离散数学(第7讲习题课1)

合集下载

离散数学第七章

离散数学第七章

第七章部分课后习题参考答案7.列出集合A={2,3,4}上的恒等关系I A,全域关系E A,小于或等于关系L A,整除关系D A.={<2,2>,<3,3>,<4,4>}解:IA={<2,2>,<2,3>,<2,4>,<3,4>,<4,4>,<3,2>,<3,3>,<4,2>,<4,3>}EA={<2,2>,<2,3>,<2,4>,<3,3>,<3,4>,<4,4>}LAD={<2,4>}A13.设A={<1,2>,<2,4>,<3,3>}B={<1,3>,<2,4>,<4,2>}求A⋃B,A⋂B, domA, domB, dom(A⋃B), ranA, ranB, ran(A⋂B ), fld(A-B).解:A⋃B={<1,2>,<2,4>,<3,3>,<1,3>,<4,2>}A⋂B={<2,4>}domA={1,2,3}domB={1,2,4}dom(A∨B)={1,2,3,4}ranA={2,3,4}ranB={2,3,4}ran(A ⋂B)={4} fld R=dom R ⋃ran RA-B={<1,2>,<3,3>},fld(A-B)={1,2,3} 14.设R={<0,1><0,2>,<0,3>,<1,2>,<1,3>,<2,3>}求R R, R -1, R ↑{0,1,}, R[{1,2}]解:R R={<0,2>,<0,3>,<1,3>}R -1,={<1,0>,<2,0>,<3,0>,<2,1>,<3,1>,<3,2>}R ↑{0,1}={<0,1>,<0,2>,<0,3>,<1,2>,<1,3>} R[{1,2}]=ran(R ↑{1,2})={2,3}16.设A={a,b,c,d},1R ,2R 为A 上的关系,其中1R ={},,,,,a a a b b d{}2,,,,,,,R a d b c b d c b=求23122112,,,R R R R R R 。

离散数学 第7讲 拉格朗日定理剖析

离散数学 第7讲 拉格朗日定理剖析

23
<S3,◇>为三次对称群,此六阶群不是阿贝尔群。
12
2 3
31
◇ ◇
12
2 1
33 11
2 3
23
12
2 1
33
12
2 3
31 13
2 1
23
二、拉格朗日定理
定理5:设<H,>是群<G,>的子群, 于是b∈aH, 当且仅当a-1 b∈H 证明:b∈aH, 当且仅当存在一h∈H, 使b=ah, 即a-1 b=h, 因而,b ∈aH当且仅当a-1 b∈H。
bbcdea
ccdeab
ddeabc
Klein四元群
二、拉格朗日定理
例3 令A={1,2,3},A上置换的全体S3 = {pi i = 1,2,3,4,5,6}。
1 p1 1
2 2
33 p2 12
2 1
33 p3 13
2 2
31
1 p4 1
2 3
3 2
p5
12
2 3
31 p6 13
2 1
推论1:质数阶的群没有非平凡子群。 说明:<{e}, *>和<G, *>叫做群<G, *>的平凡子群。
推论2:在有限群<G , >中, 任何元素的阶必是|G|的一个因子。
说明:如果a∈G的阶是r ,则<{e,a,a2,…,ar-1},>是<G,>的子群。
推论3:一个质数阶的群必定是循环的, 并且任一与么元不同的元 素都是生成元。
设aH∩bH≠Ø, 那么必存在一个公共元素f, 有f∈aH∩bH,则存在h1,h2 ∈H, 使f=ah1= bh2,因此 a=bh2h1-1 下面证明aH⊆bH :

离散数学(第7讲)

离散数学(第7讲)

2013-7-4
计算机学院
17
基于上述情况,有必要对个体域进行统一,全部使用 全总个体域,此时,对每一个句子中客体变量的变化 范围用一定的特性谓词刻划之。而统一成全总个体域 后,此全总个体域在谓词公式中就不必特别说明,常 常省略不记。同时,这种特性谓词在加入到命题函数 中时必定遵循如下原则:
对于全称量词,刻划其对应个体域的特性谓词作为条
一、谓词 Predlicate 在对命题的内部逻辑关系进行研究时,把 基本命题分成客体(个体)和谓词。 客体——独立存在的具体事物或抽象概念(即 命题中所描述的对象。如主语,客观实体等)。 谓词——刻划客体的性质(特征)或描述客体 间的关系。 谓词一般用大写字母(串)表示; 个体用小写字母表示。
存在x;
每一个x;等等。
计算机学院
等等。
14
定义2.2
(x)称为全称量词,其中的x称为作
全称量化命题
用变量。一般将量词加在谓词之前,记为 (x)Q(x)。 (x)Q(x)取值为真的充分必要条 存在量化命题
件是对论域中的每个客体a,Q(a)都取值为真。
定义2.3 (x)为存在量词, 记为 (x)Q(x)。
(x)Q(x)取值为真的充分必要条件是对论域中
至少存在一个客体a,使Q(a)取值为真。
2013-7-4
计算机学院
15
例2-1.4 (续2)
在例1.4中,利用量词则有: (x)R(x) (x{老虎}) (x)P(x) (x{人}) (x)N(x) (x{人}) (x)Q(x) (x{人}) (x)C(x) (x{带伞的人}) (x)S(x) (x{自然数})
Q(x):x是用功的; R(x):x是肯于思考的; S(x):x是大学生; T(x,y):x解决了y; a:那位, b:一个数学难题。 则句子2)可完整地符号化为: P(a)∧Q(a)∧R(a)∧S(a)∧T(a,b)

离散数学课后习题答案第七章

离散数学课后习题答案第七章

第七章 特 殊 图 类习题7.11.解 因 m=n-1,这里m=6,所以n=6+1=7.2.解 不正确。

与平凡图构成的非连通图中有4个结点3条边,但是它不是树。

3K 3.证明 必要性。

因为G 中有n 个结点,边数m=n-1,又因为G 是连通的,由本节定理1可知,G 为树,因而G 中无回路。

再证充分性。

因为G 中无回路,又因为边数m=n-1,由本节定理1,可知G 为树,所以G 是连通的。

4.解 因 m=n-r,这里n=15,r=3,所以m=15-3=12,即G 有12条边。

5.解6个结点的所有不同构的树如图7-1所示。

图7-16.证明 由定理1,在任意的树中,边数),(m n 1−=n m;所以,由握手定理得)1(22)(1−==∑=n m v d ni i①⑴若T 没有树叶,则由于T 是连通图,所以T 中任一结点均有,从而2)(≥i v d n v d ni i2)(1≥∑= ②则①与②矛盾。

⑵若树T 仅有1片树叶,则其余1−n个结点的度数不小于2,于是121)1(2)(1−=+−≥∑=n n v d ni i③从而①、③相矛盾。

综合⑴,⑵得知T 中至少有两片树叶。

7.解 图7-2⑴中共有两棵非同构的生成树(如图7-3⑴,⑵)。

图7-2⑵中共有3棵非同构的生成树(如图7-3⑶,⑷,⑸)。

⑵⑴⑶⑷ ⑸图7-38.解 在图7-4中共有8棵生成树,如图7-5⑴~⑻所示,第i 生成树用表示。

,,,)8,,2,1( =iT i 7)(8=T W 8)()(61==T W T W 6)()(52==T W T W )()(73==T W T W 9)(4=T W 。

其中T 2,T 5是图中的最小生成树。

9.解 最小生成树T 如图7-7所示,W (T )=18。

a bc da b cda ba bcdabc d⑴⑵⑶⑷⑸⑹⑺ ⑻图7-5图7-4图7-6图7-7习题7.21.解 不一定是。

如图7-8就不是根树.2.解 五个结点可形成3棵非同构的无向树,如图7-9⑴,⑵,⑶所示。

离散数学-第七章习题答案

离散数学-第七章习题答案

第7章习题答案1.f(x)=2|x|+1是从整数集合到正整数集合的函数,它的值域是什么?解:它的值域是正奇数集合。

2.试问下列关系中哪个能构成函数?(1){〈x,y〉|x,y∈N,x+y<10}(2){〈x,y〉|x,y∈R,y=x2}(3){〈x,y〉|x,y∈R,y2=x}解;(1)、(3)不满足函数的定义,只有(2)是函数。

3.下列集合能够定义函数吗?如果能,求出它们的定义域和值域。

(1){〈1,〈2,3〉〉,〈2,〈3,4〉〉,〈3,〈1,4〉〉,〈4,〈1,4〉〉}(2){〈1,〈2,3〉〉,〈2,〈3,4〉〉,〈3,〈3,2〉〉}(3){〈1,〈2,3〉〉,〈2,〈3,4〉〉,〈1,〈2,4〉〉}(4){〈1,〈2,3〉〉,〈2,〈2,3〉〉,〈3,〈2,3〉〉}解:(1)、(2)、(4)定义的是函数。

(1)的定义域是{1,2,3,4},值域是{〈2,3〉,〈3,4〉,〈1,4〉}(2)的定义域是{1,2,3},值域是{〈2,3〉,〈3,4〉,〈3,2〉}(4)的定义域是{1,2,3},值域是{〈2,3〉}4.设f,g都是函数,并且有f⊆g和dom(g)=dom(f),证明f=g证明:假设f≠g,因为f⊆g和dom(g)=dom(f),则存在x1∈dom(g)和dom(f),使得〈x1,y1〉∈g但〈x1,y1〉∉f,因为f是函数,在定义域上处处有定义,所以必存在y2,使得〈x1,y2〉∈f,由f⊆g得〈x1,y2〉∈g,这与g是函数满足单值性矛盾。

故假设错误,必有f=g。

6.设X={0,1,2},求出X X中的如下函数(1) f2(x)=f(x)(2) f2(x)=x(3) f3(x)=x解:(1)有10个函数,分别是:f1(x)={〈0,0〉,〈1,0〉,〈2,0〉}f2(x)={〈0,1〉,〈1,1〉,〈2,1〉}f3(x)={〈0,2〉,〈1,2〉,〈2,2〉}f4(x)={〈0,1〉,〈1,1〉,〈2,2〉}f5(x)={〈0,2〉,〈1,1〉,〈2,2〉}f6(x)={〈0,0〉,〈1,0〉,〈2,2〉}f7(x)={〈0,0〉,〈1,2〉,〈2,2〉}f8(x)={〈0,0〉,〈1,1〉,〈2,0〉}f9(x)={〈0,0〉,〈1,1〉,〈2,1〉}f10(x)={〈0,0〉,〈1,1〉,〈2,2〉}(2)有4个函数,分别是:f1(x)={〈0,0〉,〈1,1〉,〈2,2〉}f2(x)={〈0,0〉,〈1,2〉,〈2,1〉}f3(x)={〈0,2〉,〈1,1〉,〈2,0〉}f4(x)={〈0,1〉,〈1,0〉,〈2,2〉}(3)有3个函数,分别是:f 1(x )={〈0,0〉,〈1,1〉,〈2,2〉}f 2(x )={〈0,1〉,〈1,2〉,〈2,0〉}f 3(x )={〈0,2〉,〈1,0〉,〈2,1〉}8.设f,g,h 是N → N 的函数, 其中N 是自然数集合,f(n)=n +1, g(n)=2n,⎩⎨⎧=是奇数若是偶数若n n n h 10)(试确定:f f ,f g ,g h ,h g 及(f g) h 。

离散数学第七章图论习题课ppt课件

离散数学第七章图论习题课ppt课件
有环和平行边,u至多与其余n-1个结点中每一个 有一条边相连接,即deg(u)≤n-1,因此,⊿ (G) =maxdeg(u)≤n-1。
24
设G是一个n阶无向简单图,n是大于等于3的 奇数。证明图G与它的补图中度数为奇数的结 点个数相等。
证明: 因为G是n阶无向简单图,且n是大于等于3的奇数,
故无向图的结点数为奇数,则所对应的n阶完全图 中每个结点的度数为n-1即为偶数, 利用奇数+奇数=偶数,偶数+偶数=偶数,所以, 在G中结点度数为奇数的结点,在其补图中的度 数也应为奇数,故G和其补图的奇数结点个数也 是相同的。
25
P286 1、在无向图G中,从结点u到结点v有一条长度为 偶数的通路,从结点u到结点v又有一条长度为奇 数的通路,则在G中必有一条长度为奇数的回路。
(4) D中长度为4的回路有多少条? 答: 长度为4的回路为11条。
(5) D中长度4的通路有多少条?其中有几条是回路? 答:长度4的通路88条,其中22条为回路。
(6) 写出D的可达矩阵。 44的全1矩阵。
17
简单无向图 G 必有2结点同度数。
证: 令 G={v1,…,vn},
(2) n阶非连通的简单图的边数最多可为n-1阶连通图 加上一个孤立点,所以边数为(n-1)(n-2)/2,最少为0。
20
一个图如果同构于它的补图,则该图称为自补图。
1)一个图是自补图,其对应的完全图的边数必为偶数; 2)证明:若n阶无向简单图是自补图,则n=4k或n=4k+1
(k为正整数)。 解:
平面图的对偶图
无向树及其性质 根树及其应用
地图着色与平 面图着色
3
4
一、无向图与有向图

《离散数学》课后习题答案

《离散数学》课后习题答案

1-1,1-2(1)解:a)是命题,真值为T。

b)不是命题。

c)是命题,真值要根据具体情况确定。

d)不是命题。

e)是命题,真值为T。

f)是命题,真值为T。

g)是命题,真值为F。

h)不是命题。

i)不是命题。

(2)解:原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a)设P:王强身体很好。

Q:王强成绩很好。

P∧Qb)设P:小李看书。

Q:小李听音乐。

P∧Qc)设P:气候很好。

Q:气候很热。

P∨Qd)设P: a和b是偶数。

Q:a+b是偶数。

P→Qe)设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

P Qf)设P:语法错误。

Q:程序错误。

R:停机。

(P∨ Q)→ R(6) 解:a)P:天气炎热。

Q:正在下雨。

P∧Qb)P:天气炎热。

R:湿度较低。

P∧Rc)R:天正在下雨。

S:湿度很高。

R∨Sd)A:刘英上山。

B:李进上山。

A∧Be)M:老王是革新者。

N:小李是革新者。

M∨Nf)L:你看电影。

M:我看电影。

┓L→┓Mg)P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh)P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。

(2)解:a)A是合式公式,(A∨B)是合式公式,(A→(A∨B))是合式公式。

离散数学第7讲

离散数学第7讲

4
个体词与个体域
个体词: 所研究对象中可以独立存在的具体或抽象的客体 个体词 个体常项: 表示具体事物的个体词, 个体常项 表示具体事物的个体词 用a, b, c等表示 等表示 个体变项: 表示抽象事物的个体词, 个体变项 表示抽象事物的个体词 用x, y, z等表示 等表示 个体域: 个体域 个体变项的取值范围 全总个体域: 全总个体域 宇宙间一切事物 是偶数, 能被2整除 例如 “若x是偶数 则x能被 整除 ” 是偶数 能被 整除.” x、 偶数和 是个体词 偶数和 是个体常项 x是个体变 是个体词, 是个体常项, 、 偶数和2是个体词 偶数和2是个体常项 是个体变 项 个体域可以是自然数集N, 整数集Z,…, 也可以是全总个 个体域可以是自然数集 整数集 体域
10
实例
将下列命题符号化, 并讨论其真值: 例4 将下列命题符号化 并讨论其真值 (1) 对任意的 均有 2-3x+2=(x-1)(x-2) 对任意的x, 均有x (2) 存在 使得 存在x, 使得x+5=3 分别取(a) 个体域D 个体域D 分别取 个体域 1=N, (b) 个体域 2=R 解 记F(x): x2-3x+2=(x-1)(x-2), G(x): x+5=3 (a) (1) ∀x F(x) 真值为1 真值为 (2) ∃x G(x) 真值为0 真值为 (b) (1) ∀x F(x) 真值为1 真值为 (2) ∃x G(x) 真值为1 真值为
9
一阶逻辑命题符号化
在一阶逻辑中将下面命题符号化: 例3 在一阶逻辑中将下面命题符号化 (1) 人都爱美 (2) 有人用左手写字 人都爱美; 个体域分别取(a) 人类集合 (b) 全总个体域 . 人类集合, 个体域分别取 爱美, 解: (a) (1) 设F(x): x爱美 符号化为 ∀x F(x) 爱美 (2) 设G(x): x用左手写字 符号化为 ∃x G(x) 用左手写字, 用左手写字 (b) 设M(x): x为人, F(x), G(x)同(a)中 为人, 为人 同 中 (1) ∀x (M(x)→F(x)) → (2) ∃ x (M(x)∧G(x)) ∧ M(x)称作特性谓词 称作特性谓词 称作

离散数学课后习题答案一

离散数学课后习题答案一

§1.1 命题和逻辑连接词习题1.11. 下列哪些语句是命题,在是命题的语句中,哪些是真命题,哪些是假命题,哪些命题的真值现在还不知道?(1)中国有四大发明。

(2)你喜欢计算机吗? (3)地球上海洋的面积比陆地的面积大。

(4)请回答这个问题! (5)632=+。

(6)107<+x 。

(7)园的面积等于半径的平方乘以圆周率。

(8)只有6是偶数,3才能是2的倍数。

(9)若y x =,则z y z x +=+。

(10)外星人是不存在的。

(11)2020年元旦下大雪。

(12)如果311=+,则血就不是红的。

解是真命题的有:(1)、(3)、(7)、 (9) 、(12) ;是假命题的有:(5)、 (8) ;是命题但真值现在不知道的有: (10)、 (11);不是命题的有:(2)、(4)、(6)。

2. 令p 、q 为如下简单命题:p :气温在零度以下。

q :正在下雪。

用p 、q 和逻辑联接词符号化下列复合命题。

(1)气温在零度以下且正在下雪。

(2)气温在零度以下,但不在下雪。

(3)气温不在零度以下,也不在下雪。

(4)也许在下雪,也许气温在零度以下,也许既下雪气温又在零度以下。

(5)若气温在零度以下,那一定在下雪。

(6)也许气温在零度以下,也许在下雪,但如果气温在零度以上就不下雪。

(7)气温在零度以下是下雪的充分必要条件。

解 (1)q p ∧;(2)q p ⌝∧;(3)q p ⌝∧⌝;(4)q p ∨; (5)q p →;(6))()(q p q p ⌝→⌝∧∨;(7)q p ↔。

3. 令原子命题p :你的车速超过每小时120公里,q :你接到一张超速罚款单,用p 、q 和逻辑联接词符号化下列复合命题。

(1)你的车速没有超过每小时120公里。

(2)你的车速超过了每小时120公里,但没接到超速罚款单。

(3)你的车速若超过了每小时120公里,将接到一张超速罚款单。

(4)你的车速不超过每小时120公里,就不会接到超速罚款单。

离散数学第7章 图论 习题

离散数学第7章 图论 习题

1 0 1 10
A=
1 0 0 00
1 0 1 00
0 0 0 00 i=4时,因为A[4,2]=1,将第四行
用Warshall算法求可
加到第2行,A不变。
达性矩阵。
i=5时,因为A的第5列全为0,所
i=1时,因为A的第一行 以A不变。
0 0 0 00
全为0,所以A不变。
i=2时,因为A的第2列 全为0,所以A不变。
充分性。 如果边e不包含在G的任一条回路中,那么连接结点u和v的边只 有e,而不会有其它连接u和v的任何路。因为如果连接u和v还有 不同于边e的路,此路与边e就组成一条包含边e的回路,从而导 致矛盾。所以删去边e后,u和v就不连通,故边e是割边。
300页(2) 如果u可达v,它们之间可能不止一条
路,在所有这些路中,最短路的长度 称为u和v之间的距离(或短程线), 记作d<u,v>,如果从u到v是不可达的, 则通常写成 d<u,v> =∞
2
练习7-2(2):若无向图G中恰有两个奇数度的结点, 则这两个结点之间必有一条路。
证明:设无向图G中两个奇数度的结点为u和v。 从u开始构造一条迹,即从u出发经关联于结点u的边e1到达结点 u1,若deg(u1)为偶数,则必可由u1再经关联于结点u1的边e2到达结 点u2,如此继续下去,每边只取一次,直到另一个奇数度结点停止, 由于图G中只有两个奇数度结点,故该结点或是u或是v。如果是v, 那么从u到v的一条路就构造好了。如果仍是结点u,此路是闭迹。
第7章 习题课
离散数学第7章 图论 习题
1
练习7-1(6)简单图的最大度小于结点数。
证明:设简单图G中有n个结点。 任取一个结点v, 由已知G是简单图没有环和重边,

离散数学:第7讲 等价关系

离散数学:第7讲 等价关系

C11n2 ,.nn
1.
2020/12/29
等价关系
34
Stirling子集数
递推公式: n n 1 n 1
k
k
k
k
1.
剔除一个
其余分k类
加入一类
其余分k-1类
2020/12/29
自成一类
等价关系
35
Bell数表
n
Bn
1
1
2
2
3
5
4
15
5
52
6
203
7
877
2020/12/29
n 8 9 10 11 12 13 14
具有对称性
2020/12/29
等价关系
8
问题(续2)
自反 对称 传递
tsr(R)=trs(R) str(R)=srt(R)
=rts( R )
=rst( R )
2020/12/29
等价关系
9
定理7.13
定理7.13: 设RAA且A,则 (1) R自反 s( R )和t( R )自反; (2) R对称 r( R )和t( R )对称; (3) R传递 r( R )传递。
xy
2020/12/29
等价关系
24
商集(quotient set)
商集: 设R是A上等价关系, A/R = { [x]R | xA }
称为A关于R的商集, 简称A的商集. 例11(续):
A/R ={ {1,4}, {2,5,8}, {3} }.
2020/12/29
等价关系
25
例12
例: 考虑A={a,b,c}上的等价关系.
等价关系
Bn 4,140 21,147 115,975 678,570 4,213,597 27,644,437 190,899,322

离散数学第7章习题解答

离散数学第7章习题解答

第7章习题解答(1),(2),⑶,⑸都能组成无向图的度数列,其中除⑸外又都能组成无向简单图的度数列.分析1°非负整数列〃詔2,…,血能组成无向图的度数列当且仅当f川为r-1偶数,即心,〃2,…,〃”中的奇数为偶数个.(1),(2),(3),⑸中别离有4个,0个,4个,4个奇数,所以,它们都能组成无向图的度数列,固然,所对应的无向图极可能是非简单图•而(4)中有3个奇数,因此它不能组成无向图度数列.不然就违背了握手定理的推论.2°⑸虽然能组成无向图的度数列,但不能组成无向简单度数列.不然,若存在无向简单图G,以1,3,3,3为度数列,不妨设G中极点为儿宀宀宀,且〃(片)=1, 于是〃(”2)= d(y3)= J(v4) = 3.而儿只能与v2,v3»v4之一相邻,设片与冬相邻,这样一来,除冬能达到3度外,耳宀都达不到3度,这是矛盾的.在图所示的4个图中,(1)以1为度数列,⑵以2为度数列,⑶以3为度数列,(4) 以4为度数列(非简单图).⑴ (2)(3) (4)困7.5设有几简单图D以2, 2, 3, 3为度数列,对应的极点别离为y r v2,v3,v4,由于J(v) =J+(v) + ^-(v),所示,d\v l)-d-(v i) = 2-0 = Zd+(v2) = d(v2)-d-(v2)= 2-0 = 2,J*(V3)=d(v3)-d-(v3) = 3-2 = l,J+(v4)= 〃(勺)一旷(勺)= 3-3 = 0 由此可知,D的出度列为2,2, 1,0,且知足工(广化)=》旷(勺).请读者画出一个有向图.以2, 2, 3, 3为度数列,且以0,0, 2, 3为入度列,以2, 2, 1, 0为出度列.D的入度列不可能为1,1,1, 1.不然,必有出度列为2, 2, 2,2(因为J(v) = J*(v) + J-(v)),)此时,入度列元素之和为4,不等于出度列元素之和8,这违背握手定理.类似地讨论可知,1, 1, 1, 1也不能为D的出席列.不能.N阶无向简单图的最大度厶</7-1,而这里的n个正整数彼此不同, 因此这n个数不能组成无向简单图的度数列,不然所得图的最大度大于n,这与最大度应该小于等于n-1矛盾.(1) 16个极点.图中边数加= 16,设图中的极点数为〃.按照握手定理可知2m = 32 =》〃(片)=Inr-I所以,n = 16.(2)13个极点.图中边数也= 21,设3度极点个数为x,由握手定理有2in = 42 = 3 x 4 + 3x由此方程解出x = 10.于是图中极点数71 = 3+10 = 13.(3)III握手定理及各极点度数均相同,寻觅方程2x24 = nk的非负整数解,这里不会出现儿k均为奇数的惜况.其中“为阶级,即极点数,£为度数共可取得下面10种情况.①个极点,度数为48.此图必然是由一个极点的24个环组成,固然为非简单图.②2个极点,每一个极点的度数均为24.这样的图有多种非同构的情况,必然为非简单图.③3个极点,每一个极点的度数均为16.所地应的图也都是非简单图.④4个极点,每一个极点的度数均为12.所对应的图也都是非简单图.⑤6个极点,每一个极点的度数均为8,所对应的图也都是非简单图.⑥个极点,每一个极点的度数均为6.所对应的非同构的图中有简单图,也有非简单图.⑦12个极点,每一个极点的度数均为4.所对应的非同构的图中有简单图, 也有非简单图.⑧16个极点,每一个极点的度数均为3,所对应的非同构的图中有简单图,也有非简单图.⑨24个极点,每一个极点的度数均为2.所对应的非同构的图中有简单图,也有非简单图.⑩48个极点,每一个极点的度数均为1,所对应的图是唯一的,即由24个K,■ 组成的简单图.分析由于n阶无向简单图G A(G)<«-1,的以①所对应的图不可能有简单图•⑥-⑨既有简单图,也有非简单图,读者可以画出若干个非同构的图,而⑩只能为简单图.设G为n阶图,由握手定理可知70 = 2 x 35 =》〃(*]) n 3n,所以,这里,匕」为不大于兀的最大整数,例如[_2」=2丄2.5」=2,斤」=23.由于3(G) = n-l,说明G中任何极点v的度数J(v) > J(G) = /7-1,可是由于G为简单图,因此△(G)S-1,这乂使得J(v) < n -1,于是1,也就是说,G中每一个极点的度数都是幵-1,因此应有△(G)S-1.于是G为("-1)阶正则百度文库-好好学习.天天向上图,即G为n阶完全图K”.由G的补图7的概念可知,GUG为K”,由于n为奇数,所以,K”中各项极点的度数//-1为偶数•对于任意的卩e卩(G),应有v e V(G),且百度文库•好好学习.天天向上(V)_ d G(y) = C I K K(V)=办一1其中d G(v)表示V在G中的度数,J- (v)表示「在E中的度数.曲于n -1为偶数,所以,与4(叭同为奇数或同为偶数,因此若G有r个奇度极点,则7也有r 个奇度极点.由于£>匸ZX所以,m <m.而n阶有向简单图中,边数/n<n(n-l),所以,应n(n -1) = m < m < n(n一1)这就致使川=n(n-l),这说明D为n阶完全图,且D =D.图给岀了心的18个非同构的子图,其中有11个生成子图(8-18),其中连通的有6个11, 12, 13, 14, 16,17).图中,n, m别离为极点数和边数.K-有11个生成子图,在图中,它们别离如图8-18所示•要判断它们肖中哪些是自补图,首先要知道同构图的性质,设G与G?的极点数和边数•若q = G2, 则= n2且m x = m2・£7.6百度文库•好好学习.天天向上(8)的补图为(14) = K,,它们的边数不同,所以,不可能同构.因此⑻与(14) 均不是自补图类似地,(9)的补图为(13),它们也非同构,因此它们也都不是自补图.(10)与(12)互为补图,它们非同构,因此它们都不是自补图.(15)与(17)互为补图,它们非同构,所以,它们都不是自补图.类似地,(16)与(18)互为补图且非同构,所以,它们也都不是自补图.而(11)与自己的补图同构,所以,(11)是自补图.3阶有向完全图共有20个非同构的子图,见图所示,其中(5)-(20)为生成子图,生成子图中(8), (13), (16), (19)均为自补图.分析在图所示的生成子图中,(5)与(11)互为补图,(6)与(10)互为补图,(7)与(9)互为补图,(⑵与(14)互为补图,(15)与(17)互为补图,(18)与(20) 互为补图,以上互为补图的两个图边数均不相同,所以,它们都不是自补图.而(8), (13), (16), (19)4个图都与自己的补图同构,所以,它们都是自补图.不能.都中心的子图,而且都是成子图.而心的两分析在同构的意义下,GP G2,G3条边的主成子图中,只有两个是非同构的,见图中(10)与(15)所示.山鸽巢原理可知,G r G2,G3中至少有两个是同构的,因此它们不可能彼此都非同构.鸽巢原理川只鸽飞进H个鸽巢,其中心2,则至少存在一巢飞入至少[口只n 鸽子.这里「刃表示不小于X的最小整数.例如,⑵=2,「2.5] = 3.7. 14 G是唯一的,即便G是简单图也不唯一.百度文库-好好学习.天天向上分析 山握手定理可知2也=3从乂山给的条件得联立议程组2m = 3/2<2〃 一 3 = m.解出” =6,加= 9.6个极点,9条边,每一个极点的度数都是3的图有多种非同构的情况,其中有多个非简单图(带平行边或环),有两个非同构的简单图,在图的事实,设GG 都是n 阶简单图,则G, =G 2当且仅当石三房,其中瓦,不别离 为G 与62的补图.知足要求的简单图都是6阶9条边的3正则图,因此它们的补 图都为6阶6条边的2正则图(即每一个极点度数都是2).而心的所有生成子图 中,6条边2正则的非同构的图只有两个,见图中(3), (4)所示的图,其中(3)为(1) 的补图,⑷为⑵的补图,知足要求的非同构的简单图只有两个.但知足要求的非同简单图有多个非同构的,读者可自己画出多个来. 将心的极点标定顺序,讨论片所关联的边.由鸽巢原理(见 题),与片关联 的5条边中至少有3条边颜色相同,不妨设存在3条红色边,见图中(1)所示(用 实线表示红色的边)并设它们关联另外3个极点别离为V 2,V 4,V 6.若”2,^,%组成 的心中(1), (2)给出了这两个非同构的简单图.知足条件的非同构的简单图只有图 中,(1),⑵所示的图,⑴与⑵所示的图,⑴ 与(2)是非同构的.注意在(1)中不存在3个彼此相邻的极点, 而在(2)中存在3个彼此相邻的极点,因此(1) 图与(2)图非同构.下面分析知足条件的简单 图只有两个是非同构的•首先注意到(1)中与(2)中图都是心的生成子图,而且还有这样£ 7.8百度文库•好好学习.天天向上中还有红色边,比如边(v2,v4)为红色,则v,,v2,v4组成的©为红色心,见图中⑵所示.若v2,v4,v6组成的心各边都是蓝色(用虚线表示),则V2,V4,V6组成的&为蓝色的.(1> ⑵(3)困7.9在图所示的3个图中,(1)为强连通图,(2)为单向连通图,但不是强连通的,(3)是弱连通的,不是单向连通的,更不是强连通的.分析在(1)中任何两个极点之间都有通路,即任何两个极点都是彼此可达的,因此它是强连能的.(2)中c不可达任何极点,因此它不是强连通的,但任两个极点存在一个极点可达另外一个极点,所以,它是单向可达的.(3)中“,c 彼此均不可达,因此它不是单向连通的,更不是强连通的.判断有向图的连通性有下面的两个判别法.1°有向图D是强连通的当且仅当D中存在通过每一个极点至少一次的回路.2°有向图D是单向连通的当且仅当D中存在通过每一个极点至少一次的通路.(1)中“仇为通过每一个极点一次的回路,所以,它是强连能的.⑵中为通过每一个极点的通路,所以,它是单向连通的,但没有通过每一个极点的回路,所以,它不是强连通的.(3)中无通过每一个极点的回路,也无通过每一百度文库-好好学习.天天向上个极点的通路,所以,它只能是弱连通的.G-E的连通分支必然为2,而G-V的连通分支数是不肯定的.百度文库•好好学习.天天向上分析 设E 为连通图G 的边割集,则G-E 的连通分支数p(G - E ) = 2,不可 能大于2.不然,比如“(G -E ) = 3,则G-E 由3个小图G,,G 2,G 3组成,且E 中边 的两个端点分属于两个不同的小图.设E”中的边的两个端点一个在G 中,另一 个在G?中,则E 「uE ,易知〃(G-£”)= 2,这与F 为边割集矛盾,所以, p(G-E ) =2.但p(G-V )不是定数,固然它大于等于2,在图中,"={“」,}为⑴的点割集, /XG-V ) = 2,其中G 为⑴中图.V =(v }为⑵中图的点割集,且卩为割点, “(G -V) = 4,其中G 为⑵中图.解此题,只要求岀D 的邻接矩阵的前4次幕即可.D 中长度为4的通路数为屮中元素之和,等于15,其中对角线上元素之和为3,即D 中长度为3的回路数为3. b 到6的长度为4的通路数等于尿:> =2.分析 用邻接矩阵的幕求有向图D 中的通路数和回路数应该注意以下儿点:1°这里所谈通路或回路是概念意义下的,不是同构意义下的.比如,不同始'o 1 1 0 1 0 0・ 0 A =0 1 0 10 0 0 0'1 1 1 1 ■1 1 0 1=0 1 1 10 0 0 1_"1 0 1 0 1 1 1・A 2=1 0 0 10 0 0 1'1 2 1 2~1 1 1 1A 4=1 1 0 10 0 0 1 (2)百度文库-好好学习.天天向上点(终点)的回路2°这里的通路或回路不但有低级的、简单的,还有复杂的.例/lO, v l,v2,v1,v2,v1是一条长为4的复杂回路.3°回路仍然看成是通路的特殊情况.读者可利用求D中长度为2和3的通路和回路数.答案A:④.分析G中有皿个k度极点,有(// - N k)个伙+1)度极点,由握手定理可知工J(v z) = k-N k + 伙 +1)(/7 一NJ = 2m=> Nk = n{k + 1) —2n.答案A:②;B:③.分析在图中,图(1)与它的补同构,再没有与图(1)非同构的自补图了,所以非同构的无向的4阶自补图只有1个.图(2)与它的补同构,图(3)与它的补也同构,而图(2)与图(3)不同构,再没有与(2), (3)非同构的自补图了,所以,非同械的5阶自补图有2个.(1)⑵⑶困7.12答案A:④;B:③;C:④;D:©.分析(1)中存在通过每一个极点的回路,如很/1力0.. (2)中存在通过每一个极点的通路,但无回路.(3)中无通过每一个极点至少一次的通路,其实,两个极点互不可达.(4)中有通过每一个极点至少一次的通路,但无回路,负Mcbd为通过每一个极点的通路•(5)中存在通过每一个极点至少一次的回路,如aedbcdba (6)中也存在通过每一个极点的回路,如baebdcb. ill题可知,(1), (5), (6)是强连通的,(1), (2), (4), (5), (6)是单向连能的,(2), (4)是非强连通的单向连通图.注意,强连通图必为单向连通图.6个图中,只有(3)既不是强连通的,也不是连通的,它只是弱连通图.在⑶中,从&到b无通路,所以d,<a y b>= 00,而方到a有唯一的通路加,所以〃< b.a >= 1 ・答案A:①;B:⑥(十)C:②;D:④.分析用Dijkstra标号法,将计算机结果列在表中.表中第x列最后标定回表示b到x的最短路径的权为y,且在b到x的最短路径上,Z邻接到x,即x的前驱元为乙曲表可知,a的前驱元为c (即a邻接到c), c的前驱元为b,所以,b到a 的最短路径为仇其权为4.类似地计论可知,b到c的最短路径为be,其权为到d的最短路径为bceg〃,其权为到e的最短路径为bee,其权为7.答案A:⑧;B:⑩C:③;D:③和④.分析按求最先、最晚完成时间的公式,先求各极点的最先完成时间,再求最晚完成时间,最后求缓冲时间。

离散数学(屈婉玲版)第七章部分答案

离散数学(屈婉玲版)第七章部分答案

7.1 列各组数中,那些能构成无向图的度数列?那些能构成无向简单图的度数列?(1)1,1,1,2,3(2)2,2,2,2,2(3)3,3,3,3(4)1,2,3,4,5(5)1,3,3,3解答:(1),(2),(3),(5)能构成无向图的度数列。

(1),(2),(3)能构成五项简单图的度数列。

7.2 设有向简单图D 的度数列为2,2,3,3,入度列为0,0,2,3,试求D 的出度列。

解:因为 出度=度数-入度,所以出度列为2,2,1,0。

7.3 设D 是4阶有向简单图,度数列为3,3,3,3。

它的入度列(或出度列)能为1,1, 1,1吗?解:由定理7.2可知,有向图的总入度=总出度。

该有向图的总入度=1+1+1+1=4,总出度=2+2+2+2=8,4!=8,所以它的出度列(或入度列)不能为1,1,1,1。

7.6 35条边,每个顶点的度数至少为3的图最多有几个顶点?解:根据握手定理,所有顶点的度数之和为70,假设每个顶点的度数都为3,则 n 为小于等于370的最大整数,即:23 ∴ 最多有23个顶点7.7 设n 阶无向简单图G 中,δ(G )=n-1,问△(G )应为多少?解: 假设n 阶简单图图n 阶无向完全图,在K n 共有2)1(-n n 条边,各个顶点度数之和为n (n-1)∴每个顶点的度数为nn n )1(-=n-1 ∴△(G )=δ(G )=n-17.8 一个n (n ≥2)阶无向简单图G中,n 为奇数,有r 个奇度数顶点,问G的补图G 中有几个奇度顶点?解:在K n 图中,每个顶点的度均为(n-1),n 为奇数,在G中度为奇数的顶点在G 中仍然为奇数,∴共有r 个奇度顶点在G 中7.9 设D是n 阶有向简单图,D’是D的子图,已知D’的边数m ’=n (n-1),问D的边数m 为多少?解: 在D’中m ’=n (n-1) 可见D’为有个n 阶有向完全图,则D=D’ 即D’就是D本身,∴m=n (n-1)7.18 有向图D 入图所示。

离散数学-第七章二元关系课后练习习题及答案

离散数学-第七章二元关系课后练习习题及答案

第七章作业评分要求:1. 合计100分2. 给出每小题得分(注意: 写出扣分理由).3. 总得分在采分点1处正确设置.1 设R={<x,y>|x,y∈N且x+3y=12}.【本题合计10分】(1) 求R的集合表达式(列元素法);(2) 求domR, ranR;(3) 求RR;(4) 求R{2,3,4,6};(5) 求R[{3}];解(1) R={<0,4>,<3,3>,<6,2>,<9,1>,<12,0>}【2分】(2) domR={0,3,6,9,12}, ranR={0,1,2,3,4}【2分】(3) RR={<3,3>, <0,4>}【2分】(4) R{2,3,4,6}={<3,3>, <6,2>}【2分】(5) R[{3}]={3}【2分】2 设R,F,G为A上的二元关系. 证明:(1)R(F∪G)=RF∪RG(2)R(F∩G)RF∩RG(3)R(FG)=(RF)G.【本题合计18分:每小题6分,证明格式正确得3分,错一步扣1分】证明(1)<x,y>,<x,y>∈R(F∪G)t (xRt∧t(F∪G)y) 复合定义t(xRt∧(tFy∨tGy) ∪定义t((xRt∧tFy)∨(xRt∧tGy)) ∧对∨分配律t(xRt∧tFy)∨t(xRt∧tGy) 对∨分配律x(RF)y∨x(RG)y 复合定义x(RF∪RG)y ∪定义得证(2)<x,y>,x(R(F∩G))yt(xRt∧t(F∩G)y) 复合定义t(xRt∧(tFy∧tGy)) ∩定义t((xRt∧tFy)∧(xRt∧tGy)) ∧幂等律, ∧交换律, ∧结合律t(xRt∧tFy)∧t(xRt∧tGy) 补充的量词推理定律x(RF)y∧x(RG)y 复合定义x(RF∪RG)y ∪定义得证(3)<x,y>,<x,y>∈R(FG)s (<x,s>∈R∧<s,y>∈(FG)) 定义s (<x,s>∈R∧t (<s,t>∈F∧<t,y>∈G))) 定义st(<x,s>∈R∧<s,t>∈F∧<t,y>∈G) 辖域扩张公式ts((<x,s>∈R∧<s,t>∈F)∧<t,y>∈G) 存在量词交换t(s(<x,s>∈R∧<s,t>∈F)∧<t,y>∈G) 辖域收缩公式t(<x,t>∈(RF)∧<t,y>∈G) 复合定义<x,y>∈(RF)G 复合定义得证3 设F={<x,y>|x-y+2>0∧x-y-2<0}是实数集R上的二元关系, 问F具有什么性质并说明理由.【本题合计10分:每种性质2分----答对得1分,正确说明理由得1分】解F={<x,y>|x-y+2>0∧x-y-2<0}={<x,y>|-2<x-y<2}自反性: x∈R, <x,x>∈F显然.对称性: <x,y>,<x,y>∈F-2<x-y<2-2<y-x<2<y,x>∈F.不具有反自反性: 反例<2,2>∈F不具有反对称性: 反例<2,3>,<3,2>∈F, 显然2≠3不具有传递性: 反例<2,>,<,5>∈F, 但<2,5>不属于F.4 设A={a,b,c}, R={<a,b>,<a,c>},(1) 给出R的关系矩阵;(2) 说明R具有的性质(用关系矩阵的判定方法说明理由)【本题合计12分:第(1)小题2分;第(2)小题10分----答对性质得1分,说明理由得1分】解(1)R的关系矩阵M(R)为0 1 10 0 00 0 0(2)不具有自反性: M(R)的主对角线不是全为1是反自反的: M(R)的主对角线全为0不具有对称性: M(R)不是对称的是反对称的: M(R)对称的位置至多有一个1是传递的: M(R2)如下0 0 00 0 00 0 0显然满足: 如果M(R2)任意位置为1, 则M(R)对应位置也为15 设A≠, RA×A, 证明(1) r(R)=R∪I A(2) s(R)=R∪R-1【本题合计12分,每小题6分----证明格式正确得2分,过程错误一步扣1分】证明(1) 只要证明r(R)R∪I A和R∪I A r(R)即可先证r(R)R∪I A:I A R∪I AR∪I A自反(自反性的充要条件)r(R)R∪I A (自反闭包的最小性)再证R∪I A r(R):Rr(R)∧I A r(R) (自反闭包的性质及自反性的充要条件)R∪I A r(R)得证(2) 只要证明s(R)R∪R-1及R∪R-1s(R)即可先证s(R)R∪R-1:(R∪R-1)-1=R∪R-1 (理由如下: <x,y>,<x,y>∈(R∪R-1)-1<y,x>∈R∪R-1 (逆运算定义)<y,x>∈R∨<y,x>∈R-1 (∪定义)<x,y>∈R-1∨<x,y>∈R (逆运算定义)<x,y>∈R∪R-1 (∪定义, ∪交换律)所以(R∪R-1)-1=R∪R-1 )R∪R-1是对称的(对称性的充要条件)s(R)R∪R-1 (对称闭包的最小性)再证R∪R-1s(R):Rs(R) (闭包定义) ∧R-1s(R) (后者理由如下:<x,y>,<x,y>∈R-1<y,x>∈R (逆运算定义)<y,x>∈s(R)<x,y>∈s(R) (s(R)是对称的)所以R-1s(R) )R∪R-1s(R)得证6 设A={a,b,c,d}, R={<a,d>,<b,a>,<b,c>,<c,a>,<c,d>,<d,c>}, 用Warshall算法求t(R).【本题合计8分】解依次求出W0,W1,W2,W3,W4=t(R)【2分】W0=M(R)= 0 0 0 11 0 1 01 0 0 10 0 1 0【1分】W1= 0 0 0 11 0 1 11 0 0 10 0 1 0【1分】W2= 0 0 0 11 0 1 11 0 0 10 0 1 0【1分】W3= 0 0 0 11 0 1 11 0 0 11 0 1 1【1分】W4= 1 0 1 11 0 1 11 0 1 11 0 1 1【1分】即t(R)={<a,a>,<a,c>,<a,d>,<b,a>,<b,c>,<b,d>,<c,a>,<c,c>,<c,d>,<d,a>,<d,c>,<d,d>}.【1分】7 设R为A上的自反和传递的关系, 证明R∩R-1是A上的等价关系.【本题合计10分】证明自反性: x∈A,xRx∧xR-1x x(R∩R-1)x【3分】对称性: x,y∈A,x(R∩R-1)y xRy∧xR-1y yR-1x∧yRx y(R∩R-1)x【3分】传递性: x,y,z∈A,x(R∩R-1)y∧y(R∩R-1)z xRy∧xR-1y∧yRz∧yR-1z(xRy∧yRz)∧(xR-1y∧yR-1z) xRz∧xR-1z x(R∩R-1)z【4分】得证.8 设A={1,2,3,4}, 在A×A上定义二元关系R,<u,v>,<x,y>∈A×A, <u,v>R<x,y>u+y=v+x(1)证明R是A×A上的等价关系;(2)确定由R引起的对A×A的划分.【本题合计10分】解(1)自反性: <x,y>∈A×A, <x,y>R<x,y>显然成立.【2分】对称性: <x,y>,<u,v>∈A×A,<x,y>R<u,v>x+v=y+uu+y=v+x<u,v>R<x,y>【2分】传递性: <x,y>,<u,v>,<s,t>∈A×A,<x,y>R<u,v>∧<u,v>R<s,t>x+v=y+u ∧u+t=v+sx+t=y+s<x,y>R<s,t>【2分】因此R 是A×A 上的等价关系.(2)根据R 的定义, <x,y>R<u,v>x+v=y+ux -y=u -v, 因此[<x,y>]R={<u,v>|<u,v>∈A×A ∧u -v=x -y},【2分】 所以R 引起的划分如下:{ { <1,1>,<2,2>,<3,3>,<4,4>},{<1,2>,<2,3>,<3,4>},{<2,1>,<3,2>,<4,3>},{<1,3>,<2,4>},{<3,1>,<4,2>},{<1, 4>},{<4,1>} }【2分】9 设R, S 是A={1,2,3,4}上的等价关系, 其关系矩阵分别为 【本题合计5分】1100110000100001R M ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 1000011001100001S M ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭.求包含R 与S 的最小的等价关系.分析: 设包含R 与S 的最小等价关系为T ,则RT, ST, 所以RS T. 而T 是等价关系,根据等价关系的定义,T 应该具有自反性、对称性和传递性。

7离散数学第7章课件ppt_高等教育出版社_屈婉玲_耿素云_张立昂主编

7离散数学第7章课件ppt_高等教育出版社_屈婉玲_耿素云_张立昂主编
3
笛卡儿积的性质
(1) 不适合交换律 A B B A (A B, A , B )
(2) 不适合结合律 (A B) C A (B C) (A , B , C )
(3) 对于并或交运算满足分配律 A (B C) = (A B) (A C) (B C) A =
(B A) (C A) A (B C) = (A B) (A C) (B C) A =
1 1 0 0
M
R
0
0
0 0
1 0
1
0
0
1
0
0
12
7.3 关系的运算
关系的根本运算 定义7.6 关系的定义域、值域与域分别定义为
domR = { x | y (<x,y> R) } ranR = { y | x (<x,y> R) } fldR = domR ranR
例5 R={<1,2>,<1,3>,<2,4>,<4,3>}, 那么 domR={1, 2, 4} ranR={2, 3, 4} fldR={1, 2, 3, 4}
t (<x,t>∈FG∧<t,y>∈H) t ( s (<x,s>∈F∧<s,t>∈G)∧<t,y>∈H) t s (<x,s>∈F∧<s,t>∈G∧<t,y>∈H) s (<x,s>∈F∧t (<s,t>∈G∧<t,y>∈H)) s (<x,s>∈F∧<s,y>∈GH) <x,y>∈F(GH) 所以 (FG)H = F(GH)
<x,y> <x,y>∈RIA
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.不是命题 B.是命题但不是简单命题 C.是命题而且是简单命题
(3)这房间可真热呀! A.不是命题 B.是命题但不是简单命题 C.是命题而且是简单命题
(4)x+y>10。
A.不是命题 B.是命题但不是简单命题 C.是命题而且是简单命题 (5)苹果树和梨树都是落叶乔木。
A.不是命题 B.是命题但不是简单命题 C.是命题而且是简单命题
பைடு நூலகம்(P∧Q)→R (蕴涵式)
13
8、试证明(P∧(Q∨R))∨(P∧ ~Q∧ ~R) P
证明: (P∧(Q∨R))∨(P∧ ~Q∧ ~R) P∧((Q∨R)∨(~Q∧ ~R))(分配律)
P∧((Q∨R)∨~(Q∨R)) (De Morgan定律)
P∧T(矛盾律) P (同一律)
14
9、证明
两种可能不能同时为真,又不能同时为假,只有 一种是真,所以应是异或(排斥或)。
注:教室里有30或40人(或不是做联结词,而是指大约人数)
4
三、典型例题
1、下列语句中哪些是命题?是命题的句子中哪些是简单命题?
(1)请快开门!
A.不是命题 B.是命题但不是简单命题 C.是命题而且是简单命题 (2)你去哪里?
5
(6)2是质数或合数。 A.不是命题 B.是命题但不是简单命题 C.是命题而且是简单命题 (7)豆沙包是由面粉和红小豆做成的。 A.不是命题 B.是命题但不是简单命题 C.是命题而且是简单命题 (8)吃一堑,长一智。 A.不是命题 B.是命题但不是简单命题 C.是命题而且是简单命题 (9)n是偶数当且仅当它能被3整除。(n为一固定的自然数) A.不是命题 B.是命题但不是简单命题 C.是命题而且是简单命题
~(P→Q) ~(P→Q)∨R
0 0 0 0 1 1 0 0 0 1 0 1 1 1 0 1
极大项
~((Q→P)∧(P→Q)) (蕴涵式)
~(PQ) (等价式)
15
10、 G=~(P→Q)∨R,求主析取和主合取范式。 解:首先列出其真值表如下:
P Q R 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 P→Q 1 1 1 1 0 0 1 1
11
6、设A与B均为含n个命题变元的公式,判断下列命题是否为真?
(1)为假;(2)为真;(3)为真;(4)为假;(5)为假;(6)为假;(7)为真。
12
7、证明P→(Q→R) (P∧Q)→R
证明:P→(Q→R) ~P∨(Q→R)(蕴涵式) ~P∨(~Q∨R) (蕴涵式) (结合律) ~ (P∧Q)∨R (De Morgan定律) (~P∨ ~Q)∨R
p q 0 0 ~p 1 1 0 0 ~q 1 0 1 0 p→q 1 1 0 1 ~q→ ~p 1 1 0 1 (p→q)→(~q→ ~p) 1 1 1 1
表1
p∧ ~(q→p)的真值表 0 1
1 0 1 1
(1)为矛盾式;(2)为重言式;(3)为可满足式;
10
(1)p→q,其中,p:2+2=4,q:地球静止不动,真值为0。 (2)p→q,其中,p:2+2=4,q:地球运动不止,真值为1。 (3)┐p→┐q,其中,p:地球上有树木,q:人类能生存,真值为1。 (4)┐p→q,其中,p:地球上有水,q:是无理数,真值为1。
第一章 小结
一、基本概念
命题
命题的解释 原子命题、复合命题 逻辑联结词(~、∨、∧、、→、)
范式
句节、子句、短语、析取范式、合取范式 极小项---主析取范式 极大项---主合取范式
命题公式
公式的解释 永真式(重言式) 永假式(矛盾式,不可满足公式) 可满足式
命题公式的蕴涵
基本蕴含(关系)式
推理规则
① P规则(称为前提引用规则) ② T规则(逻辑结果引用规则) ③ CP规则(附加前提规则)
命题公式的等价
替换定理 对偶式 对偶原理 基本等价式
1
二、基本方法
1、应用基本等价式及置换规则进行等价演算 2、求主析取(主合取)范式的方法 1)等价变换法 2)真值表技术法 主合取范式----在命题公式的真值表中,使公式取值0时的解释所对应的
全部极大项的合取式。
主析取范式----在命题公式的真值表中,使公式取值1时的解释所对应的 全部极小项的析取式。 3、推理的各种方法
(1)直接法
(2)利用CP规则 (3)反证法 4、消解法
2
析取--- ∨
联结词∨表示析取。两个命题P和Q析取为一 注:汉语中的“或”有时与∨有相同
个新的命题P∨Q(读作‘P或Q’)。P∨Q为
((P∨Q) ∧~(P∧Q)) ~(PQ)
((P∨Q)∧~(P∧Q))
((P∨Q)∧(~P∨~Q)) (De Morgan定律) ((P∨Q)∧~P)∨ ((P∨Q)∧~Q)) (分配律)
((P∧~P)∨(Q∧~P))∨((P∧~Q)∨(Q∧~Q))
(Q∧~P)∨(P∧~Q) (矛盾律) ~(~Q∨P)∨~(~P∨Q) (De Morgan定律)
(1)A;(2)A;(3)A;(4)A;(5)B;(6)B;(7)C;(8)B;(9)B。
6
2、上题中语句(5)——(9)为命题,如下所示: (5)苹果树和梨树都是落叶乔木。 (6)2是质数或合数。 (7)豆沙包是由面粉和红小豆做成的。 (8)吃一堑,长一智。 (9)n是偶数当且仅当它能被3整除。(n为一固定的自然数)
7
8
3、设p:星期六天气好,q:我去公园玩。将下列命题 符号化。 (1)只要星期六天气好,我就去公园玩。 (2)只有星期六天气好,我才去公园玩。 (3)除非星期六天气好,否则我不去公园玩。 (1)p→q (2)q→p或~ p→ ~ q (3)q→p或~ p→ ~ q
9
表2 (p→q)→(~ q→ ~ p)的真值表
真,当且仅当P或Q至少有一个为真。用真值 表表示:
含义,称‘可兼或’(相容或);有
时与‘不可兼或’(排斥或,记为) 有相同含义。 排斥或用真值表表示:
P 0 0 1 1
Q 0 1 0 1
P∨Q 0 1 1 1
P
0 0 1 1
Q
0 1 0 1
P Q
0 1 1 0
3
例:我上街去书店或去看电影 两种可能可以同时为真 例:我坐第三排五号或第四排五号。
相关文档
最新文档