近十年年高考物理磁场压轴题
高中物理带电粒子在磁场中的运动压轴难题知识归纳总结含答案解析

高中物理带电粒子在磁场中的运动压轴难题知识归纳总结含答案解析一、带电粒子在磁场中的运动压轴题1.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN 上方区域的平行长金属板AB 间电压大小可调,平行长金属板AB 间距为d ,匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.MN 下方区域I 、II 为两相邻的方向相反的匀强磁场区,宽度均为3d ,磁感应强度均为B ,ef 是两磁场区的分界线,PQ 是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB 间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b ,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.(1)要使速度为v 的正电子匀速通过平行长金属极板AB ,求此时金属板AB 间所加电压U ;(2)通过调节电压U 可以改变正电子通过匀强磁场区域I 和II 的运动时间,求沿平行长金属板方向进入MN 下方磁场区的正电子在匀强磁场区域I 和II 运动的最长时间t m ; (3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN 下方磁场区,它们既能被收集板接收又不重叠,求金属板AB 间所加电压U 的范围.【答案】(1)Bvd (2)Bb (3)3B 2d 2b <U <221458B d b【解析】 【详解】(1)正电子匀速直线通过平行金属极板AB ,需满足 Bev=Ee因为正电子的比荷是b ,有 E=Ud联立解得:u Bvd =(2)当正电子越过分界线ef 时恰好与分界线ef 相切,正电子在匀强磁场区域I 、II 运动的时间最长。
4T t =m t =2t2111v ev B m R =T =122R mv Be=ππ 联立解得:t Bbπ=(3)临界态1:正电子恰好越过分界线ef ,需满足 轨迹半径R 1=3d1ev B =m 211v R11U ev B ed=⑪ 联立解得:2213U d B b =临界态2:沿A 极板射入的正电子和沿B 极板射入的电子恰好射到收集板同一点 设正电子在磁场中运动的轨迹半径为R 1 有(R 2﹣14d )2+9d 2=22R 2Bev =m 222v RBe 2v =2U e d联立解得:2221458B d bU =解得:U 的范围是:3B 2d 2b <U <221458B d b2.如图所示,在长度足够长、宽度d=5cm 的区域MNPQ 内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T .水平边界MN 上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C .现有大量质量m=6.6×10﹣27kg 、电荷量q=3.2×10﹣19C 的带负电的粒子,同时从边界PQ 上的O 点沿纸面向各个方向射入磁场,射入时的速度大小均为V=1.6×106m/s ,不计粒子的重力和粒子间的相互作用.求:(1)求带电粒子在磁场中运动的半径r ;(2)求与x 轴负方向成60°角射入的粒子在电场中运动的时间t ;(3)当从MN 边界上最左边射出的粒子离开磁场时,求仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围,并写出此时这些粒子所在位置构成的图形的曲线方程. 【答案】(1)r=0.1m (2)43.310t s -=⨯ (3)3060~ 曲线方程为222x y R +=(30.10.1R m x m =≤≤) 【解析】 【分析】 【详解】(1)洛伦兹力充当向心力,根据牛顿第二定律可得2v qvB m r=,解得0.1r m =(2)粒子的运动轨迹如图甲所示,由几何关系可知,在磁场中运动的圆心角为30°,粒子平行于场强方向进入电场,粒子在电场中运动的加速度qE a m= 粒子在电场中运动的时间2v t a= 解得43.310t s -=⨯(3)如图乙所示,由几何关系可知,从MN 边界上最左边射出的粒子在磁场中运动的圆心角为60°,圆心角小于60°的粒子已经从磁场中射出,此时刻仍在磁场中的粒子运动轨迹的圆心角均为60°,则仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围为30°~60° 所有粒子此时分别在以O 点为圆心,弦长0.1m 为半径的圆周上,曲线方程为22x y R += 30.1,0.120R m m x m ⎛⎫=≤≤ ⎪ ⎪⎝⎭【点睛】带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径3.如图所示,在第一象限内存在匀强电场,电场方向与x 轴成45°角斜向左下,在第四象限内有一匀强磁场区域,该区域是由一个半径为R 的半圆和一个长为2R 、宽为2R的矩形组成,磁场的方向垂直纸面向里.一质量为m 、电荷量为+q 的粒子(重力忽略不计)以速度v 从Q(0,3R)点垂直电场方向射入电场,恰在P(R ,0)点进入磁场区域.(1)求电场强度大小及粒子经过P 点时的速度大小和方向; (2)为使粒子从AC 边界射出磁场,磁感应强度应满足什么条件;(3)为使粒子射出磁场区域后不会进入电场区域,磁场的磁感应强度应不大于多少?【答案】(1) 224mv E qR=;2v ,速度方向沿y 轴负方向(2)82225mv mv B qR qR ≤≤(3)()22713mvqR- 【解析】 【分析】 【详解】(1)在电场中,粒子沿初速度方向做匀速运动132cos 4522cos 45RL R R =-︒=︒1L vt =沿电场力方向做匀加速运动,加速度为a22sin 452L R R =︒=2212L at =qE a m=设粒子出电场时沿初速度和沿电场力方向分运动的速度大小分别为1v 、2v ,合速度v '1v v =、2v at =,2tan v vθ=联立可得224mv E qR=进入磁场的速度22122v v v v =+='45θ=︒,速度方向沿y 轴负方向(2)由左手定则判定,粒子向右偏转,当粒子从A 点射出时,运动半径12Rr =由211mv qv B r =''得122mvB qR=当粒子从C 点射出时,由勾股定理得()222222R R r r ⎛⎫-+= ⎪⎝⎭解得258r R =由222mv qv B r =''得2825mvB qR=根据粒子在磁场中运动半径随磁场减弱而增大,可以判断,当82225mv mvB qR qR≤≤时,粒子从AC 边界射出(3)为使粒子不再回到电场区域,需粒子在CD 区域穿出磁场,设出磁场时速度方向平行于x 轴,其半径为3r ,由几何关系得222332R r r R ⎛⎫+-= ⎪⎝⎭解得)3714R r =由233mv qv B r =''得)322713mv B qR= 磁感应强度小于3B ,运转半径更大,出磁场时速度方向偏向x 轴下方,便不会回到电场中4.如图所示,空间存在方向垂直于xOy 平面向里的匀强磁场,在0<y<d 的区域Ⅰ内的磁感应强度大小为B ,在y>d 的区域Ⅱ内的磁感应强度大小为2B .一个质量为m 、电荷量为-q 的粒子以速度qBdm从O 点沿y 轴正方向射入区域Ⅰ.不计粒子重力.(1) 求粒子在区域Ⅰ中运动的轨道半径: (2) 若粒子射入区域Ⅰ时的速度为2qBdv m= ,求粒子打在x 轴上的位置坐标,并求出此过程中带电粒子运动的时间; (3) 若此粒子射入区域Ⅰ的速度qBdv m>,求该粒子打在x 轴上位置坐标的最小值. 【答案】(1)R d =(2) ()43OP d =- 23mt qBπ=(3)min 3x d = 【解析】 【分析】 【详解】(1)带电粒子在磁场中运动,洛仑磁力提供向心力:2001v qv B m r =把0qBdv m=,代入上式,解得:R d = (2) 当粒子射入区域Ⅰ时的速度为02v v =时,如图所示在OA 段圆周运动的圆心在O 1,半径为12R d = 在AB 段圆周运动的圆心在O 2,半径为R d = 在BP 段圆周运动的圆心在O 3,半径为12R d = 可以证明ABPO 3为矩形,则图中30θ=,由几何知识可得:132cos303OO d d ==所以:323OO d d =-所以粒子打在x 轴上的位置坐标()133243OP O O OO d =+=- 粒子在OA 段运动的时间为:13023606m mt qB qBππ==粒子在AB 段运动的时间为2120236023m mt q B qBππ==粒子在BP 段运动的时间为313023606m mt t qB qBππ===在此过程中粒子的运动时间:12223mt t t qBπ=+=(3)设粒子在区域Ⅰ中轨道半径为R ,轨迹由图可得粒子打在x 轴上位置坐标:()22222x R R d R d =--+-化简得:222340R Rx x d -++=把上式配方:222213033R x x d ⎛⎫--+= ⎪⎝⎭ 化简为:222213033R x x d ⎛⎫-=-≥ ⎪⎝⎭ 则当23R x =时,位置坐标x 取最小值:min 3x d =5.如图所示,虚线MN 为匀强电场和匀强磁场的分界线,匀强电场场强大小为E 方向竖直向下且与边界MN 成θ=45°角,匀强磁场的磁感应强度为B ,方向垂直纸面向外,在电场中有一点P ,P 点到边界MN 的竖直距离为d 。
高考物理电磁感应现象压轴题综合题附答案

高考物理电磁感应现象压轴题综合题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。
导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。
空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。
质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。
【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。
由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。
一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。
ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。
重力加速度为g 。
求:(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。
【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 72Lt g= 【解析】 【详解】(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有21sin 302mgL mv ︒=, 则线框进入磁场时的速度2sin30v g L gL =︒=线框ab 边进入磁场时产生的电动势E =BLv 线框中电流E I R=ab 边受到的安培力22B L vF BIL R==线框匀速进入磁场,则有22sin 30B L vmg R︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv 线框所受的安培力变为22422B L vF BI L mg R==''=方向沿斜面向上(2)设线框再次做匀速运动时速度为v ',则224sin 30B L v mg R︒='解得4v v ='=根据能量守恒定律有2211sin 30222mg L mv mv Q ︒'⨯+=+解得4732mgLQ =线框ab 边在上侧磁扬中运动的过程所用的时间1L t v=设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:22sin 302mg t BLIt mv mv ︒-='-其中()022BL L x I t R-=联立以上两式解得()02432L x v t vg-=-线框ab 在下侧磁场匀速运动的过程中,有0034x x t v v='=所以线框穿过上侧磁场所用的总时间为123t t t t =++=3.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。
高考物理法拉第电磁感应定律-经典压轴题及答案

高考物理法拉第电磁感应定律-经典压轴题及答案一、法拉第电磁感应定律1.如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:(1) ab 棒1.5 s-2.1s 的速度大小及磁感应强度B 的大小; (2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量。
【答案】(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J 【解析】 【详解】(1)金属棒在AB 段匀速运动,由题中图象得:v =xt ∆∆=7 m/s 根据欧姆定律可得:I =BLvr R+ 根据平衡条件有mg =BIL解得:B =0.1T(2)根据电量公式:q =I Δt根据欧姆定律可得:I =()R r t∆Φ+∆ 磁通量变化量ΔΦ=S t∆∆B 解得:q =0.67 C(3)根据能量守恒有:Q =mgx -12mv 2 解得:Q =0.455 J所以Q R =Rr R+Q =0.26 J 答:(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J2.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义WE q=计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况. 【详解】(1)如图所示,在一小段时间∆t 内,金属棒MN 的位移 x v t ∆=∆这个过程中线框的面积的变化量S L x Lv t ∆=∆=∆ 穿过闭合电路的磁通量的变化量B S BLv t ∆Φ=∆=∆根据法拉第电磁感应定律 E t∆Φ=∆ 解得 E BLv =(2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力1v f e B =,f 1即非静电力在f 的作用下,电子从N 移动到M 的过程中,非静电力做功v W e BL =根据电动势定义 W E q= 解得 v E BL =(3)自由电荷受洛伦兹力如图所示.设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =⋅=v 垂直棒方向的洛伦兹力2f quB =,做负功22ΔΔW f v t quBv t =-⋅=-所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用. 【点睛】本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.3.如图(a )所示,一个电阻值为R 、匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路,线圈的半径为r 1, 在线圈中半径为r 2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图(b )所示,图线与横、纵轴的截距分别为t 0和B 0,导线的电阻不计.求(1) 0~t 0时间内圆形金属线圈产生的感应电动势的大小E ; (2) 0~t 1时间内通过电阻R 1的电荷量q .【答案】(1)2020n B r E t π=(2)201203n B t r q Rt π=【解析】 【详解】(1)由法拉第电磁感应定律E n tφ∆=∆有2020n B r B E n S t t π∆==∆ ① (2)由题意可知总电阻 R 总=R +2R =3 R ② 由闭合电路的欧姆定律有电阻R 1中的电流EI R =总③ 0~t 1时间内通过电阻R1的电荷量1q It = ④由①②③④式得201203n B t r q Rt π=4.如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直向下的磁场中,整个磁场由n 个宽度皆为x0的条形匀强磁场区域1、2、3、…n 组成,从左向右依次排列,磁感应强度的大小分别为B 、2B 、3B 、…nB ,两导轨左端MP 间接入电阻R ,一质量为m的金属棒ab垂直于MN、PQ放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。
高考物理电磁感应现象压轴题一轮复习及答案

高考物理电磁感应现象压轴题一轮复习及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:(1)每个线圈通过磁场区域产生的热量Q .(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)【答案】(1)232B L vQ R= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R【解析】 【分析】 【详解】(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量为223()22BLv L B L vQ Pt R v R===(2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2(3)线圈与传送带的相对位移大小为2112vts s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R 【点睛】本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.2.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。
高考物理专项复习《磁场》十年高考真题汇总

高考物理专项复习《磁场》十年高考真题汇总选择题:1.(2019•海南卷•T2)如图,一段半圆形粗铜线固定在绝缘水平桌面(纸面)上,铜线所在空间有一匀强磁场,磁场方向竖直向下。
当铜线通有顺时针方向电流时,铜线所受安培力的方向A.向前B.向后C.向左D.向右2.(2019•海南卷•T9)如图,虚线MN的右侧有方向垂直于纸面向里的匀强磁场,两电荷量相同的粒子P、Q从磁场边界的M点先后射入磁场,在纸面内运动。
射入磁场时,P的速度v P垂直于磁场边界,Q的速度v Q与磁场边界的夹角为45°。
已知两粒子均从N点射出磁场,且在磁场中运动的时间相同,则( )A.P和Q的质量之比为1:2B.P和Q2C.P和Q2D.P和Q速度大小之比为2:13.(2019•天津卷•T4)笔记本电脑机身和显示屏对应部位分别有磁体和霍尔元件。
当显示屏开启时磁体远离霍尔元件,电脑正常工作:当显示屏闭合时磁体靠近霍尔元件,屏幕熄灭,电脑进入休眠状态。
如图所示,一块宽为a、长为c的矩形半导体霍尔元件,元件内的导电粒子是电荷量为e的自由电子,通入方向向右的电流时,电子的定向移动速度为v。
当显示屏闭合时元件处于垂直于上表面、方向向下的匀强磁场中,于是元件的前、后表面间出现电压U,以此控制屏幕的熄灭。
则元件的( )A. 前表面的电势比后表面的低B. 前、后表面间的电压U与v无关C. 前、后表面间的电压U与c成正比D. 自由电子受到的洛伦兹力大小为eU a4.(2019•全国Ⅱ卷•T4)如图,边长为l的正方形abcd内存在匀强磁场,磁感应强度大小为B,方向垂直于纸面(abcd所在平面)向外。
ab边中点有一电子发源O,可向磁场内沿垂直于ab 边的方向发射电子。
已知电子的比荷为k。
则从a、d两点射出的电子的速度大小分别为A. 14kBl,54kBl B.14kBl,54kBlC. 12kBl,54kBl D.12kBl,54kBl5.(2019•全国Ⅲ卷•T5)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为1 2 B和B、方向均垂直于纸面向外的匀强磁场。
高中物理带电粒子在磁场中的运动压轴题复习题及答案

高中物理带电粒子在磁场中的运动压轴题复习题及答案一、带电粒子在磁场中的运动压轴题1.核聚变是能源的圣杯,但需要在极高温度下才能实现,最大难题是没有任何容器能够承受如此高温。
托卡马克采用磁约束的方式,把高温条件下高速运动的离子约束在小范围内巧妙实现核聚变。
相当于给反应物制作一个无形的容器。
2018年11月12日我国宣布“东方超环”(我国设计的全世界唯一一个全超导托卡马克)首次实现一亿度运行,令世界震惊,使我国成为可控核聚变研究的领军者。
(1)2018年11月16日,国际计量大会利用玻尔兹曼常量将热力学温度重新定义。
玻尔兹曼常量k 可以将微观粒子的平均动能与温度定量联系起来,其关系式为32k E kT =,其中k=1.380649×10-23J/K 。
请你估算温度为一亿度时微观粒子的平均动能(保留一位有效数字)。
(2)假设质量为m 、电量为q 的微观粒子,在温度为T 0时垂直进入磁感应强度为B 的匀强磁场,求粒子运动的轨道半径。
(3)东方超环的磁约束原理可简化如图。
在两个同心圆环之间有很强的匀强磁场,两圆半径分别为r 1、r 2,环状匀强磁场围成中空区域,中空区域内的带电粒子只要速度不是很大都不会穿出磁场的外边缘,而被约束在该区域内。
已知带电粒子质量为m 、电量为q 、速度为v ,速度方向如图所示。
要使粒子不从大圆中射出,求环中磁场的磁感应强度最小值。
【答案】(1)15210J k E -≈⨯ (2)03kmT(3)()222212 r mvq r r - 【解析】 【详解】(1)微观粒子的平均动能:1532102k E kT -=≈⨯J (2)2031kT mv 22= 解得: 03kT v m=由2v Bqv m R= 03kmT R =(3)磁场最小时粒子轨迹恰好与大圆相切,如图所示设粒子轨迹半径为r ,由几何关系得:()22221r r r r -=+解得22212:r 2r r r -=由牛顿第二定律 2qvB m v r=解得:()222212B r mvq r r =-2.如图,圆心为O 、半径为r 的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B 。
高考压轴题——电磁学大题专项训练(学生版)

高考压轴题——电磁学专项训练一、解答题1.如图所示,直角坐标系中,y 轴左侧有一半径为a 的圆形匀强磁场区域,与y 轴相切于A 点,A 点坐标为⎛⎫ ⎪ ⎪⎝⎭。
第一象限内也存在着匀强磁场,两区域磁场的磁感应强度大小均为B ,方向垂直纸面向外。
圆形磁场区域下方有两长度均为2a 的金属极板M 、N ,两极板与x 轴平行放置且右端与y 轴齐平。
现仅考虑纸面平面内,在极板M 的上表面均匀分布着相同的带电粒子,每个粒子的质量为m ,电量为q +。
两极板加电压后,在板间产生的匀强电场使这些粒子从静止开始加速,并顺利从网状极板N 穿出,然后经过圆形磁场都从A 点进入第一象限。
其中部分粒子打在放置于x 轴的感光板CD 上,感光板的长度为2.8a ,厚度不计,其左端C 点坐标为1,02a ⎛⎫ ⎪⎝⎭。
打到感光板上的粒子立即被吸收,从第一象限磁场射出的粒子不再重新回到磁场中。
不计粒子的重力和相互作用,忽略粒子与感光板碰撞的时间。
(1)求两极板间的电压U ;(2)在感光板上某区域内的同一位置会先后两次接收到粒子,该区域称为“二度感光区”,求: ①“二度感光区”的长度L ;①打在“二度感光区”的粒子数1n 与打在整个感光板上的粒子数2n 的比值12:n n ;(3)改变感光板材料,让它仅对垂直打来的粒子有反弹作用(不考虑打在感光板边缘C 、D 两点的粒子),且每次反弹后速度方向相反,大小变为原来的一半,则该粒子在磁场中运动的总时间t 和总路程s 。
2.如图所示为一同位素原子核分离器的原理图。
有两种同位素,电荷量为q ,质量分别为m 1,m 2,其中12m m <。
从同一位置A 点由静止出发通过同一加速电场进入速度选择器,速度选择器中的电场强度为E ,方向向右,磁感应强度大小为B ,方向垂直纸面。
在边界线ab 下方有垂直纸面向外的匀强磁场B 1(B 1大小未知)。
忽略粒子间的相互作用力及所受重力。
若质量为m 1的原子核恰好沿直线(图中虚线)从O 点射入下方磁场。
高中物理带电粒子在磁场中的运动压轴题复习题含答案解析

高中物理带电粒子在磁场中的运动压轴题复习题含答案解析一、带电粒子在磁场中的运动压轴题1.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30,重力加速度为g ,求:(1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小. (2)区域Ⅱ内匀强磁场的磁感应强度B 的大小. (3)微粒从P 运动到Q 的时间有多长.【答案】(1)12mg E q =,2mgE q =122m gd 121626d d gd gd π+ 【解析】 【详解】(1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ︒= 求得:12mgE q=微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE = 求得:2mgE q=(2)粒子进入磁场区域时满足:2111cos452qE d mv ︒=2v qvB m R=根据几何关系,分析可知:222sin30d R d ==︒整理得:122m gd B =(3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:211112a t d =1tan45mg ma ︒=2302360Rt vπ︒=⨯︒ 经整理得:112121222612126gd d d d t t t gd g gd ππ+=+=+⨯=2.如图所示,一匀强磁场磁感应强度为B ;方向向里,其边界是半径为R 的圆,AB 为圆的一直径.在A 点有一粒子源向圆平面内的各个方向发射质量m 、电量-q 的粒子,粒子重力不计.(1)有一带电粒子以的速度垂直磁场进入圆形区域,恰从B 点射出.求此粒子在磁场中运动的时间.(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子沿半径方向射入磁场,经过2次碰撞后回到A 点,则该粒子的速度为多大?(3)若R =3cm 、B =0.2T ,在A 点的粒子源向圆平面内的各个方向发射速度均为3×105m /s 、比荷为108C /kg 的粒子.试用阴影图画出粒子在磁场中能到达的区域,并求出该区域的面积(结果保留2位有效数字). 【答案】(1) (2)(3)【解析】 【分析】(1)根据洛伦兹力提供向心力,求出粒子的半径,通过几何关系得出圆弧所对应的圆心角,根据周期公式,结合t=T 求出粒子在磁场中运动的时间.(2)粒子径向射入磁场,必定径向反弹,作出粒子的轨迹图,通过几何关系求出粒子的半径,从而通过半径公式求出粒子的速度.(3)根据粒子的半径公式求出粒子的轨道半径,作出粒子轨迹所能到达的部分,根据几何关系求出面积. 【详解】 (1)由得r 1=2R粒子的运动轨迹如图所示,则α=因为周期.运动时间.(2)粒子运动情况如图所示,β=.r2=R tanβ=R由得(3)粒子的轨道半径r3==1.5cm粒子到达的区域为图中的阴影部分区域面积为S=πr32+2×π(2r3)2−r32=9.0×10-4m2【点睛】本题考查了带电粒子在磁场中的运动问题,需掌握粒子的半径公式和周期公式,并能画出粒子运动的轨迹图,结合几何关系求解.该题对数学几何能力要求较高,需加强这方面的训练.3.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B,一带电量为+q、质量为m的粒子,在P点以某一初速开始运动,初速方向在图中纸面内如图中P点箭头所示.该粒子运动到图中Q点时速度方向与P点时速度方向垂直,如图中Q点箭头所示.已知P、Q间的距离为L.若保持粒子在P点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P点时速度方向垂直,在此电场作用下粒子也由P点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P 运动到Q 点所经历的时间之比.【答案】E =;2B E t t π= 【解析】 【分析】 【详解】(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的初速度,R 表示圆周的半径,则有200v qv B m R= 由于粒子在Q 点的速度垂直它在p 点时的速度,可知粒子由P 点到Q 点的轨迹为14圆周,故有R =以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at =竖直方向上:0E R v t =由以上各式,得E = 且E mt qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142B t T m qB π==所以2B E t t π=4.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===,所以()()00tan 22H x x x y y θ=-=-,由数学知识可知,当()022x y y -=时,即 4.5y cm =时H 有最大值,所以max 9H cm =5.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2g kB (3)2222232(,)28g k B L L k B g-【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B gθ=-+=-6.如图所示,x 轴的上方存在方向与x 轴成45角的匀强电场,电场强度为E ,x 轴的下方存在垂直纸面向里的匀强磁场,磁感应强度0.5.B T =有一个质量1110m kg -=,电荷量710q C -=的带正电粒子,该粒子的初速度30210/v m s =⨯,从坐标原点O 沿与x 轴成45角的方向进入匀强磁场,经过磁场和电场的作用,粒子从O 点出发后第四次经过x 轴时刚好又回到O 点处,设电场和磁场的区域足够宽,不计粒子重力,求:①带电粒子第一次经过x 轴时的横坐标是多少?②电场强度E 的大小及带电粒子从O 点出发到再次回到O 点所用的时间.【答案】①带电粒子第一次经过x 轴时的横坐标是0.57m ;②电场强度E 的大小为3110/V m ⨯,带电粒子从O 点出发到再次回到O 点所用的时间为32.110.s -⨯【解析】【分析】(1)粒子在磁场中受洛伦兹力作用下做一段圆弧后第一次经过x轴,根据洛伦兹力提供向心力公式求出半径,再根据几何关系求出坐标;(2)然后进入电场中,恰好做匀减速运动直到速度为零后又返回,以相同速率再次进入磁场仍在洛伦兹力作用下又做一段圆弧后,再次进入电场正好做类平抛运动.粒子在磁场中两次运动刚好完成一个周期,由粒子在电场中的类平抛运动,根据垂直电场方向位移与速度关系,沿电场方向位移与时间关系,结合牛顿第二定律求出E,三个过程的总时间即为总时间.【详解】①粒子在磁场中受磁场力的作用沿圆弧运动,洛仑兹力提供向心力,2v qvB mR=,半径0.4mvR mBq==,根据圆的对称性可得粒子在磁场中第一次偏转所对的圆心角为90,则第一次经过x轴时的横坐标为120.420.57x R m m==≈②第一次进入电场,运动方向与电场方向相反,做匀减速直线运动,速度减为零后又反向加速返回磁场,在磁场中沿圆周运动,再次进入电场时速度方向刚好垂直电场方向,在电场力的作用下偏转,打在坐标原点O处,其运动轨迹如图所示.由几何关系可得,第二次进入电场中的位移为22R,在垂直电场方向的位移11s vt=,运动时间4112410s Rt sv v-===⨯在沿电场方向上的位移22112s at=,又因22s R=得722212110/sa m st==⨯根据牛顿第二定律Eq a m= 所以电场强度3110/maE V m q==⨯ 粒子从第一次进入电场到再返回磁场的时间422410vt s a-==⨯, 粒子在磁场中两段运动的时间之和刚好是做一个完整圆周运动的周期42410mT s Bqππ-==⨯ 所以粒子从出发到再回到原点的时间为312 2.110t t t T s -=++≈⨯ 【点睛】本题考查带电粒子在电场、磁场中两运动模型:匀速圆周运动与类平抛运动,及相关的综合分析能力,以及空间想像的能力,应用数学知识解决物理问题的能力.7.如图所示,匀强磁场的磁感应强度大小为B .磁场中的水平绝缘薄板与磁场的左、右边界分别垂直相交于M 、N ,MN =L ,粒子打到板上时会被反弹(碰撞时间极短),反弹前后水平分速度不变,竖直分速度大小不变、方向相反.质量为m 、电荷量为-q 的粒子速度一定,可以从左边界的不同位置水平射入磁场,在磁场中做圆周运动的半径为d ,且d <L ,粒子重力不计,电荷量保持不变. (1)求粒子运动速度的大小v ;(2)欲使粒子从磁场右边界射出,求入射点到M 的最大距离d m ; (3)从P 点射入的粒子最终从Q 点射出磁场,PM =d ,QN =2d,求粒子从P 到Q 的运动时间t .【答案】(1)qBd v m =;(2)m 23d +;(3)A.当31L nd d =+-(时, 334π2L m t d qB -=(),B.当3L nd d =+(时, 334π2L m t d qB -=()【解析】 【分析】 【详解】(1)粒子在磁场中做匀速圆周运动由洛伦兹力提供向心力有:2v qvB m R=,解得:mv R qB = 由题可得:R d =解得qBdv m=; (2)如图所示,粒子碰撞后的运动轨迹恰好与磁场左边界相切由几何关系得d m =d (1+sin60°) 解得m 23d d +=(3)粒子的运动周期2πmT qB=设粒子最后一次碰撞到射出磁场的时间为t ',则 (1,3,5,)4Tt nt n '=+=A.当31L nd d =+-()时,粒子斜向上射出磁场 112t T '=解得334π2L m t d qB -=+() B.当31+L nd d =+()时,粒子斜向下射出磁场 512t T '=解得334π2L m t d qB -=-().8.右图中左边有一对平行金属板,两板相距为d ,电压为V ;两板之间有匀强磁场,磁感应强度大小为B 0,方向与金属板面平行并垂直于纸面朝里,图中右边有一半径为R 、圆心为O 的圆形区域,区域内也存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里.一电荷量为q 的正离子沿平行于金属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF 方向射入磁场区域,最后从圆形区域边界上的G 点射出,已知弧所对应的圆心角为.不计重力,求:(1)离子速度的大小;(2)离子的质量.【答案】(1)(2)【解析】【分析】【详解】试题分析:带电粒子在磁场中的运动轨迹分析如图所示(1)由题设知,离子在平行金属板之间做匀速直线运动,则①又②由①②式得③(2)在圆形磁场区域,离子做匀速圆周运动.则④由几何关系有⑤解得考点:带电粒子在磁场中的运动点评:本题是速度选择器和带电粒子在匀强磁场中运动的组合问题,可以列出带电粒子在磁场中做圆周运动洛伦兹力做向心力的表达式求解,根据几何关系求半径是解题关键.9.如图所示,虚线OL与y轴的夹角为θ=60°,在此角范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B.一质量为m、电荷量为q(q>0)的粒子从左侧平行于x 轴射入磁场,入射点为M.粒子在磁场中运动的轨道半径为R.粒子离开磁场后的运动轨迹与x轴交于P点(图中未画出),且OP=R.不计重力.求M点到O点的距离和粒子在磁场中运动的时间.【答案】当α=30°时,粒子在磁场中运动的时间为π126T m tqB ==当α=90°时,粒子在磁场中运动的时间为π42T m tqB ==【解析】根据题意,粒子进入磁场后做匀速圆周运动,设运动轨迹交虚线OL于A点,圆心在y轴上的C点,AC与y轴的夹角为α;粒子从A点射出后,运动轨迹交x轴的P点,设AP与x 轴的夹角为β,如图所示.有(判断出圆心在y轴上得1分)2vqvB mR=(1分)周期为2πmTqB=(1分)过A点作x、y轴的垂线,垂足分别为B、D.由几何知识得sinαAD R=,cot60OD AD=︒,,OP AD BP=+α=β (2分)联立得到sinαα13+=(2分)解得α=30°,或α=90° (各2分)设M 点到O 点的距离为h ,有sin αAD R = h R OC =-,3cos αOC CD OD R AD =-=-联立得到h=R -3R cos(α+30°) (1分) 解得h=(1-3)R (α=30°) (2分) h=(1+3)R (α=90°) (2分) 当α=30°时,粒子在磁场中运动的时间为π126T m t qB==(2分) 当α=90°时,粒子在磁场中运动的时间为 π42T m t qB ==(2分) 【考点定位】考查带电粒子在匀强磁场中的运动及其相关知识.10.如图甲所示,两金属板M 、N 水平放置组成平行板电容器,在M 板中央开有小孔O ,再将两个相同的绝缘弹性挡板P 、Q 对称地放置在M 板上方,且与M 板夹角均为60°,两挡板的下端在小孔O 左右两侧.现在电容器两板间加电压大小为U 的直流电压,在M 板上方加上如图乙所示的、垂直纸面的交变磁场,以方向垂直纸面向里为磁感应强度的正值,其值为B 0,磁感应强度为负值时大小为B x ,但B x 未知.现有一质量为m 、电荷量为q (q >0),不计重力的带电粒子,从N 金属板中央A 点由静止释放,t =0时刻,粒子刚好从小孔O 进入上方磁场中,在t 1时刻粒子第一次撞到左挡板P 上,紧接着在t 1+t 2时刻粒子撞到了右挡板Q 上,然后粒子又从O 点竖直向下返回平行金属板间,接着再返回磁场做前面所述的运动.粒子与挡板碰撞前后电荷量不变,沿板面的分速度不变,垂直于板面的分速度大小不变、方向相反,不计碰撞的时间及磁场变化产生的感应影响.图中t 1,t 2未知,求:(1)粒子第一次从A 到达O 点时的速度大小;(2) 粒子从O点第一次撞到左挡板P的时间t1的大小;(3)图乙中磁感应强度B x的大小;(4)两金属板M和N之间的距离d.【答案】(1)v=2Uqm(2)t1=3mB qπ(3)B x=2B0(4)d=()35224n UmB qπ+,n=0,1,2,3【解析】【分析】粒子在电场间做匀加速直线运动,由动能定理求出粒子刚进入磁场的速度,在磁场中做圆周运动,由几何关系得圆心角求出运动时间,粒子在整个装置中做周期性的往返运动,由几何关系得半径求出磁感应强度B x的大小,在t1~(t1+t2)时间内,粒子做匀速圆周运动,由周期关系求出在金属板M和N间往返时间,再求出金属板M和N间的距离。
高考物理电磁感应现象压轴难题综合题含答案解析

高考物理电磁感应现象压轴难题综合题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L=- 【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgRv B L =(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯= 解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L =-3.电源是通过非静电力做功把其它形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势E 来表明电源的这种特性。
高考物理法拉第电磁感应定律-经典压轴题附详细答案

一、法拉第电磁感应定律1.如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为L=0.1 m,磁场间距为2L,一正方形金属线框质量为m=0.1 kg,边长也为L,总电阻为R=0.02 Ω.现将金属线框置于磁场区域1上方某一高度h处自由释放,线框在经过磁场区域时bc边始终与磁场边界平行.当h=2L时,bc边进入磁场时金属线框刚好能做匀速运动.不计空气阻力,重力加速度g取10 m/s2.(1)求磁感应强度B的大小;(2)若h>2L,磁场不变,金属线框bc边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度h;(3)求在(2)情形中,金属线框经过前n个磁场区域过程中线框中产生的总焦耳热.【答案】(1)1 T (2)0.3 m(3)0.3n J【解析】【详解】(1)当h=2L时,bc进入磁场时线框的速度===v gh gL222m/s此时金属框刚好做匀速运动,则有:mg=BIL又E BLv==IR R联立解得1mgR=BL v代入数据得:1TB=(2)当h>2L时,bc边第一次进入磁场时金属线框的速度022v gh gL=>即有0mg BI L <又已知金属框bc 边每次出磁场时都刚好做匀速运动,经过的位移为L ,设此时线框的速度为v′,则有'222v v gL =+解得:6m /s v '=根据题意可知,为保证金属框bc 边每次出磁场时都刚好做匀速运动,则应有2v v gh '==即有0.3m h =(3)设金属线框在每次经过一个条形磁场过程中产生的热量为Q 0,则根据能量守恒有:'2211(2)22mv mg L mv Q +=+ 代入解得:00.3J Q =则经过前n 个磁场区域时线框上产生的总的焦耳热Q =nQ 0=0.3n J 。
2.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。
高考物理历年压轴大题分析

历年高考物理压轴题(精选)(文末附详解)第1题如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。
当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2 ,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v 1和v 2(3)磁感应强度B 的大小(4)电场强度E 的大小和方向图12第2题如图2—14所示,光滑水平桌面上有长L=2m的木板C,质量m c=5kg,在其正中央并排放着两个小滑块A和B,m A=1kg,m B=4kg,开始时三物都静止.在A、B间有少量塑胶炸药,爆炸后A以速度6m/s水平向左运动,A、B中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A、B都与挡板碰撞后,C的速度是多大?(2)到A、B都与挡板碰撞为止,C的位移为多少?3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板,放手后,木板沿斜面下滑,稳定后弹簧示数时,弹簧示数为F1为F,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?2(斜面体固定在地面上)4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R 间的距离L ′的大小。
高考物理带电粒子在磁场中的运动压轴难题综合题含答案

高考物理带电粒子在磁场中的运动压轴难题综合题含答案一、带电粒子在磁场中的运动压轴题1.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则00tan y x qE x v m v v v θ⋅===有H =(3a -x )·tan θ=当=y =98a 时,H 有最大值 由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为y =98a -2a =-78a2.如图所示,MN 为绝缘板,CD 为板上两个小孔,AO 为CD 的中垂线,在MN 的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m 电荷量为q 的粒子(不计重力)以某一速度从A 点平行于MN 的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O 点),已知图中虚线圆弧的半径为R ,其所在处场强大小为E ,若离子恰好沿图中虚线做圆周运动后从小孔C 垂直于MN 进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN 板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D 进入MN 上方的一个三角形匀强磁场,从A 点射出磁场,则三角形磁场区域最小面积为多少?MN 上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A 点出发后,第一次回到A 点所经过的总时间为多少?【答案】(1)EqRm;(2)212R ;11n +;(3)2πmR Eq 。
高考物理电磁感应现象压轴难题试卷附答案

高考物理电磁感应现象压轴难题试卷附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.某科研机构在研究磁悬浮列车的原理时,把它的驱动系统简化为如下模型;固定在列车下端的线圈可视为一个单匝矩形纯电阻金属框,如图甲所示,MN 边长为L ,平行于y 轴,MP 边宽度为b ,边平行于x 轴,金属框位于xoy 平面内,其电阻为1R ;列车轨道沿Ox 方向,轨道区域内固定有匝数为n 、电阻为2R 的“”字型(如图乙)通电后使其产生图甲所示的磁场,磁感应强度大小均为B ,相邻区域磁场方向相反(使金属框的MN 和PQ 两边总处于方向相反的磁场中).已知列车在以速度v 运动时所受的空气阻力f F 满足2f F kv =(k 为已知常数).驱动列车时,使固定的“”字型线圈依次通电,等效于金属框所在区域的磁场匀速向x 轴正方向移动,这样就能驱动列车前进.(1)当磁场以速度0v 沿x 轴正方向匀速移动,列车同方向运动的速度为v (0v <)时,金属框MNQP 产生的磁感应电流多大?(提示:当线框与磁场存在相对速度v 相时,动生电动势E BLv =相)(2)求列车能达到的最大速度m v ;(3)列车以最大速度运行一段时间后,断开接在“” 字型线圈上的电源,使线圈与连有整流器(其作用是确保电流总能从整流器同一端流出,从而不断地给电容器充电)的电容器相接,并接通列车上的电磁铁电源,使电磁铁产生面积为L b ⨯、磁感应强度为B '、方向竖直向下的匀强磁场,使列车制动,求列车通过任意一个“”字型线圈时,电容器中贮存的电量Q .【答案】(1) 012() BL v v R -222210122BL B L kR v B L +-24nB Lb R ' 【解析】 【详解】解:(1)金属框相对于磁场的速度为:0v v - 每边产生的电动势:0()E BL v v =- 由欧姆定律得:12EI R = 解得:01(2 )BL v v I R -=(2)当加速度为零时,列车的速度最大,此时列车的两条长边各自受到的安培力:B F BIL =由平衡条件得:20B f F F -= ,已知:2f F kv =解得:222210122m BL B L kR v B L v kR +-=(3)电磁铁通过字型线圈左边界时,电路情况如图1所示:感应电动势:n E tφ∆=∆,而B Lb φ∆=' 电流:12E I R =电荷量:11Q I t =∆ 解得:12nB LbQ R '= 电磁铁通过字型线圈中间时,电路情况如图2所示:B Lb φ∆=',2222E nI R tφ∆==∆ 22Q I t =∆解得:222nB LbQ R '= 电磁铁通过字型线圈右边界时,电路情况如图3所示:n E tφ∆=∆, B Lb φ∆=',32E I R =33Q I t =∆解得:32nB LbQ R '=, 总的电荷量:123Q Q Q Q =++ 解得:24nB LbQ R '=3.如图甲所示,一对足够长的平行光滑轨道固定在水平面上,两轨道间距 l= 0.5m ,左侧接一阻值 为R 的电阻。
近十年年高考物理电磁感应压轴题

θv 0x yOMa bBN电磁感应2006年全国理综 (北京卷)24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。
图1是平静海面上某实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。
如图2所示,通道尺寸a =2.0m ,b =0.15m 、c =0.10m 。
工作时,在通道内沿z 轴正方向加B =8.0T 的匀强磁场;沿x 轴正方向加匀强电场,使两金属板间的电压U =99.6V ;海水沿y 轴正方向流过通道。
已知海水的电阻率ρ=0.22Ω·m 。
(1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向;(2)船以v s =5.0m /s 的速度匀速前进。
若以船为参照物,海水以5.0m /s 的速率涌入进水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到v d =8.0m /s 。
求此时两金属板间的感应电动势U 感。
(3)船行驶时,通道中海水两侧的电压U /=U -U 感计算,海水受到电磁力的80%可以转化为对船的推力。
当船以v s =5.0m /s 的船速度匀速前进时,求海水推力的功率。
解析24.(20分)(1)根据安培力公式,推力F 1=I 1Bb ,其中I 1=R U ,R =ρacb则F t =8.796==B pU Bb R Uac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b=9.6 V (3)根据欧姆定律,I 2=600)('4=-=pbacb Bv U R U A 安培推力F 2=I 2Bb =720 N推力的功率P =Fv s =80%F 2v s =2 880 W2006年全国物理试题(江苏卷)19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。
一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。
高考物理带电粒子在磁场中的运动压轴难题知识点及练习题附答案

高考物理带电粒子在磁场中的运动压轴难题知识点及练习题附答案一、带电粒子在磁场中的运动压轴题1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。
挡板PQ 垂直MN 放置,挡板的中点置于N 点。
在挡板的右侧区域存在垂直纸面向外的匀强磁场。
在左侧虚线上紧靠M 的上方取点A ,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。
已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。
(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。
若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。
【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
nd=2r1= ④
则粒子再经过半圆Cn+1就能够经过原点,式中n=1,2,3,……为回旋次数。
由③④式解得
⑤
由①②⑤式可得B1、B2应满足的条件
n=1,2,3,……⑥
评分参考:①、②式各2分,求得⑤式12分,⑥式4分。解法不同,最后结果的表达式不同,只要正确,同样给分。
(1)磁感应强度的大小和方向(提示:可考虑沿CM方向运动的离子为研究对象);
(2)离子沿与CM成θ角的直线CN进入磁场,其轨道半径和在磁场中的运动时间;
(3)线段CM的长度.
25.解:
(1)
设沿CM方向运动的离子在磁场中做圆周运动的轨道半径为R
由
R=d
得B=
磁场方向垂直纸面向外
(2)
设沿CN运动的离子速度大小为v,在磁场中的轨道半径为R′,运动时间为t
第一次相碰后小球2作平抛运动h=R1= ⑦
L=R1=v2t⑧
两小球第一次碰撞前后动量守恒,以水平向右为正方向
m1v0=m1v1+m2v2⑨
由⑦、⑧式得v2=3.75m/s
由④式得v1=17.66m/s
∴两小球质量之比 =11⑩
20XX年(广东卷)
18.(17分)在光滑绝缘的水平桌面上,有两个质量均为 ,电量为 的完全相同的带电粒子 和 ,在小孔A处以初速度为零先后释放。在平行板间距为 的匀强电场中加速后, 从C处对着圆心进入半径为R的固定圆筒中(筒壁上的小孔C只能容一个粒子通过),圆筒内有垂直水平面向上的磁感应强度为B的匀强磁场。 每次与筒壁发生碰撞均无电荷迁移, 进入磁场第一次与筒壁碰撞点为D, ,如图12所示。延后释放的 ,将第一次欲逃逸出圆筒的 正碰圆筒内,此次碰撞刚结束,立即改变平行板间的电压,并利用 与 之后的碰撞,将 限制在圆筒内运动。碰撞过程均无机械能损失。设 ,求:在 和 相邻两次碰撞时间间隔内,粒子 与筒壁的可能碰撞次数。
(1)电场强度E的大小是多少?
(2)两小球的质量之比是多少?
解析
(1)小球1所受的重力与电场力始终平衡mg1=q1E①
E=2.5N/C②
(2)相碰后小球1做匀速圆周运动,由牛顿第二定律得:
q1v1B= ③
半径为R1= ④
周期为T= =1s⑤
∵两球运动时间t=0.75s= T
∴小球1只能逆时针经 周期时与小球2再次相碰⑥
∴CM=dcotα
四、复合场
20XX
25.(20分)
如图所示,在足够大的空间范围内,同时存在着竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,磁感应强度B=1.57T。小球1带正电,其电量与质量之比 =4C/kg,所受重力与电场力的大小相等;小球2不带电,静止放置于固定和水平悬空支架上。小球1向右以v0=23.59m/s的水平速度与小球2正碰,碰后经0.75s再次相碰。设碰撞前后两小球带电情况不发生改变,且始终保持在同一竖直平面内。(取g=9.8m/s2)问:
2007高考全国理综Ⅰ
25.(22分)两平面荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x轴和y轴,交点O为原点,如图所示。在y>0,0<x<a的区域由垂直于纸面向里的\匀强磁场,在在y>0,x>a的区域由垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B。在O点处有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮。入射粒子的速度可取从零到某一最大值之间的各种数值。已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为2∶5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中作圆周运动的周期。试求两个荧光屏上亮线的范围(不计重力的影响)。
y轴范围:0-2a;x轴范围:2a- 难
20XX年(重庆卷)
25.(20分)题25题为一种质谱仪工作原理示意图.在以O为圆心,OH为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH轴的C和D分别是离子发射点和收集点.CM垂直磁场左边界于M,且OM=d.现有一正离子束以小发散角(纸面内)从C射出,这些离子在CM方向上的分速度均为v0.若该离子束中比荷为 的离子都能汇聚到D,试求:
r1= ①
r2= ②
现分析粒子运动的轨迹。如图所示,在xy平面内,粒子先沿半径为r1的半圆C1运动至y轴上离O点距离为2r1的A点,接着沿半径为2r2的半圆D1运动至y轴的O1点,O1O距离
d=2(r2-r1)③
此后,粒子每经历一次“回旋”(即从y轴出发沿半径r1的半圆和半径为r2的半圆回到原点下方y轴),粒子y坐标就减小d。
由vcosθ=v0
得v=
R′=
=
方法一:设弧长为s
t=
s=2(θ+α)×R′
t=
方法二:
离子在磁场中做匀速圆周运动的周期T=
t=T× =
(3)
方法一:
CM式联立求解得
CM=dcotα
方法二:
设圆心为A,过A做AB垂直NO,
可以证明NM=BO
∵NM=CMtanθ
又∵BO=ABcotα=R′sinθcotα=
三、磁场
20XX
25.(20分)
如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向垂直于纸面向里,且B1>B2。一个带负电的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件?
解析:粒子在整个过程中的速度大小恒为v,交替地在xy平面内B1与B2磁场区域中做匀速圆周运动,轨迹都是半个圆周。设粒子的质量和电荷量的大小分别为m和q,圆周运动的半径分别为和r2,有
tan ≤
当n=1, K=2、3、4、5、6、7时符合条件,K=1、8、9………不符合条件
当n=2,3,4……….时,无化K=多少,均不符合条件。
2007高考全国Ⅱ理综
附:部分三角函数值
0.48
解:P1从C运动到D,
周期 ,
半径r=Rtan = ,
从C到D的时间
每次碰撞应当在C点,设P1的圆筒内转动了n圈和筒壁碰撞了K次后和P2相碰于C点,K+1 所以时间间隔,则
P1、P2次碰撞的时间间隔
=
在t时间内,P2向左运动x再回到C,平均速度为 ,
由上两式可得: ≥
(K+1) (1- )≤