RtABCG 中,••• AB = BC = c, BF 二CG 二a,Rt AABF 竺Rt A BCG.•・R = &十£十G十送夕=①十$十送CT § = $5 = Si = $6 + $7 ,•4~+〃~=送+$7+,|+&+/二另+尻+ £ +(/ +另)_ Sc + Sy + £ + £。

十种方法证明勾股定理

十种方法证明勾股定理

十种方法证明勾股定理勾股定理是中学数学中最基本的定理之一,解决了数学中的许多问题。

它是一个既基础且实用的定理,有许多方法可以证明它,下面介绍十种方法:1.欧拉定理证明法:构造出一个直角三角形,把它的两条直角边对应的两个正方形放在直角三角形外面,另一条边对应的正方形放在直角三角形内部,再利用欧拉定理计算出三个正方形的面积,可以证明勾股定理。

2.代数证明法:利用代数的平方公式,把直角三角形的两条直角边平方相加,再把斜边平方,然后再将两者相减,得到一个等式,即可证明勾股定理。

3.数学归纳法证明:用数学归纳法证明勾股定理,证明当n为正整数时,定理成立。

4.相似三角形证明法:构造出相似的三角形,利用相似三角形的性质,可以推导出勾股定理。

5.向量证明法:用向量的几何意义证明勾股定理,首先利用向量的长度和夹角的公式计算出向量的长度和夹角,再利用向量的点积公式计算出勾股定理中的各个变量,最后推导出勾股定理。

6.割圆术证明法:利用割圆术将直角三角形对角线作为半径画圆,利用圆上弧角定理,可以得到勾股定理。

7.平面几何证明法:用平面几何证明勾股定理,利用平面几何图形的形状和大小关系,推导出勾股定理。

8.解析几何证明法:用解析几何证明勾股定理,利用平面直角坐标系,将三角形的三个点用坐标表示出来,推导出勾股定理。

9.三角函数证明法:用三角函数证明勾股定理,利用三角函数的性质,将三角形分离出直角三角形和非直角三角形,再用三角函数计算出各个变量,推导出勾股定理。

10.古希腊证明法:古希腊人对勾股定理有自己的证明方法,即利用几何图形的形状和大小,通过构造几何图形推导出勾股定理。

这些证明方法都可以证明勾股定理的正确性,它们有不同的适用范围和难度级别,可以根据自己的水平和兴趣选择合适的证明方法。

勾股定理十种证明

勾股定理十种证明

勾股定理十种证明勾股定理,即建立在三角形中的根号三,是一个被越来越多的人所熟知的数学定理,它表明了任何一个正三角形的斜边的平方加上邻边的平方等于对角线的平方。

此定理也经常被用来解决三角形的面积,甚至有益于解决复杂的数学问题。

这里,我们会介绍十种有关勾股定理的证明,让大家可以更好地理解这个定理:第一种:边角平方法。

此法将三角形的斜边和邻边分别平方,并将它们相加,得出的结果也是对角线的平方。

第二种:相似三角形法。

这个方法建立在相似三角形的概念基础上,根据同比例的相似,将斜边和邻边分别乘以相应的比值,即可得出对角线平方的结果。

第三种:重心三角形法。

按照重心三角形的性质,将三角形的斜边和邻边分别乘以对应的比值,将它们相加,就可以得到对角线的平方。

第四种:字母替换法。

这种方法利用三角形的相关性,将斜边和邻边分别替换成字母a,b和c,然后将a的平方加上b的平方和c的平方替换回原来的数字,就可以得到对角线的平方。

第五种:四边形证明法。

这种方法是基于将一个正三角形分解成四个相等的小三角形,并且每个小三角形都满足勾股定理的要求。

第六种:变形法。

这种方法是基于将正三角形变形成其他图形,例如正方形、矩形或梯形,然后将斜边和邻边拆分成几部分,并将这些部分分别平方,加和,就可以得到对角线的平方。

第七种:勾股余弦定理法。

这种方法是基于勾股余弦定理,其基本思想是将三角形的夹角和边长之间的关系作出表达,然后将斜边和邻边分别平方,加和,就可以得到对角线的平方。

第八种:勾股坐标表达法。

这种方法是基于以坐标表示法表达勾股定理,其中将斜边、邻边和对角线分别表示成坐标形式,然后将坐标形式的斜边和邻边分别平方,加和,就可以得到对角线的平方。

第九种:向量表示法。

根据向量的性质,将三角形的斜边和邻边分别表示成向量形式,然后根据公式,将其分别平方后相加,就可以得到对角线的平方。

第十种:贝塞尔准则法。

根据贝塞尔准则,将三角形的斜边和邻边分别乘以各自的比例,将乘积相加,就可以得到对角线的平方。

勾股定理20种证明方法

勾股定理20种证明方法

勾股定理20种证明方法1. 最常见的勾股定理证明是基于三角形面积公式的。

利用三角形的底边与高的关系,可以将直角三角形分成两个三角形,然后应用面积公式进行计算得出勾股定理。

2. 通过向直角三角形内部引入一个圆形,利用圆的性质可以得到勾股定理。

3. 将直角三角形中的一条直角边平移到非直角边上,形成一个平行四边形,再利用平行四边形对角线的关系即可得到勾股定理。

4. 利用正弦定理和余弦定理进行推导,可以得出勾股定理。

5. 通过三角形内部的相似三角形进行推导得出勾股定理。

将直角三角形分成两个相似三角形,利用相似三角形的性质进行推导得出勾股定理。

6. 通过归纳法进行证明,即证明勾股定理对于所有自然数n都成立。

7. 利用勾股定理推导其他几何定理,例如正弦定理、余弦定理等,进而证明勾股定理。

8. 利用数学归纳法,可证勾股定理对于所有正整数n都成立。

9. 利用勾股定理证明勾股三角形的存在性,也就是存在一组自然数a、b、c,使得a²+b²=c²。

这可以通过暴力算法或递推算法来实现。

10. 利用反证法证明勾股定理。

假设勾股定理不成立,即假设存在一个直角三角形,其两条直角边的平方和不等于斜边的平方。

通过假设的前提,推导出矛盾的结论,从而证明勾股定理成立。

11. 利用勾股定理证明三角形的周长和面积公式。

将直角三角形分成两个直角三角形,利用勾股定理计算出直角边的长度,然后应用周长和面积公式。

12. 利用勾股定理证明三角形的内心与垂心之间的关系。

将直角三角形分成两个相似三角形,利用勾股定理计算出内心与垂心之间的距离。

13. 利用勾股定理证明三角形的外心与垂心之间的关系。

通过三角形的外接圆,证明外心与垂心之间的距离等于直角边之间距离的一半。

14. 利用圆的性质证明勾股定理。

将三角形中的一条直角边作为直径,表示成圆上的弦长,利用圆的定理得到勾股定理。

15. 通过三角形的相似性质,证明勾股定理。

将直角三角形分成两个与之相似的三角形,利用相似三角形的性质得到勾股定理。

勾股定理的7种证明方法

勾股定理的7种证明方法

勾股定理的7种证明方法
嘿,咱今儿就来唠唠这勾股定理的 7 种证明方法呀!你说这勾股定理,那可真是数学里的大宝贝呀!就好像是一把神奇的钥匙,能打开好多数学难题的大门呢!
先来说说第一种证明方法吧,就像是搭积木一样,把一些图形巧妙地组合在一起,然后“哇”,勾股定理就出现啦!是不是很神奇?
第二种呢,就好比是走迷宫,沿着特定的路径一走,嘿,就找到了勾股定理的真相。

第三种方法呀,像是在玩拼图游戏,把不同的部分拼到一起,勾股定理就明明白白地展现在眼前啦。

第四种证明,那感觉就像是一场奇妙的魔术表演,变着变着,勾股定理就神奇地被证明出来了。

第五种呢,如同在解一道复杂的谜题,一步一步地推理,最后恍然大悟,哦,原来这就是勾股定理呀!
第六种方法,就好像是挖掘宝藏,一点点地挖掘,最后找到了勾股定理这个大宝藏。

第七种呀,类似在编织一张美丽的网,把各种线索交织在一起,勾股定理就稳稳地呈现在那里啦。

你想想看,这七种证明方法,不就像是七把不同的钥匙,都能打开
勾股定理这扇神秘的大门嘛!每种方法都有它独特的魅力和趣味,让
人在探索的过程中感受到数学的奇妙和乐趣。

这可不是一般的厉害呀!难道你不想去好好研究研究这七种证明方法,亲自去体验一下那种解
开谜题的快乐吗?别犹豫啦,赶紧行动起来吧,去和勾股定理来一场
奇妙的邂逅吧!。

勾股定理四个证明方法

勾股定理四个证明方法

勾股定理四个证明方法嘿,咱今天来聊聊勾股定理的四个证明方法呀!你可别小瞧这勾股定理,它可是数学世界里的一颗璀璨明星呢!先来说说第一种证明方法,那就是拼图法。

想象一下,把几个图形像拼积木一样拼来拼去,突然之间,勾股定理就神奇地出现在你眼前啦!就好像变魔术一样,通过巧妙地组合这些图形,就能证明出直角三角形两条直角边的平方和等于斜边的平方。

你说这是不是很有意思呀?第二种方法呢,是面积法。

哎呀,这就像是给三角形的各个部分划分“地盘”,通过比较不同部分的面积,就能得出勾股定理啦。

是不是感觉很奇妙?就好像在一个大舞台上,不同的区域有着不同的角色,而它们共同演绎出了勾股定理这场精彩的“大戏”。

还有一种证明方法,叫射影定理法。

这就好像是光线照射下来,在不同的地方投下影子,通过这些影子的关系,就能找到勾股定理的秘密啦。

是不是很像在玩一个有趣的光影游戏呀?最后一种呢,是赵爽弦图法。

这可是咱老祖宗留下来的智慧结晶呀!那精美的图案,就像是一幅艺术品,而在这美丽的外表下,隐藏着勾股定理的真理。

看到它,你难道不会惊叹于古人的智慧吗?你想想看,这勾股定理多重要啊,生活中好多地方都能用到它呢!建筑工人盖房子得用它来保证房子的稳固吧?工程师设计桥梁也得靠它吧?就连我们平时玩个折纸游戏,说不定都能和勾股定理沾上点边呢!勾股定理的这四个证明方法,各有各的奇妙之处,各有各的独特魅力。

它们就像是打开数学宝藏的四把钥匙,让我们能更深入地了解数学的奥秘。

咱可得好好记住它们呀,说不定哪天就能派上大用场呢!总之啊,勾股定理和它的证明方法,那可是数学领域里不可多得的宝贝,咱可得好好珍惜,好好研究,让它们为我们的生活和学习增添更多的乐趣和智慧!你说是不是这个理儿呢?。

勾股定理500种证明方法

勾股定理500种证明方法

勾股定理500种证明方法
勾股定理,即边长为a、b、c的直角三角形满足a^2+b^2=c^2,是几何学中最为重要的定理之一、据说已经有超过500种不同的证明方法。

下面简要介绍其中的一些方法:
1.几何法:通过构造直角三角形,利用图形的性质来证明勾股定理。

例如,将正方形分为两个直角三角形,利用正方形边长的关系得到证明。

2.代数法:通过代数运算来证明勾股定理。

例如,设直角三角形的两条直角边分别为a和b,斜边为c,通过代数运算推导得到a^2+b^2=c^2
3.统计法:通过大量的实例来验证勾股定理。

例如,构造多个直角三角形,随机选择边长,计算并统计结果,验证a^2+b^2=c^2
4.数学归纳法:首先证明直角边长度为1和2的直角三角形满足勾股定理,然后利用数学归纳法证明任意长度的直角三角形都满足勾股定理。

5.微积分法:通过对直角三角形的边长关系进行微分或积分运算,推导出勾股定理。

6.反证法:假设存在一个三角形,满足a^2+b^2=c^2不成立,进而推出矛盾,以此证明勾股定理。

7.证明固定直角三角形的勾股定理,然后通过旋转、平移等变换,得到任意直角三角形的勾股定理。

8.二次函数法:将直角三角形的边长平方表示为二次函数,并证明该函数的图像与勾股定理相符。

9.数列法:通过构造特定的数列,利用数列的性质证明勾股定理。

上述只是列举了部分勾股定理的证明方法,实际上还有许多其他的方法。

不同的证明方法体现了数学的多样性和灵活性。

通过多种证明方法的探索和研究,我们可以更加深入地理解和应用勾股定理。

勾股定理的500种证明方法

勾股定理的500种证明方法

勾股定理的500种证明方法1.几何推导:这是最著名的证明方法。

它通过将直角三角形切割、旋转、重新拼合,利用几何图形的性质,推导出勾股定理。

2. 代数证明:假设直角三角形的两条直角边长度分别为a和b,斜边长度为c。

则根据勾股定理,我们有c² = a² + b²。

我们可以将这个等式写成(a + b)² = c² + 2ab。

将c² = a² + b²代入,得到(a + b)² = a² + b² + 2ab。

再进一步化简,得到a² + 2ab + b² = a² + b² +2ab。

最后,化简为a² + b² = a² + b²。

我们可以发现,等式两边完全相等,从而验证了勾股定理。

3.数学归纳法证明:我们首先证明直角三角形边长为3,4,5时,满足勾股定理。

然后,假设对于边长小于n的所有直角三角形,都满足勾股定理。

接下来,我们考虑直角三角形边长为n的情况。

我们可以将这个三角形切割成由三个直角子三角形组成的形状。

根据归纳假设,这三个子三角形满足勾股定理。

我们可以对这些子三角形应用基本的代数运算和性质,进一步证明整个直角三角形也满足勾股定理。

4.平行四边形法证明:将一个直角三角形内切于正方形中,然后根据正方形的性质和等式关系,利用平行四边形的性质推导出勾股定理。

5.反证法证明:假设存在一个直角三角形,它的三条边无法满足勾股定理。

然后,通过对无法满足定理的条件进行分析,得出矛盾,从而证明了勾股定理的正确性。

6.数学几何方法:通过利用数学几何的原理和定理,如相似三角形、垂直直角等,推导出勾股定理的等式。

7.三角函数法证明:将三角函数引入到勾股定理的等式中,然后根据三角函数的性质,推导出等式成立。

以上仅为部分常见的证明勾股定理的方法,实际上有无数种证明方法可供选择。

勾股定理五种证明方法

勾股定理五种证明方法

勾股定理五种证明方法1. 几何证明法勾股定理是数学中的基本定理之一,用于描述直角三角形的边长关系。

根据勾股定理,直角三角形的斜边的平方等于两个直角边的平方和。

几何证明法是最直观的证明方法之一。

我们可以通过绘制一个正方形来证明勾股定理。

假设直角三角形的两个直角边分别为a和b,斜边为c。

我们可以将这个三角形绘制在一个边长为a+b的正方形内。

将正方形分成四个小正方形,其中三个小正方形的边长分别为a,b和c。

通过计算小正方形的面积,我们可以得出结论:c^2 = a^2 + b^2。

2. 代数证明法代数证明法是另一种常用的证明勾股定理的方法。

这种方法使用代数运算和方程的性质来证明定理。

假设直角三角形的两个直角边分别为a和b,斜边为c。

我们可以通过使用平方的性质来证明勾股定理。

根据勾股定理,我们有:c^2 = a^2 + b^2。

我们可以将c^2展开为(a + b)2,即:c2 = (a + b)^2 = a^2 + 2ab + b^2。

通过对比等式两边的表达式,我们可以得出结论:2ab = 0。

由于直角三角形的边长必须为正数,因此我们可以得出结论:ab = 0。

这意味着a或b至少有一个为0。

如果a为0,那么直角三角形就变成了一个直角边长为b的直角三角形,此时勾股定理显然成立。

同样地,如果b为0,那么直角三角形就变成了一个直角边长为a的直角三角形,此时勾股定理也成立。

综上所述,勾股定理成立。

3. 数学归纳法证明数学归纳法是一种常用的证明数学命题的方法,它通常用于证明自然数的性质。

虽然勾股定理是针对直角三角形的,但我们可以通过数学归纳法证明勾股定理对于所有正整数的直角三角形都成立。

首先,我们证明当直角三角形的直角边长度为1时,勾股定理成立。

这是显而易见的,因为直角三角形的斜边长度必然大于1,所以直角边长度为1的直角三角形一定满足勾股定理。

然后,我们假设当直角三角形的直角边长度为k时,勾股定理成立。

即假设a^2 + b^2 = c^2,其中a和b分别为直角三角形的直角边,c为斜边。

勾股定理的三种不同证明方法

勾股定理的三种不同证明方法

勾股定理的三种不同证明方法勾股定理是数学中的一个基本定理,它揭示了直角三角形三边之间的关系。

勾股定理的三种不同证明方法分别如下:方法一:几何证明法几何证明法是通过构造直角三角形,利用几何性质证明勾股定理的方法。

具体步骤如下:1.构造一个直角三角形ABC,其中角C为直角,AC和BC为直角边,AB为斜边。

2.在直角三角形ABC外部构造一个正方形ABDE,使得AB为正方形的一边,E为正方形的顶点,D为正方形上一点,且DC与AB平行。

3.连接CE,将正方形ABDE分成两个等腰直角三角形ACE和BCE。

4.根据等腰直角三角形的性质,可知AE=CE=BC,DE=BE=AC。

5.根据正方形的性质,可知AB=AE+BE。

6.根据勾股定理的定义,可知AB^2=AC^2+BC^2。

7.将上述等式代入步骤5中得到的等式,可得(AE+BE)^2=AE^2+BE^2。

8.展开并化简上述等式,可得2AE*BE=0。

9.由于AE和BE均为正数,因此上述等式只有在AE=BE时才成立,即只有在AC=BC时才成立。

因此,我们证明了在直角三角形中,斜边的平方等于两直角边的平方和。

方法二:代数证明法代数证明法是通过代数运算证明勾股定理的方法。

具体步骤如下:1.设直角三角形的直角边为a和b,斜边为c。

2.根据勾股定理的定义,可得c^2=a^2+b^2。

3.将上述等式移项,可得c^2-a^2=b^2。

4.分解因式,可得(c-a)(c+a)=b^2。

5.由于c>a,因此c-a>0。

同时,由于b>0,因此b^2>0。

因此,上述等式只有在c+a>0时才成立。

6.由于c>a和c>b,因此c+a>a+b。

同时,由于a>0和b>0,因此a+b>0。

因此,上述等式只有在c+a>a+b时才成立。

7.将上述不等式移项并化简,可得c>b。

8.由于我们已经知道c>a和c>b,因此c是直角三角形的最长边,即斜边。

勾股定理的证明方法十种过程

勾股定理的证明方法十种过程

勾股定理的证明方法十种过程全文共四篇示例,供读者参考第一篇示例:勾股定理,又称毕达哥拉斯定理,是几何学中最基础的定理之一。

它表明在直角三角形中,直角的两边的平方和等于斜边的平方。

勾股定理的证明方法有很多种,下面我将介绍十种常用的证明过程。

一、几何证明法1. 利用相似三角形的性质,构造辅助线,将直角三角形分割成两个直角三角形,再利用勾股定理的定义证明斜边的平方等于直角两边的平方和。

2. 利用平行线的性质,构造辅助线,形成四边形,再利用四边形的性质推导出勾股定理。

二、代数证明法1. 利用代数方法将直角三角形的三边长度表示成a,b,c,利用勾股定理的定义列出等式a^2 + b^2 = c^2,再进行变形推导得到结论。

2. 利用向量法,将三角形的三个顶点表示成二维向量,用向量的性质证明直角三角形满足勾股定理。

三、三角函数证明法1. 利用正弦、余弦、正切等三角函数的关系,将直角三角形的三条边长和角度联系起来,通过三角函数的计算推导出勾股定理。

2. 利用三角函数的定义,将角度和边长关系转换成三角函数的等式,再通过化简和运算得到勾股定理。

五、解析几何证明法1. 利用直角三角形在坐标平面上的表示,用坐标的差和平方和表达斜边和直角两边之间的关系,进行运算保证两边相等。

2. 利用解析几何的方法,利用两直线间的距离公式和直线的斜率关系,推导出勾股定理成立的条件。

七、数学归纳法证明法1. 从一个特殊的直角三角形出发,比如3-4-5直角三角形,验证勾股定理成立。

然后假设勾股定理对于n=1的情况成立,推导出n=k+1的情况也成立,利用数学归纳法证明定理的普遍性。

2. 从勾股数列的性质入手,证明勾股定理的普遍性。

十、几何变换证明法1. 利用几何变换,比如平移、旋转等,将直角三角形变换成其他几何形状,再通过形状不变性证明勾股定理。

2. 利用相似性和对称性的变换,将直角三角形转化成其他几何形状,结合几何形状的性质证明勾股定理的成立。

勾股定理的十六种证明方法

勾股定理的十六种证明方法

勾股定理的十六种证明方法
1.几何法:构造一个直角三角形,利用勾股定理求出斜边长。

2. 代数法:将直角三角形三边的长度带入勾股定理的公式中,证明等式成立。

3. 数学归纳法:证明当斜边长为n时,勾股定理成立,再证明当斜边长为n+1时,勾股定理仍然成立。

4. 三角函数法:利用正弦、余弦、正切等三角函数的定义,证明勾股定理。

5. 相似三角形法:利用相似三角形的性质,证明勾股定理。

6. 矩形法:将一个直角三角形内切于一矩形中,从而证明勾股定理。

7. 差积公式法:利用差积公式(a+b)(a-b)=a-b,证明勾股定理。

8. 面积法:利用直角三角形的两条直角边构成一个矩形,证明勾股定理。

9. 旋转法:将一个直角三角形绕其斜边旋转,证明勾股定理。

10. 图像法:将勾股定理表示为x+y=z的图像,证明勾股定理。

11. 平行四边形法:将直角三角形内切于一个平行四边形中,从而证明勾股定理。

12. 三角形面积法:利用直角三角形的面积公式1/2ab,证明勾股定理。

13. 坐标法:将直角三角形的三个顶点的坐标表示出来,利用距离公式证明勾股定理。

14. 行列式法:利用行列式公式证明勾股定理。

15. 夹角法:通过两向量的夹角关系推导出勾股定理。

16. 对数法:利用对数函数的性质,证明勾股定理。

勾股定理500种证明方法

勾股定理500种证明方法

勾股定理500种证明方法
勾股定理,又称毕达哥拉斯定理,是数学几何中最著名的定理之一、它表明,在一个直角三角形中,直角边的平方之和等于斜边的平方,即$a^2+b^2=c^2$。

据说有许多不同的证明方法,至少有500种不同的证明方法。

下面将简单介绍几种常见的证明方法:
1.欧几里得的证明:这是最早的证明方法之一,通过构造相似三角形和利用平行线的性质,证明三角形的内角和为180度。

由此可以得到
$a^2+b^2=c^2$。

2.利用面积的证明:可以将直角三角形划分成两个直角三角形,然后利用面积的性质证明等式的成立。

3.利用复数的证明:可以利用复数的平方模等于平方和的性质,将直角三角形的顶点表示为复数,然后利用复数运算的性质进行计算,最终得到$a^2+b^2=c^2$。

4.利用向量的证明:将三边向量化,将向量的长度平方与向量的点积进行计算,最终得到$a^2+b^2=c^2$。

5.利用相似三角形的证明:通过构造相似的三角形,可以通过比较对应边长的比例关系,推导出$a^2+b^2=c^2$。

这只是其中几种比较常见的证明方法,实际上还有很多其他的证明方法,包括利用解析几何、三角函数、几何画法等等。

每一种证明方法都有自己的特点和逻辑,通过研究和理解这些不同的证明方法,可以更好地理解勾股定理的本质和几何背后的原理。

勾股定理20种证明方法

勾股定理20种证明方法

勾股定理20种证明方法勾股定理是中国古代数学中的一个重要定理,也被称为勾股三角形定理,它是指直角三角形中,直角边的平方等于两直角边的平方和。

勾股定理的发现和证明有很多方法,下面我们来看看20种不同的证明方法。

1. 几何方法:这是最常见的证明方法,可以通过绘制直角三角形,然后运用几何知识来证明。

2. 代数方法:可以通过代数运算来证明,将直角三角形的三边长度表示为变量,然后通过代数运算得出结论。

3. 物理方法:可以利用物理学知识,比如平面几何法,来证明勾股定理。

4. 数学归纳法:可以运用数学归纳法来证明勾股定理,将直角三角形的边长依次递增,然后证明其中一个等式成立,推导出其他情况。

5. 解析几何法:可以通过解析几何的方法,利用坐标系和直线方程来证明勾股定理。

6. 函数法:可以通过函数图像和函数性质来证明勾股定理。

7. 同余定理方法:可以通过同余定理来证明勾股定理。

8. 三角函数方法:可以运用三角函数的性质和公式来证明勾股定理。

9. 相似三角形方法:可以通过相似三角形的性质来证明勾股定理。

10. 斜率方法:可以运用直线的斜率来证明勾股定理。

11. 反证法:可以通过反证法来证明勾股定理,假设直角三角形的三边不符合勾股定理,然后推导出矛盾。

12. 三角形面积法:可以通过计算直角三角形的面积来证明勾股定理。

13. 欧拉定理法:可以通过欧拉定理来证明勾股定理。

14. 空间几何法:可以将直角三角形的顶点放置在空间中,运用空间几何知识来证明勾股定理。

15. 弦与切线相交定理:可以利用弦与切线相交的性质来证明勾股定理。

16. 数列方法:可以通过构造数列,运用数列的性质来证明勾股定理。

17. 微积分方法:可以通过微积分的知识来证明勾股定理。

18. 统计方法:可以通过统计实验来证明勾股定理,比如通过大量的直角三角形数据验证勾股定理成立。

19. 推广方法:可以通过勾股定理的推广形式来证明勾股定理,比如勾股定理的逆定理。

20. 全等三角形法:可以通过全等三角形的性质来证明勾股定理。

勾股定理16种证明途径

勾股定理16种证明途径

勾股定理16种证明途径勾股定理是数学中一条重要的几何定理,它指出在直角三角形中,直角边的平方和等于斜边的平方。

本文将介绍勾股定理的16种证明途径。

1. 几何证明通过构造几何图形,利用平行线、相似三角形等几何性质来证明勾股定理。

2. 代数证明通过代数运算和方程的求解,将勾股定理转化为数学问题并证明。

3. 向量证明利用向量运算和向量的性质来证明勾股定理成立。

4. 科学计算证明利用计算机科学的方法,通过数值计算和模拟实验来论证勾股定理的正确性。

5. 几何相似证明通过几何相似的定义及相关性质,推导出勾股定理。

6. 枚举证明通过穷举直角三角形的边长组合,证明勾股定理在所有情况下都成立。

7. 数学归纳法证明通过归纳论证,证明勾股定理在特定情况下成立后,再扩展到所有情况。

8. 黎曼积分证明通过计算勾股定理中的三角函数的积分,证明定理的正确性。

9. 复数证明利用复数的性质和运算,推导出勾股定理成立。

10. 微积分证明通过对直角三角形某一边长的导数和其他边长的关系进行求导证明。

11. 数学逻辑证明通过数学逻辑推理,推导出勾股定理的正确性。

12. 平行四边形证明通过利用平行四边形的性质,将勾股定理转化为平行四边形的关系来证明。

13. 矩阵证明利用矩阵的乘法和特性,将勾股定理转化为矩阵运算的问题来证明。

14. 动态几何证明通过动态几何软件进行几何运算和构造,反复演示直角三角形的变化来证明定理。

15. 平面拓扑证明通过平面拓扑的理论,引入拓扑性质讨论直角三角形构造和斜边的关系。

16. 微分几何证明通过微分几何的定理和公式,推导出勾股定理的正确性。

以上是勾股定理的16种证明途径,每种途径都有其独特的证明思路和方法。

通过了解不同的证明方式,可以更好地理解和应用勾股定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学:勾股定理的多种证明勾股定理的证明方法1做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的形,把它们像上图那样拼成两个形.从图上可以看到,这两个形的边长都是a + b,所以面积相等. 即a的平方加b 的平方,加4乘以二分之一ab等于c的平方,加4乘以二分之一ab,整理得a的平方加b的平方等于c的平方。

勾股定理的证明方法2以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于二分之一ab.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.∵ RtΔHAE ≌ RtΔEBF,∴ ∠AHE = ∠BEF.∵ ∠AEH + ∠AHE = 90º,∴ ∠AEH + ∠BEF = 90º.∴ ∠HEF = 180º―90º= 90º.∴四边形EFGH是一个边长为c的形. 它的面积等于c2.∵ RtΔGDH ≌ RtΔHAE,∴ ∠HGD = ∠EHA.∵ ∠HGD + ∠GHD = 90º,∴ ∠EHA + ∠GHD = 90º.又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD是一个边长为a + b的形,它的面积等于a+b的平方。

∴a加b的平方等于4乘二分之一ab,加上c的平方。

.∴a的平方加b的平方等于c的平方。

勾股定理的证明方法3以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于二分之一ab。

把这四个直角三角形拼成如图所示形状。

∵ RtΔDAH ≌ RtΔABE,∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º,∴ ABCD是一个边长为c的形,它的面积等于c2.∵ EF = FG =GH =HE = b―a ,∠HEF = 90º.∴ EFGH是一个边长为b―a的形,它的面积等于b减a的平方。

∴ 4乘二分之一ab加上,b减a的平方等于c的平方。

∴ a^2+b^2=c^2(说明a^2为a的平方)。

勾股定理的证明方法4以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于二分之一ab。

把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于二分之一c^2.又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD∥BC.∴ ABCD是一个直角梯形,它的面积等于1/2(a+b)^2.∴1/2(a+b)^2=2x1/2ab+1/2c^2. .∴a^2+b^2=c^2.勾股定理的证明方法5做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD,∴ ∠EGF = ∠BED,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º.又∵ AB = BE = EG = GA = c,∴ ABEG是一个边长为c的形.∴ ∠ABC + ∠CBE = 90º.∵ RtΔABC ≌ RtΔEBD,∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90º.即∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a.∴ BDPC是一个边长为a的形.同理,HPFG是一个边长为b的形.设多边形GHCBE的面积为S,则a^2+b^2=S+2 x 1/2xabc^2=S+2x1/2 x ab∴ a^2+b^2=c^2.勾股定理的证明方法6做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的形. 把它们拼成如图所示的多边形,使E、A、C 三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵ ∠BCA = 90º,QP∥BC,∴∠MPC = 90º,∵ BM⊥PQ,∴ ∠BMP = 90º,∴ BCPM是一个矩形,即∠MBC = 90º.∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º,∴ ∠QBM = ∠ABC,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.从而将问题转化为【证法4】勾股定理的证明方法7做三个边长分别为a、b、c的形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结BF、CD.过C作CL⊥DE,交AB于点M,交DE于点L.∵ AF = AC,AB = AD,∠FAB = ∠GAD,∴ ΔFAB ≌ ΔGAD,∵ ΔFAB的面积等于1/2乘a^2,ΔGAD的面积等于矩形ADLM的面积的一半,∴矩形ADLM的面积=a^2.同理可证,矩形MLEB的面积=b^2.∵形ADEB的面积= 矩形ADLM的面积+矩形MLEB的面积∴c^2=a^2+b^2,即a^2+b^2=c^2.勾股定理的证明方法8如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.在ΔADC和ΔACB中,∵ ∠ADC = ∠ACB = 90º,∠CAD = ∠BAC,∴ ΔADC ∽ ΔACB.AD∶AC = AC ∶AB,即AC^2=AD·AB.同理可证,ΔCDB ∽ ΔACB,从而有BC^2=BD·AB .∴AC^2+BC^2=(AD+DB)·AB=AB^2 ,即a^2+b^2=c^2.勾股定理的证明方法9做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D作DE与CB的延长线垂直,垂足为E,DE交AF于H.∵ ∠BAD = 90º,∠PAC = 90º,∴ ∠DAH = ∠BAC.又∵ ∠DHA = 90º,∠BCA = 90º,AD = AB = c,∴ RtΔDHA ≌ RtΔBCA.∴ DH = BC = a,AH = AC = b.由作法可知,PBCA是一个矩形,所以RtΔAPB ≌ RtΔBCA. 即PB = CA = b,AP= a,从而PH = b―a.∵ RtΔDGT ≌ RtΔBCA ,RtΔDHA ≌ RtΔBCA.∴ RtΔDGT ≌ RtΔDHA .∴ DH = DG = a,∠GDT = ∠HDA .又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º,∴ DGFH是一个边长为a的形.∴ GF = FH = a . TF⊥AF,TF = GT―GF = b―a .∴ TFPB是一个直角梯形,上底TF=b―a,下底BP= b,高FP=a +(b―a).用数字表示面积的编号(如图),则以c为边长的形的面积为勾股定理的证明方法10设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做三个边长分别为a、b、c的形,把它们拼成如图所示形状,使A、E、G三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º,∴ ∠TBH = ∠ABE.又∵ ∠BTH = ∠BEA = 90º,BT = BE = b,∴ RtΔHBT ≌ RtΔABE.∴ HT = AE = a.∴ GH = GT―HT = b―a.又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º,∴ ∠GHF = ∠DBC.∵ DB = EB―ED = b―a,∠HGF = ∠BDC = 90º,勾股定理的证明方法11在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 如图,以B为圆心a 为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a. 因为∠BCA = 90º,点C在⊙B上,所以AC是⊙B的切线. 由切割线定理,得AC^2=AE·AD=(AB+BE)(AB-BD)=(c+a)(c-a)=c^2-a^2,即b^2=c^2-a^2,∴ a^2+b^2=c^2勾股定理的证明方法12在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c(如图).过点A作AD∥CB,过点B作BD∥CA,则ACBD为矩形,矩形ACBD接于一个圆. 根据多列米定理,圆接四边形对角线的乘积等于两对边乘积之和,有AB·DC=AD·BC+AC·BD,∵ AB = DC = c,AD = BC = a,AC = BD = b,∴AB^2=BC^2+AC^2,即c^2=a^2+b^2,∴a^2+b^2=c^2.在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 作RtΔABC的切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r.∵ AE = AF,BF = BD,CD = CE,勾股定理的证明方法15勾股定理的证明方法16以上为瑞德特老师整理的初中数学:勾股定理的16种证明。

相关文档
最新文档