实验五 聚丙烯酰胺凝胶电泳分离过氧化物同工酶

合集下载

实验五 聚丙烯酰胺凝胶电泳分离过氧化物同工酶

实验五 聚丙烯酰胺凝胶电泳分离过氧化物同工酶

实验五聚丙烯酰胺凝胶电泳分离过氧化物同工酶一、目的同工酶是指能催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。

研究表明,植物在发育过程中,所含同工酶的种类和比例都不相同,它们与植物的遗传、生长发育、代谢调节及抗性等都有一定关系,因此作为基因表达的产物,测定同工酶谱是认识基因存在和表达的一种工具,在植物的种群、发育及杂交遗传的研究中有重要的意义。

过氧化物酶是植物体内普遍存在的、活性较高的一种酶。

它与呼吸作用、光合作用及生长素的氧化等都有关系。

在植物生长发育过程中它的活性不断发生变化,测定这种酶的活性或其同工酶,可以反映某一时期植物体内代谢的变化。

利用聚丙烯酰胺凝胶电泳测定同工酶,方法简便,灵敏度高,重现性强,测定结果便于观察、记录和保存。

本实验采用聚丙烯酰胺凝胶垂直板电泳技术,分离小麦幼苗过氧化物酶同工酶,根据酶的生物化学反应,通过染色方法显示出酶的不同区带,以鉴定小麦幼苗过氧化物酶同工酶。

通过本实验要掌握电泳技术的原理、方法、装置、凝胶配制等知识,熟悉主要的操作过程,同时对同工酶有一个感性的认识。

二、原理1.电泳带电粒子在电场中向与其自身带相反电荷的电极移动,这种现象称为电泳。

近几十年来,电泳作为一项有效的分析、分离和制备技术发展很快,在生产、科研和医疗工作中得到了广泛应用。

用电泳技术分离、分析蛋白质、酶、核酸等生物大分子,有较高的分辨率,目前已成为生物科学研究中必不可少的手段之一。

2.影响电泳的主要因素若将带净电荷q的粒子放入电场,则该粒子所受到的引力F引可用数学式表示如下:F引=E·q(1)式中E为电场强度,单位为“v/cm”,表示电场中单位距离上的电位差。

如果这种情况发生在真空中,则带电粒子会朝着电极加速前进并且最后与电极相撞。

但在溶液中,由于电场的牵引力F引与加速运动的粒子和溶液之间产生的阻力(即摩擦力)F阻相对抗。

故上述现象不会发生。

根据Stokes公式,阻力的大小取决于粒子的大小和形状以及所在介质的粘度:F阻=6πrηv (2)式中F阻是球形粒子所受的阻力,r是球形粒子的半径,η是溶液的粘度,v是粒子移动的速度。

实验五 聚丙烯酰胺凝胶垂直板电泳分析(实验报告)

实验五  聚丙烯酰胺凝胶垂直板电泳分析(实验报告)

实验五聚丙烯酰胺凝胶垂直板电泳分析小麦幼苗过氧化物酶同工酶生物111班杨明轩1102040128一、研究背景及目的过氧化物酶是以过氧化氢为电子受体催化底物氧化的酶,具有消除过氧化氢和酚类、胺类毒性的双重作用。

它与呼吸作用、光合作用及生长素的氧化等都有关系,在种子萌动以前,它们的过氧化物酶同工酶很少,待幼芽长到0.5 -1 厘米以后,它们的过氧化物酶才得到充分的表达。

这说明植物过氧化物酶同工酶的多寡和有无,与植物不同发育时期,与植物的不同组织、器官的分化形成及特定的生理状态等均有密切关系。

而同工酶是指能催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。

大多数基因性同工酶由于对底物亲和力不同和受不同因素的调节,常表现不同的生理功能。

它们存在于生物的同一种属或同一个体的不同发育阶段,或同一发育阶段的不同组织,在细胞发育和代谢调解中起重要作用。

在动、植物中,一种酶的同工酶在各组织、器官中的分布和含量不同,形成各组织特异的同工酶谱,体现各组织的特异功能,这一特点可用于研究物种进化、遗传变异、杂交育种和个体发育、组织分化等。

品种资源工作者借助同工酶分析品种的地理分布与亲缘关系来指导品种资源的收集与鉴定工作。

育种工作者常用同工酶来作为鉴定植物的种间杂交, 特别是远缘杂交的生化指标。

在医学方面,同工酶是研究癌瘤发生的重要手段。

要对同工酶展开研究,首先要实现对它的分离,因此要选择合适的分离技术。

基于“差异转化”的思路,层析和电泳是两种最为常见的大分子分离方法。

但由于二者技术细节上的差异,层析更常用于大分子的分离纯化,而电泳则主要用于大分子的分离检测。

因此在本次实验中,我们采用不连续的聚丙烯酰胺凝胶垂直板电泳分析小麦幼苗中的过氧化物酶同工酶。

同时本实验利用电泳现象对过氧化物同工酶进行分离纯化和分析鉴定,通过电泳技术的实际操作体会电泳技术的原理和特点,比较分析电泳技术和其它分离技术如层析技术的不同,进一步学习应用更为广泛和纯化水平更高的分离技术。

6-聚丙烯酰胺凝胶垂直板电泳分析过氧化物酶同工酶

6-聚丙烯酰胺凝胶垂直板电泳分析过氧化物酶同工酶

聚丙烯酰胺凝胶垂直板电泳分析过氧化物酶同工酶植物098 原硕0901080808摘要:本实验采用聚丙烯酰胺凝胶垂直板电泳技术,分离小麦幼苗过氧化物酶同工酶,根据酶的生化反映,通过染色方法显示出酶的不同区带,以鉴定小麦幼苗过氧化物酶同工酶。

通过本实验,主要掌握电泳技术的原理、方法、设计、装臵、凝胶配臵等问题,熟悉所有的操作过程,另外,对同工酶有一个感性的认识。

关键字:聚丙烯酰胺凝胶垂直板电泳,同工酶一、研究背景及目的:同工酶是指能催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。

它们是DNA编码的遗传信息表达的结果。

最近的研究表明,同工酶与生物的遗传、生长发育、代谢调节及抗性等有一定关系。

因此,测定同工酶在理论上和实践上都有重要的意义。

用聚丙烯酰胺凝胶电泳测定同工酶,方法简便、灵敏度高、重现性强,测定结果便于观察、记录和保存。

过氧化物是植物体内普遍存在的、活性较高的一种酶。

它与呼吸作用、光合作用及生长素的氧化等都有关系。

在植物生长发育过程中它的活性不断变化。

因此,测定这种酶的活性或其同工酶的变化情况,可以反映某一种时期植物体内代谢的变化。

本实验采用聚丙烯酰胺凝胶垂直板电泳技术,分离小麦幼苗过氧化物酶同工酶,根据酶的生化反映,通过染色方法显示出酶的不同区带,以鉴定小麦幼苗过氧化物酶同工酶。

通过本实验,主要掌握电泳技术的原理、方法、设计、装臵、凝胶配臵等问题,熟悉所有的操作过程,另外,对同工酶有一个感性的认识。

二、研究依据及原理:聚丙烯酰胺凝胶是由单体丙烯酰胺(acrylamide,简称Acr)和交联剂N,N-甲叉双丙烯酰胺(N,N—methylene-bisacylamide,简称Bis)在加速剂N,N,N ,N —四甲基乙二胺(N,N,N ,N —tetramethyl ethylenedia mine,简称TEMED)和催化剂过硫酸铵(ammonium persulfate (NH4)2S2O8,简称AP)或核黄素(ribofavin即vita min B2,C17H20O6N4)的作用下聚合交联成三维网状结构的凝胶,以此凝胶为支持物的电泳称为聚丙烯酰胺凝胶电泳(polyacrylamide gel electrophoresis,简称PAGE)。

聚丙烯酰胺凝胶电泳分离过氧化物同工酶temp

聚丙烯酰胺凝胶电泳分离过氧化物同工酶temp

电荷因素 蛋白质分子形状和大小相同,所带电荷性质和数量不同 分子大小 蛋白质分子形状和所带电荷性质和数量相同,分子大小不同 分子形状 蛋白质分子所带电荷性质和数量相同,分子形状不同
聚丙烯酰胺凝胶电泳的三种效应: 1) 浓缩效应、2) 电荷效应、3) 分子筛效应
电泳过程示意图
A为电泳前3层凝胶排列顺。B显示电泳开始后,蛋白质样品夹在快、慢 离子之间被浓缩成极窄的区带。C显示蛋白质样品分离成数个区带。
TEMED 丙烯酰胺 + 甲叉双丙烯酰胺------------------聚丙烯酰胺凝胶 Ap (三维网状结构)
AP-TMTED催化体系

TEMED催化AP生成硫酸自由基:
S2O82-
¯ 2SO4·

硫酸自由基的氧原子激活Acr单体并形成单体长链:
Bis将单体长链间连成网状结构:
通过改变凝 胶浓度及交 联度来调节 凝胶的孔径, 具有良好的 分子筛效应。
二、实验原理

聚丙烯酰胺凝胶 垂直板电泳 不连续系统 分离因素



1、聚丙烯酰胺凝胶 作为电泳的支持物
•聚丙烯酰胺凝胶 是由单体丙烯酰胺(Acr)和交联剂甲叉 双丙烯酰胺(Bis)在催化剂过硫酸铵(AP)和加速剂 N,N,N’,N’-四甲基乙二胺(TEMED)作用下聚合交联而成 的三维网状结构的凝胶。
3、样品的制备

过氧化物酶的提取:称 取1g水稻种子置于冰浴 上的研钵内,加入1ml样 品提取液(内含 pH6.8 、 0.05mol/L Tris-HCl, 20%蔗糖)研成匀浆后, 再加2ml提取液研磨均匀, 转入离心管,于3500rpm 离心15min,其上清液即 为酶的提取液,供电泳 分析用。
6、剥胶、染色

实验五过氧化物同工酶PAGE分析

实验五过氧化物同工酶PAGE分析
聚丙烯酰胺凝胶配方
成分
含量
作用
A液(30%Acr-0.8%Bis) 2.65mL
交联剂
B液(Tris+EDTA) 4.75mL
缓冲液
C液(TEMED)
10μL
加速剂
D液(10% AP)
50μL
催化剂
四、操作步骤
样品制备 称取小麦幼苗叶片0.5 克,放入研钵内,
加 pH8.0 样品提取液1mL,于冰浴中研 成匀浆,转入离心管,在高速离心机上以 8000rpm 离心 10 分钟,倒出上清液, 以等量 40%蔗糖混合,并加2滴溴酚蓝, 即为样品液。
同功酶是机体调节酶活性的一种方式,在各种生物体中 广泛存在。
过氧化物酶是植物体内普遍存在的、活性较高的一种酶。 它与呼吸作用、光合作用及生长素的氧化等都有关系。 在植物生长发育过程中它的活性不断发生变化。因此, 测定这种酶的活性或其同工酶的变化情况,可以反映某 一时期植物体内代谢的变化。
(二)过氧化物同工酶及其活性染色(P98)
三、材料、仪器和试剂
试剂:
A液:30%Acr-0.8%Bis B液:Tris+EDTA C液:TEMED D液:10%AP 电极缓冲液:硼酸钠-硼酸(pH8.3) 0.5%溴酚蓝 染色液:0.1%联苯胺 样品提取液:pH8.0Tris-HCl缓冲液 40%蔗糖溶液
四、操作步骤
凝胶制备
四、操作步骤
装槽、上样
30-50μL
四、操作步骤
电泳 接好电源线(上槽接负极,下槽接正极)。
打开电源开关,调节电压,以10V/cm稳 定电压电泳,待前沿指示染料溴酚蓝下行 至距胶板末端1-2 厘米处,即可停止电泳。
四、操作步骤
剥胶、染色

分离过氧化物同工酶

分离过氧化物同工酶

同工酶是指能催化同一种化学反应,但其酶 蛋白本身的分子结构组成却有所不同的一组 酶。研究表明,植物在发育过程中,所含同 工酶的种类和比例都不相同,它们与植物的 遗传、生长发育、代谢调节及抗性等都有一 定关系,因此作为基因表达的产物,测定同 工酶谱是认识基因存在和表达的一种工具, 在植物的种群、发育及杂交遗传的研究中有 重要的意义。
4、电泳 加样,连接电极线,电泳。 5、剥胶,染色,记录结果
聚丙烯酰胺凝胶
丙烯酰胺单体(Acrylamide,简写为Acr)和交联 剂N,N‘-甲叉双丙烯酰胺(N,N’-Methylena Bisacrylamide,简写为Bis)在催化剂的作用下聚 合而成的 聚合:化学法—过硫酸铵-TEMED 光化学法—核黄素-TEMED 光聚合形成的凝胶孔径较大 聚丙烯酰胺凝胶的质量主要由凝胶浓度和交联度决 定
2、分别制备分离胶、浓缩胶
在玻璃板做记号,取专用小烧杯,按分离胶取样表加试剂,混匀后沿长玻 璃板小心加到玻璃板之间(避免产生气泡),加至记号处,立即覆盖 2~3mm的水层,静置待聚合(约40min),当胶与水层的界面出现时表 明胶已聚合。按浓缩胶取样表加试剂,倒掉分离胶上的水层,立即加入 浓缩胶,插入梳子(即样品槽模板),待胶凝后,小心取出梳子。将稀 释10倍的电极缓冲液倒入两槽中,前槽(短板侧)缓冲液要求没过样品 槽,后槽(长板侧)缓冲液要求没过电极,备用。
■ 凝胶的聚合:
聚合反应
free radical
Bis Bis
顶点自由基 可再延续
自由基形成
催化系统
聚合作用只有在自由基存在时才能发生,需要一个催化 诱发剂系统产生自由基 化学聚合 过硫酸铵—TEMED(四甲基乙二胺) 孔径较小,用于制备分离胶 影响聚合:低pH,氧分子,一些金属离子,低温 光聚合 核黄素—TEMED 需要有痕量氧存在 ,直接日光或室内强散射光 孔径较大,用于制备浓缩胶胶

烯酰胺凝胶电泳分离过氧化物同工酶

烯酰胺凝胶电泳分离过氧化物同工酶

实验八 聚丙烯酰胺凝胶电泳分离过氧化物同工酶一、实验目的1 学习聚丙烯酰胺凝胶电泳原理。

2 掌握聚丙烯酰胺凝胶垂直板(及同盘)电泳的操作技术。

3 掌握同工酶定义、理化性质的差异,了解过氧化物酶的染色原理。

4 掌握过氧化物酶的活性的测定。

二 实验原理聚丙烯酰胺凝胶是由单体丙烯酰胺(Acr )和交联剂(即共聚体的N,N -甲叉双丙烯酰胺 Bis )在加速剂(N,N,N ’,N ’-四甲基乙二胺 TEMED )和催化剂(过硫酸胺 (NH 4)4S 2O 8 简称AP )的作用下聚合交联成三维网状结构的凝胶。

(一)聚丙烯酰胺凝胶聚合原理及相关特性1 聚合反应聚丙烯酰胺是由Acr 和Bis 在催化剂(AP )或核黄素(C 17H 20O 6N 4)和加速剂(TEMDA )的作用下聚合而成的三维网状结构。

催化剂和加速剂的种类很多,目前常用的有2种催化体系:① AP-TEMED 属化学聚合作用② 核黄素-TEMED 属光聚合作用2 凝胶孔径的可调性及其相关性质① 凝胶性能与总浓度及交联度的关系凝胶的孔径、机械性能、弹性、透明度、粘度和聚合程度取决于凝胶总浓度和Acr 与Bis 之比: 00100a bT m +=⨯ a:b<10 脆硬乳白交联度: 00100bc a b =⨯+ a:b>100糊状易断② 凝胶浓度与孔径的关系T (Acr 和Bis 总浓度)增加 孔径减小 移动颗粒穿过网孔阻力增加③ 凝胶浓度与被分离物分子量的关系分子量增加 阻力增加 移动速度减慢。

同时还与分子形状及分子电荷有关系。

在操作时,可以选用007.5凝胶。

因为生物体内大多数蛋白质在此范围内电泳均可取得满意的结果。

3 试剂对凝胶聚合的影响水中金属离子或其他成分对凝胶电泳的电泳速度、分离效果等有影响。

(二)聚丙烯酰胺凝胶电泳(PAGE )原理根据有无浓缩效应可分为:连续系统:电泳体系中由于缓冲液PH 值及凝胶浓度相同,带电颗粒在电场中主要靠电荷及分子筛效应。

实验六:聚丙烯酰胺凝胶垂直板电泳分析过氧化物酶同工酶实验报告

实验六:聚丙烯酰胺凝胶垂直板电泳分析过氧化物酶同工酶实验报告

班级:植物142 姓名:刘国强学号:1401080229实验六:聚丙烯酰胺凝胶垂直板电泳分析过氧化物酶同工一、研究背景及目的同工酶是指能催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。

它们是DNA 编码的遗传信息表达的结果。

研究表明,同工酶与生物的遗传、生长发、代谢调节及抗性等都有一定的关系。

因此,测定同工酶在理论上和实践上都有重要的意义。

用聚丙烯酰胺凝胶电泳测定同工酶,方法简便、灵敏度高,重现性强,测定结果便于观察、记录和保存。

过氧化物酶是植物体内普遍存在的、活性较高的一种酶。

它与呼吸作用、光合作用及生长素的氧化等都有关系。

在植物生长发育过程中它的活性不断发生变化。

因此,测定这种酶的活性或其同工酶的变化情况,可以反映某一时期植物体内代谢的变化。

本实验采用聚丙烯酰胺凝胶垂直板电泳技术,分离小麦幼叶叶片和根部的过氧化物酶同工酶,通过染色方法显示出酶的不同区带,以鉴定小麦幼苗过氧化物酶同工酶。

通过本实验,主要要掌握电泳技术的原理、方法、设计、装置、凝胶配制等问题,熟悉所有的操作过程二、实验原理本实验采用不连续聚丙烯酰胺凝胶系统,分离小麦幼叶叶片和根部的过氧化物酶同工酶。

利用过氧化物酶在分解过氧化氢的过程中产生自由氧基,从而将联大茴香胺连接到过氧化物酶分子上,使之呈现棕褐色,将电泳后的凝胶置于含有过氧化氢的联大茴香胺染色液中浸泡,有过氧化酶同工酶蛋白的部位便可以观察到褐色的谱带。

通过这些谱带的数量、位置等获得相关信息。

三、仪器试剂1.实验材料小麦幼苗2.仪器:垂直板电泳槽(型号:DYY-III28A型电泳槽厂家:北京市六一仪器厂) 电泳仪(型号:DYY-III2稳压稳流电泳仪厂家:北京市六一仪器厂)主要器具:移液器、微量进样器、培养皿一套(直径15cm)、小烧杯3.试剂(1)分离胶缓冲液(pH8.9 Tris-HCl缓冲液):称取48 mL 1mol/L HCl,Tris36.8g,用无离子水溶解后定容至100 mL。

过氧化物酶的分离与测定

过氧化物酶的分离与测定

廊坊师范学院生物大分子的分离与纯化题目:过氧化物酶同工酶的分离及活性测定姓名:赵翔宇指导教师:侯志敏系别:生物专业:生物技术年级:2008级生物技术完成日期2010年12月22日过氧化物酶同工酶的分离及活性测定摘要:以大豆、绿豆为原料,通过不连续的聚丙烯酰胺凝胶电泳将其中的过氧化物酶分离,并通过分光光度计测定其活力。

关键词:大豆、绿豆过氧化物酶聚丙烯酰胺凝胶分光光度计目录1 前言 (4)1.1电泳 (4)1.2聚丙烯酰胺凝胶 (4)1.3过氧化物酶 (5)1.4研究目的及意义 (5)2 材料与方法 (6)2.1 实验材料 (6)2.2 主要仪器设备 (6)2.3 试剂配方 (6)2.4 实验设计 (8)2.4.1实验实施步骤 (8)2.4.1.1.过氧化物酶的粗提取 (8)2.4.1.2聚丙烯酰胺凝胶的制备 (8)2.4.1.3聚丙烯酰胺凝胶电泳 (9)2.4.2过氧化物酶活力的测定 (9)3 结果分析 (10)4致谢 (11)5参考文献 (11)1 前言1.1电泳带电粒子在电场中向与其自身带相反电荷的电极移动,这种现象称为电泳。

用电泳技术分离、分析蛋白质、酶、核酸等生物大分子,有较高的分辨率,目前已成为生物科学研究中必不可少的手段之一。

凡能影响溶液粘度η的因素如温度,影响分子带电量q及解离度a的因素如pH的改变,都会对迁移率产生影响。

因此,电泳应尽可能在恒温条件下进行。

并选用一定pH的缓冲液。

同时,所选用的pH以能扩大各种被分离物质所带电荷量的差异为好,以利于分离各种成分。

迁移率与粒子的大小(r)有关,非球形粒子(如DNA)在电泳过程中会受到更大的阻力,即粒子的移动速度还与粒子形状有关。

另外,迁移率还受电渗现象的影响。

所谓电渗是指在电场中,液体对于固体支持物的相对移动。

例如在纸电泳中,由于滤纸(纤维素)上带有负电荷,因感应相吸而使与滤纸相接触的水溶液带正电荷,从而使液体向负极移动,带动着本来是向负极泳动的物质以更快的速度移动。

植物过氧化物同工酶的聚丙烯酰胺凝胶电泳实验指导

植物过氧化物同工酶的聚丙烯酰胺凝胶电泳实验指导

植物过氧化物同工酶的聚丙烯酰胺凝胶电泳【目的】1.掌握聚丙烯酰胺凝胶电泳的原理及操作过程。

2.了解聚丙烯酰胺圆盘电泳的实际应用,利用此法分离植物过氧化物同工酶。

【概述】1.聚丙烯酰胺凝胶电泳聚丙烯酰胺凝胶电泳是以聚丙烯酰胺凝胶作为支承物的一种电泳技术。

其凝胶是由丙烯酰胺单体和交联剂甲叉双丙烯酰胺在催化剂的作用下聚合交联而成的三维网状结构。

凝胶网孔的大小可通过改变单体浓度和交联剂浓度的比例加以调节,常用的所谓标准凝胶是指含丙烯酰胺7%~7.5%的凝胶,大多数生物体内的蛋白质在此凝胶中电泳能达到满意的结果。

聚丙烯酰凝胶电泳过程中除了一种电泳所具有的电荷效应外,还具有“分子筛”效应;不连续的凝胶电泳过程中具有电荷效应、分子筛效应和浓缩效应。

不连续凝胶电泳体系的不连续性体现在:(1)凝胶由上、下两层组成,两层胶孔孔径不同。

上层为大孔径的浓缩胶,下层为小孔径的分离胶。

(2)缓冲液离子组成及各层凝胶的pH 值不同。

如常用的碱性系统中,电极缓冲液为pH8.3的Tris-甘氨酸缓冲液,浓缩胶为pH6.7的Tris-HCl 缓冲液,分离胶为pH8.9的Tris-HCl 缓冲液。

(3)在电场中形成不连续的电位梯度。

在这种不连续的系统中有三种物理效应起作用,使样品分离效果好、分辨率高。

这三种效应是电荷效应、分子筛效应和浓缩效应。

① 电荷效应 由于各种蛋白质分子所载有效电荷不同,因而在一定电场作用下迁移率不同。

承载有并效电荷多的,泳动的快,反之则慢。

CH 2CH C=O NH 3CH 2=CH C=O NH CH 2NH C=O CH 2+CH 2CH C=O NH 3CH 2CH C=O NH 3C=O NH CH 2NH C=O CH 2CH 2CH [[]]nn 催化剂② 分子筛效应 因为聚丙烯酰胺具有网孔结构,所以直径大,形状不规则的分子,电泳时通过凝胶受到的阻力大,移动较慢;分子量小,形状为球形的分子在电泳过程中受到的阻力小移动较快。

基础生物化学实验课件PPT-植物叶片过氧化物同工酶的PAGE分析

基础生物化学实验课件PPT-植物叶片过氧化物同工酶的PAGE分析

化学名称 丙烯酰胺 甲叉双丙烯酰胺 过硫酸铵 四甲基乙二胺 三羟甲基氨基甲烷 十二烷基硫酸钠
作用 单体 交联剂 催化剂 加速剂 缓冲配对离子 变性剂
2. 原理
2.1 生物大分子性质 生物大分子如蛋白质、核酸、多糖等常以颗粒分散在
溶液中,它们的净电荷取决于介质的H+浓度或与其它大分 子的相互作用。在电场中,带电颗粒向阴极或阳极迁移, 迁移方向取决与它们带电的符号。 纸电泳、琼脂糖电泳、聚丙烯酰胺凝胶电泳、毛细管电泳
7.5%分离胶和2.5%浓缩胶的配方
试剂用量(ml) 分离胶缓冲液(PH8.8)
30%分离胶贮液 浓缩胶缓冲液(PH6.7)
10%浓缩胶贮液 ddH2O
0.14% 过硫酸胺(AP)
TEMED
7.5%分离胶 1.5 3.0
1.5 6.0 0.004
2.5%浓缩胶
0.5 1.0 0.5 2.0 0.002
(1)凝胶性能与总浓度及交联度的关系:
T%(Acr和Bis总浓度)= (a+b)/m× 100 C% (交联剂百分比) = b/(a+b) × 100 其中,a= Acr克数,b= Bis克数,m=缓冲液体积(ml) 欲制备完全透明而又有弹性的凝胶, 应控制a/b=30左右。 经验公式: C = 6.5 - 0.3 T
聚丙烯酰胺凝胶电泳(Polyacryamide
gel electrophoresis PAGE)
分离植物过氧化物酶同工酶
1. 目的要求
(1)了解聚丙烯酰胺凝胶电泳原理。 (2)掌握聚丙烯酰胺凝胶垂直板电泳的操作技术。 (3)了解同工酶研究在理论和实践中的重要意义。
PAGE实验中用到的试剂:
简称 Acr Bis AP TEMED Tris SDS

聚丙烯酰胺凝胶垂直板电泳分析过氧化物酶同工酶实验报告

聚丙烯酰胺凝胶垂直板电泳分析过氧化物酶同工酶实验报告

班级:植物092 姓名:徐炜佳学号:0901080223聚丙烯酰胺凝胶垂直板电泳分析过氧化物酶同工酶研究背景及目的带电颗粒在电场作用下向着与其电性相反的电极移动,称为电泳(electrophoresis,简称EP )。

1937年瑞典科学家Tiselius建立了“移界电泳法(moving boundary EP)”,成功地将血清蛋白质分成清蛋白、α1、α2、β和γ球蛋白5个主要成分,由于他的突出贡献,1948年荣获诺贝尔奖金。

50年代,许多科学家着手改进电泳仪,寻找合适的电泳支持介质,先后找到滤纸、醋酸纤维素薄膜、淀粉及琼脂作为支持物。

60年代,Davis等科学家利用聚丙烯酰胺凝胶作为电泳支持物,在此基础上发展了SDS-聚丙烯酰胺凝胶电泳、等电聚焦电泳、双向电泳和印迹转移电泳等技术。

这些技术具有设备简单,操作方便,分辨率高等优点。

目前,电泳技术已成为生物化学与分子生物学以及与其密切相关的医学、农、林、牧、鱼、制药、某些工业分析中必不可少的手段。

同工酶是指能催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。

它们是DNA 编码的遗传信息表达的结果。

最近的研究表明,同工酶与生物的遗传、生长发、代谢调节及抗性等都有一定的关系。

因此,测定同工酶在理论上和实践上都有重要的意义。

用聚丙烯酰胺凝胶电泳测定同工酶,方法简便、灵敏度高,重现性强,测定结果便于观察、记录和保存。

过氧化物酶是植物体内普遍存在的、活性较高的一种酶。

它与呼吸作用、光合作用及生长素的氧化等都有关系。

在植物生长发育过程中它的活性不断发生变化。

因此,测定这种酶的活性或其同工酶的变化情况,可以反映某一时期植物体内代谢的变化。

本实验采用聚丙烯酰胺凝胶垂直板电泳技术,分离小麦幼苗过氧化物酶同工酶,根据酶的生物化学反映,通过染色方法显示出酶的不同区带,以鉴定小麦幼苗过氧化物酶同工酶。

通过本实验,主要要掌握电泳技术的原理、方法、设计、装置、凝胶配制等问题,熟悉所有的操作过程,另外,对同工酶有一个感性的认识。

聚丙烯酰胺凝胶电泳分离LDH同工酶

聚丙烯酰胺凝胶电泳分离LDH同工酶

聚丙烯酰胺凝胶电泳分离LDH同工酶一、实验目的1.学习聚丙烯酰胺凝胶电泳的基本原理。

2.学习聚丙烯酰胺凝胶垂直板电泳法分离LDH同工酶。

二、实验原理LDH 同工酶是由催化反应相同、分子结构和理化性质不同的一组酶组成,由于分子效应和电荷效应,他们分别以不同的速度在以聚丙烯酰胺凝胶为支持物的电泳中泳动,可分离出5种同工酶,泳动速度为LDH1> LDH2> LDH3> LDH4> LDH5。

聚丙烯酰胺凝胶电泳有丙烯酰胺单体和交联剂N,N-亚甲基双丙烯酰胺在催化剂作用下,形成的三维网状结构称为聚丙烯酰胺凝胶电泳(简称PAGE),电泳速度与粒子所带电荷、粒子大小有关外,还与网络的孔径有关。

粒子大于凝胶孔径的,电泳速度慢。

反之则电泳速度快。

三、实验试剂30%凝胶贮存液:丙烯酰胺29g,亚甲双丙烯酰胺1g,加蒸馏水溶至100ml,过滤棕色瓶4度保存。

Tris-甘氨酸电极缓冲液(5X):Tris碱 15.1g 甘氨酸94g溶解于900ml去离子水中调解为PH8.3用去离子水定容至1000ml。

10%过硫酸铵:将0.5g过硫酸铵溶解于5ml水中。

Tris-Hcl 1.5mol/ml( PH8.8):18.165g Tris碱溶解于40ml水中,用1mol/lHCl调节PH至8.8,加水定容至100ml。

Tris-Hcl 0.5mol/ml( PH6.8):12.11g Tris碱溶解于40ml水中,用1mol/lHCl调节PH至6.8,加水定容至100ml。

2X样品缓冲液:Tris碱0.76g 蔗糖20g加41.5ml水溶解,然后加蒸馏水定容至50ml。

染色液:甲醇250ml 冰乙酸50ml 考马斯亮R250 0.5g去离子水200ml.脱色液:甲醇250ml 冰乙酸80ml去离子水200ml。

TEMED(四甲基乙二胺)四、实验操作1 PAGE凝胶的制备12%分离胶配方大约注入玻璃板的2/3轻轻在其顶层加入少量去离子水以磨平胶面。

过氧化物酶同工酶的提取、分离

过氧化物酶同工酶的提取、分离
④溶液的pH值: 影响被分离物质的解离度,离等电点越近,电泳速度越慢,
反之越快; ⑤电场强度:
电场强度越小,电泳速度越慢,反之越快; ⑥离子强度:
离子强度越大,电泳速度越慢,反之越快; ⑦电渗现象:
电场中,液体相对于固体支持物的相对移动; ⑧支持物筛孔大小:
孔径小,电泳速度慢,反之则快。
6
4、聚丙烯酰胺凝胶电泳(PAGE)
聚丙烯酰胺凝胶电泳是以聚丙烯胺凝胶作 为载体的一种区带电泳。
7
(1)聚丙烯胺凝胶的生成:
聚丙烯胺凝胶由丙烯酰胺单体(Acr)和N,N’-甲 叉双丙烯酰胺(Bis)在催化剂作用下聚合而成。在具 有自由基时,Acr和Bis就会聚合。
引发产生自由基的方法有两种:
①化学法 ②光聚合法
8
①化学聚合:
引发剂是过硫酸铵(AP),催化剂N、N、N’、N’- 四甲基乙二胺(TEMED),它的碱基催化AP产生氧自由 基,激活单体形成自由基,发生聚合。化学聚合形成的凝 胶孔径较小,且重复性好,用来制备分离胶;
31
32
4.2 点样:
轻拔电泳梳子→用微量进样器点样→每孔约30μl。
33
5、电泳:
接通电源→稳流→调节电流到每孔 1mA左右→当溴酚蓝前沿进入分离胶后,可 适当加大电流→待前沿下行到距胶末1cm处,
停止电泳。
34
6、剥胶、固定、染色:
将凝胶板取下→放入装水瓷盘中→剥 下胶片→并浸洗二次→倒去水→加入固定 液10分钟→倒去固定液→加显色液(联苯 胺),显色→观察记录。
a与b的比例很重要。富有弹性,且完全透明的凝胶,a 与b的重量比应在30左右。常用29 : 1
13
(4)不连续PAGE的原理:
第一、三个不连续性: ①凝胶孔径的不连续; ②缓冲液离子组成及各层凝胶pH的不连续; ③在电场中形成的电位梯度的不连续。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五聚丙烯酰胺凝胶电泳分离过氧化物同工酶一、目的同工酶是指能催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。

研究表明,植物在发育过程中,所含同工酶的种类和比例都不相同,它们与植物的遗传、生长发育、代谢调节及抗性等都有一定关系,因此作为基因表达的产物,测定同工酶谱是认识基因存在和表达的一种工具,在植物的种群、发育及杂交遗传的研究中有重要的意义。

过氧化物酶是植物体内普遍存在的、活性较高的一种酶。

它与呼吸作用、光合作用及生长素的氧化等都有关系。

在植物生长发育过程中它的活性不断发生变化,测定这种酶的活性或其同工酶,可以反映某一时期植物体内代谢的变化。

利用聚丙烯酰胺凝胶电泳测定同工酶,方法简便,灵敏度高,重现性强,测定结果便于观察、记录和保存。

本实验采用聚丙烯酰胺凝胶垂直板电泳技术,分离小麦幼苗过氧化物酶同工酶,根据酶的生物化学反应,通过染色方法显示出酶的不同区带,以鉴定小麦幼苗过氧化物酶同工酶。

通过本实验要掌握电泳技术的原理、方法、装置、凝胶配制等知识,熟悉主要的操作过程,同时对同工酶有一个感性的认识。

二、原理1.电泳带电粒子在电场中向与其自身带相反电荷的电极移动,这种现象称为电泳。

近几十年来,电泳作为一项有效的分析、分离和制备技术发展很快,在生产、科研和医疗工作中得到了广泛应用。

用电泳技术分离、分析蛋白质、酶、核酸等生物大分子,有较高的分辨率,目前已成为生物科学研究中必不可少的手段之一。

2.影响电泳的主要因素若将带净电荷q的粒子放入电场,则该粒子所受到的引力F引可用数学式表示如下:F引=E·q(1)式中E为电场强度,单位为“v/cm”,表示电场中单位距离上的电位差。

如果这种情况发生在真空中,则带电粒子会朝着电极加速前进并且最后与电极相撞。

但在溶液中,由于电场的牵引力F引与加速运动的粒子和溶液之间产生的阻力(即摩擦力)F阻相对抗。

故上述现象不会发生。

根据Stokes公式,阻力的大小取决于粒子的大小和形状以及所在介质的粘度:F阻=6πrηv (2)式中F阻是球形粒子所受的阻力,r是球形粒子的半径,η是溶液的粘度,v是粒子移动的速度。

在溶液中,由电场而产生的加速力被阻力所对抗,因此,E·q=6πrηv (3)将(3)式整理得:由此可以看出,粒子移动的速度(v )与电场强度(E )和粒子所带电荷量(q )成正比,而与粒子的大小(r )和溶液的粘度(η)成反比。

非球形粒子(如DNA )在电泳过程中会受到更大的阻力,即粒子的移动速度还与粒子形状有关。

既然在一定pH 条件下,每一分子都具有特殊的电荷(种类与数量)、大小和形状,在一定的时间内它在相同的电场中便应集中到特定的位置上而形成紧密的泳动带。

这就是带电粒子可以用电泳技术进行分离、分析、鉴定的基本原理。

由于带电粒子的泳动速度受电场强度影响,使得同一带电粒子在不同电场里泳动速度不同。

为了便于比较,常用迁移率(或称泳动度)代替泳动速度表示粒子的泳动情况。

迁移率(泳动度)的定义为“带电粒子在单位电场强度下的泳动速度”,若以m 表示迁移率,则将(4)式代入(5)式,得由(6)式可以看出,迁移率(泳动度)仅与球形粒子所带电荷的数量,粒子大小及溶液粘度有关,而与电场强度无关。

由于氨基酸、蛋白质、酶等的电离度a 随溶液pH 变化而不同,所以实际上常使用有效迁移率。

有效迁移率u 为迁移率m 和当时条件下电离度a 的乘积。

即: u=m·a(7)将(6)式代入(7)式,得:由(8)式可以看出,凡能影响溶液粘度η的因素如温度,影响分子带电量q 及解离度a 的因素如pH 的改变,都会对有效迁移率产生影响。

因此,电泳应尽可能在恒温条件下进行。

并选用一定pH 的缓冲液。

同时,所选用的pH 以能扩大各种被分离物质所带电荷量的差异为好,以利于分离各种成分。

以上讨论的基本上是在溶液中进行的自由电泳的情况。

在支持介质中进行的各种电泳,除以上因素影响外,有效迁移率还受电渗现象的影响。

所谓电渗是指在电场中,液体对于固体支持物的相对移动。

例如在纸电泳中,由于滤纸(纤维素)上带有负电荷,因感应相吸而使与滤纸相接触的水溶液带正电荷,从而使液体向负极移动,带动着本来是向负极泳动的物质以更快的速度移动。

因此,电泳时应避免用高电渗物质作支持介质。

最后要考虑选用离子强度适宜的溶液。

一般最适的离子强度在0.02~0.2之间。

在稀溶液中,离子强度Ⅰ可用下式计算:(9)式中,mi为离子的克分子浓度,Zi为离子的价数。

3.聚丙烯酰胺凝胶聚丙烯酰胺凝胶电泳是以聚丙烯酰胺凝胶作为载体的一种区带电泳。

这种凝胶是以丙烯酰胺单体(Acrylamide,简写为Acr)和交联剂N,N'-甲叉双丙烯酰胺(N,N'-Methylena Bisacrylamide,简写为Bis)在催化剂的作用下聚合而成的。

Acr和Bis在它们单独存在或混合在一起时是稳定的,且具有神经毒性,操作时应避免接触皮肤。

但在具有自由基团体系时,它们聚合。

引发产生自由基团的方法有两种,即化学法和光化学法。

化学聚合的引发剂是过硫酸铵 (NH4)2S2O3(Ammonium persulfate,简写为Ap),催化剂是N,N,N',N'-四甲基乙二胺(Tetramethylenediamine,简写为TEMED)。

在催化剂TEMED 的作用下,由过硫酸铵(Ap)形成的自由基又使单体形成自由基,从而引起聚合作用。

TEMED 在低pH时失效,会使聚合作用延迟;冷却也可使聚合速度变慢;一些金属抑制聚合;分子氧阻止链的延长,防碍聚合作用。

这些因素在实际操作时都应予以控制。

光聚合以光敏感物核黄素(即V B2)作为催化剂,在痕量氧存在下,核黄素经光解形成无色基,无色基被氧再氧化成自由基,从而引起聚合作用。

过量的氧会阻止链长的增加,应避免过量氧的存在。

光聚合形成的凝胶孔径较大,而且随着时间的延长而逐渐变小,不太稳定,所以用它制备大孔径的浓缩胶较为合适。

采用化学聚合形成的凝胶孔径较小,而且重复性好,常用来制备分离胶。

聚丙烯酰胺的基本结构,为丙烯酰胺单位构成的长链,链与链之间通过甲叉桥联结在一起。

链的纵横交错,形成三维网状结构,使凝胶具有分子筛性质。

网状结构还能限制蛋白质等样品的扩散运动,使凝胶具有良好的抗对流作用。

此外,长链上富含酰胺基团,使其成为稳定的亲水凝胶。

该结构中不带电荷,在电场中电渗现象极为微小。

这些特点,使得聚丙烯酰胺适合作区带电泳的支持介质。

聚丙烯酰胺凝胶的质量主要由凝胶浓度和交联度决定。

每100ml凝胶溶液中含有的单体(Acr)和交联剂(Bis)总克数称为凝胶浓度,用T%表示。

凝胶溶液中,交联剂(Bis)占单体(Acr)和交联剂(Bis)总量的百分数称为交联度,用C%表示。

改变凝胶浓度以便适应各种样品的分离。

一般常用7.5%浓度的聚丙烯酰胺凝胶分离蛋白质,而用2.4%的分离核酸。

但根据蛋白质与核酸分子量不同,适用的浓度也不同(见表1)。

表1 凝胶浓度选用表4.不连续聚丙烯酰胺凝胶电泳的原理系统的不连续性表现在以下几个方面:(1)凝胶板由上、下两层胶组成,两层凝胶的孔径不同。

上层为大孔径的浓缩胶,下层为小孔径的分离胶。

(2)缓冲液离子组成及各层凝胶的pH不同。

本实验采用碱性系统。

电极缓冲液为pH8.3的Tris-甘氨酸缓冲液,浓缩胶为pH6.7的Tris-HCl缓冲液。

而分离胶为pH8.9的Tris-HCl 缓冲液。

(3)在电场中形成不连续的电位梯度。

在这样一个不连续的系统里,存在三种物理效应,即电荷效应、分子筛效应和浓缩效应。

在这三种效应的共同作用下,待测物质被很好地分离开来。

下面以本实验要分离的小麦苗过氧化物酶同工酶为例,分别说明三种效应的作用:(1)电荷效应:各种酶蛋白按其所带电荷的种类及数量,在电场作用下向一定电极,以一定速度泳动。

(2)分子筛效应:分子量小,形状为球形的分子在电泳过程中受到阻力较小,移动较快;反之,分子量大、形状不规则的分子,电泳过程中受到的阻力较大,移动较慢。

这种效应与凝胶过滤过程中的情况不同。

(3)浓缩效应:待分离样品中的各组分在浓缩胶中会被压缩成层,而使原来很稀的样品得到高度浓缩。

其原因如下:① 由于两层凝胶孔径不同,酶蛋白向下移动到两层凝胶界面时,阻力突然加大,速度变慢。

使得在该界面处的待分离酶蛋白区带变窄,浓度升高。

② 在聚丙烯酰胺凝胶中,虽然浓缩胶和分离胶用的都是Tris-HCl缓冲液,但上层浓缩胶为pH 6.7,下层分离胶为pH 8.9。

HCl是强电解质,不管在哪层胶中,HCl几乎都全部电离,Cl-布满整个胶板。

待分离的酶蛋白样品加在样品槽中,浸在pH8.3和Tris-甘氨酸缓冲液中。

电泳一开始,有效泳动率最大的Cl-迅速跑到最前边,成为快离子(前导离子)。

在pH6.7条件下解离度仅有0.1~1%的甘氨酸(pI = 6.0 )有效泳动率最低,跑在最后边,成为慢离子(尾随离子)。

这样,快离子和慢离子之间就形成了一个不断移动的界面。

在pH6.7条件下带有负电荷的酶蛋白,其有效泳动率介于快慢离子之间,被夹持分布于界面附近,逐渐形成一个区带。

由于快离子快速向前移动,在其原来停留的那部分地区成了低离子浓度区,即低电导区。

因为电位梯度V、电流强度I和电导率S之间有如下关系:所以在电流恒定条件下低电导区两侧就产生了较高的电位梯度。

这种在电泳开始后产生的高电位梯度作用于酶蛋白和甘氨酸慢离子加速前进,追赶快离子。

本来夹在快慢离子之间的酶蛋白区带,在这个追赶中被逐渐地压缩聚集成一条更为狭窄的区带。

这就是所谓的浓缩效应。

在此区带中,各种酶蛋白又按其电荷而分成不同层次,在进入分离胶前被初步分离,形成若干条离得很近但又不同的“起跑线”。

当酶蛋白和慢离子都进入分离胶后,pH从6.7变为8.9,甘氨酸解离度剧增,有效迁移率迅速加大,从而赶上并超过所有酶蛋白分子。

此时,快慢离子的界面跑到被分离的酶蛋白之前,不连续的高电位梯度不再存在。

于是,此后的电泳过程中,酶蛋白在一个均一的电位梯度和pH条件下,仅按电荷效应和分子筛效应而被分离。

与连续系统相比,不连续系统的分辨率大大提高,因此已成为目前广泛使用的分离分析手段。

三、实验材料、仪器和试剂1.实验材料小麦幼苗2.仪器(1)垂直板电泳槽及附件(玻璃板、硅胶条、梳子、导线等)(2)稳压稳流直流电泳仪(3)高速离心机(10 000r/min)(4)量筒:500mL×1,10mL×1,5mL×1(5)烧杯:250mL×4(6)微量注射器(50μL)(7)其他:玻棒、大培养皿等2.试剂贮液配制方法见表2。

表2 聚丙烯胺凝胶电泳贮液配制方法四、操作步骤1.贮液配制按上表配制贮液,但应注意(1)配好的贮液用棕色瓶盛装置冰箱内保存,可放1~2个月。

相关文档
最新文档