数学建模平衡点稳定性
数学建模-稳定性问题
dx f (t , x ) dt
定义 称微分方程或微分方程组 为自治系统或动力系统。 若方程或方程组f(x)=0有解Xo,X=Xo显然满足(3.28)。称点 Xo为微分方程或微分方程组(3.28)的平衡点或奇点。
dx f ( x) dt
(3.28)
例 Logistic模型
考察(3.2Байду номын сангаас)的线性近似方程组: 其中:
dx1 ax1 bx2 dt dx2 cx dx 1 2 dt
' d gx (0,0) 2
(3.30)
' a f x'1 (0,0) b f x'2 (0,0) c gx (0,0) 1
a b 讨论特征值与零点稳定的关系 记 A λ1、λ2为A的特征值则λ1、λ2是方程: c d >0,可能出现以下情形: (1 )若△ det(A-λI)=λ2- (a+b) λ+ (ad – bc )=0的根 ① 若q>0,λ1λ2>0。 1 2 2 当 p >0 时,零点不稳定; ( p p 4 q ) p 4q。 1,2 令p=a+d, q=ad-bc=|A|,则 ,记 2 当p<0时,零点稳定 ② 若q<0,λ 1λ2<0 当c1=0时,零点稳定 当c1≠0时,零点为不稳定的鞍点 ③ q=0,此时λ1=p,λ2=0,零点不稳定。
解析方法 定理1 设xo是微分方程
dx 的平衡点: f ( x) dt
若 f ' (xo ) ,则 xo是渐近稳定的 0
0 若 f '( xo ),则 xo是渐近不稳定的
数学建模-稳定性模型
x (t ) F ( x) rx(1 ) Ex x N E F ( x) 0 x0 N (1 ), x1 0 r 平衡点
产量模型
稳定性判断
F ( x0 ) E r, F ( x1 ) r E
E r F ( x0 ) 0, F ( x1 ) 0
捕鱼业的持续收获
• 再生资源(渔业、林业等)与 非再生资源(矿业等) • 再生资源应适度开发——在持续稳 产前提下实现最大产量或最佳效益。
问题 及 分析
• 在捕捞量稳定的条件下,如何控 制捕捞使产量最大或效益最佳。 • 如果使捕捞量等于自然增长量,渔 场鱼量将保持不变,则捕捞量稳定。
产量模型 假设
稳定平衡点 x0 N (1 E / r )
捕捞 • 封闭式捕捞追求利润R(E)最大 过度 • 开放式捕捞只求利润R(E) > 0
令 E R( E ) T ( E ) S ( E ) pNE(1 ) cE =0 r
ER
r c (1 ) 2 pN
c Es r (1 ) pN
R(E)=0时的捕捞强度(临界强度) Es=2ER 临界强度下的渔场鱼量
c Es xs N (1 ) p r
S(E)
p , c
Es , xs
0
ER E*
T(E) Es r E
捕捞过度
• 鱼销售价格p
• 单位捕捞强度费用c 收入 T = ph(x) = pEx 支出 S = cE
单位时间利润
R T S pEx cE
E R( E ) T ( E ) S ( E ) pNE(1 ) cE r r c r E ( 1 ) E* 求E使R(E)最大 R 2 pN 2 2 rN c 渔场 x N (1 E R ) N c hR (1 2 2 ) R 4 p N 2 2p 鱼量 r
常微分方程平衡点及稳定性研究.
本文给出了微分方程稳定性的概念,并举了一些例子来说明不同稳定性定义之间的区别和联系。
这些例子都是通过求出方程解析解的方法来讨论零解是否稳定。
在实际问题中提出的微分方程往往是很复杂的,无法求出其解析解,这就需要我们从方程本身来判断零解的稳定性。
所以我们讨论了通过Liapunov稳定性定理来判断自治系统零解的稳定性,并用类似的方法讨论了非自治系统零解的稳定性。
在此基础上,讨论了一阶和二阶微分方程的平衡点及其稳定性,这对其研究数学建模的稳定性模型起到很大的作用,并且利用相关的差分方程的全局吸引性研究了具时滞的单种群模型()()()() ().11N tN t r t N tcN t ττ--=--的平衡点1x=的全局吸引性,所获结果改进了文献中相关的结论。
关键词:自治系统平衡点稳定性全局吸引性AbstractIn this paper,we gived the conceptions of differential equation stability. Simultaneously a number of examples to illustrate the difference between the definition of different stability and contact. These examples are obtained by analytical solution equation method to discuss the stability of zero solution. Practical issues raised in the often very complicated differential equations, analytical solution can not be obtained, which requires us to determine from the equation itself, the stability of zero solution. So we discussed the stability theorem to determine through the stability of zero solution of autonomous systems, and use similar methods to discuss the non-zero solution of autonomous system stability. On this basis,we discuss a step and the second-step and the stability, which plays the major role to its stability of the model, and the global attractivity of the positive equilibrium 1x=of the following delay single population model()()()() ().11N tN t r t N tcN t ττ--=--is investigated by using the corresponding result related to a difference equation.The obtained results improve some known results in the literature.Key Words:autonomous system;equilibrium point;stability;delay;globally asymptotic stability;global attractivity摘要 (I)Abstract (I)目录 (II)第1章引言 (1)第2章微分方程平衡点及稳定性分析 (3)2.1 平衡点及稳定性定义 (3)2.2 自治系统零解的稳定性 (4)2.2.1 V函数 (4)2.2.2 Liapunov稳定性定理 (5)2.3 非自治系统的稳定性 (8)2.3.1 V函数和k类函数 (8)2.3.2 零解的稳定性 (10)2.4 判定一阶微分方程平衡点稳定性的方法 (14)2.4.1 相关定义 (14)2.4.2 判定平衡点稳定性的方法 (14)2.5 判定二阶微分方程平衡点稳定性的方法 (15)2.5.1 相关定义 (15)2.5.2 判定平衡点稳定性的方法 (15)第3章一类时滞微分方程平衡点的全局吸引性 (17)3.1 差分方程(3-7)的全局渐近稳定性 (17)3.2 微分方程(3-1)的全局吸引性 (19)第4章常微分方程稳定性的一个应用 (23)第5章结论 (25)参考文献 (27)致谢 (29)第1章引言20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,在自然科学(如物理化学生物天文)和社会科学(如工程经济军事)中的大量问题都可以用微分方程来描述,尤其当我们描述实际对象的某些特性随时间(空间)而演变的过程,分析它的变化规律,预测它的未来形态时,要建立对象的动态模型,通常要用到微分方程模型,而稳定性模型的对象仍是动态过程,而建模的目的是研究时间充分长以后过程的变化趋势、平衡状态是否稳定。
数学建模-微分方程的稳定性讲述
p q 0 p ( a d ) q det A
2
1, 2 ( p p 4q ) / 2
2
(t ) ax by 线性常系数 x 的平衡点及其稳定性 微分方程组 y (t ) cx dy
平衡点 P0(0,0) 特征根
• 鱼销售价格p
• 单位捕捞强度费用c 收入 T = ph(x) = pEx 支出 S = cE
单位时间利润 稳定平衡点
R T S pEx cE
E R( E ) T ( E ) S ( E ) pNE(1 ) cE r r c r E ( 1 ) E* 求E使R(E)最大 R 2 pN 2 2 rN c 渔场 x N (1 E R ) N c hR (1 2 2 ) R 4 p N 2 2p 鱼量 r
问题 及 分析
• 在捕捞量稳定的条件下,如何控 制捕捞使产量最大或效益最佳? • 如果使捕捞量等于自然增长量,渔 场鱼量将保持不变,则捕捞量稳定.
产量模型 假设
x(t) ~ 渔场鱼量
• 无捕捞时鱼的自然增长服从 Logistic规律. x (t ) f ( x) rx(1 x ) N r~固有增长率, N~最大鱼量 • 单位时间捕捞量与渔场鱼量成正比. h(x)=Ex, E~捕捞强度
稳定性模型
1 微分方程稳定性的理论知识 2 捕鱼业的持续收获 3 军备竞赛
4 废水的生物处理
稳定性模型
• 对象仍是动态过程,而建模目的是研究时 间充分长以后过程的变化趋势 ——平衡状 态是否稳定. • 不求解微分方程,而是用微分方程稳定性 理论研究平衡状态的稳定性.
1 微分方程稳定性的理论知识
1.1 一阶微分方程的平衡点及其稳定性 1.2 线性常系数微分方程组的平衡点及其稳定性
稳定性理论
微分方程的稳定性理论简介一阶方程的平衡点及稳定性设有微分方程()()t f x x •= 〔1〕右端方程不显含自变量t ,称为自治方程。
代数方程的实根0x x =称为方程〔1〕的平衡点〔或齐点〕它也是方程〔1〕的解〔齐解〕。
如果存在某个邻域,使方程〔1〕的解()x t 从这个邻域内的某个(0)x 出发,满足0lim ()t x t x →∞= 〔3〕则称平衡点0x 是稳定的〔稳定性理论中称渐近稳定〕;否则,称0x 是不稳定的(不渐近稳定)推断平衡点0x 是否稳定点通常有两种方法。
利用定义即〔3〕式称间接法。
不求方程〔1〕的解()x t ,因而不利用〔3〕式的方法称直接法。
下面介绍直接法。
将()f x 在0x 点做Taylor 展开,只取一次项,方程〔1〕近似为'00()x t f x x x •=-()() 〔4〕〔4〕称为〔1〕的近似方程,0x 也是方程〔4〕的平衡点。
关于0x 点稳定性有如下结论:假设'0f x ()<0, 则0x 对于方程〔4〕和〔1〕都是稳定的; 假设'0f x ()>0,则0x 对于方程〔4〕和〔1〕都是不稳定的。
0x 对于方程〔4〕的稳定性很简单由定义〔3〕式证明,因为假设记'0()f x a =,则〔4〕的一般解是其中c 是由初始条件决定的常数,显然,当0a <时〔3〕式成立。
二阶方程的平衡点和稳定性二阶方程可用两个一阶方程表示为112212()(,)()(,)x t f x x x t g x x ⎧=⎪⎨⎪=⎩ 〔6〕右端不显含t ,是自治方程。
代数方程组 1212(,)0(,)0f x xg x x =⎧⎨=⎩ 〔7〕的实根011x x =,022x x =称为方程〔6〕的平衡点,记做00012(,)P x x 。
如果存在某个邻域,使方程〔6〕的解1()x t ,2()x t 从这个邻域内的某个12((0),(0))x x 出发,满足011lim ()t x t x →∞= ,022lim ()t x t x →∞= 〔8〕则称平衡点0P 是稳定的〔渐近稳定〕;否则,称0P 是不稳定的〔不渐近稳定〕。
微分方程稳定性理论 数学建模课件
dX F(X ) dt
的一
的一个 ~ (i 1..n) 为动力系统的一个奇解。 平衡点,则 xi (t ) x i
~ ~ ~ T ~ X ( x , x x ) 1 2 n 平衡点 在对一个动力系统的定性分
~ ~ ~ T ~ X ( x , x x ) 1 2 n 若 为动力系统
dX ~ F(X) X 统 dt 的平衡点 是局部(渐近)稳定的。
dX ~ ~ A( X ) ( X X ) dt
t
dX ~ X 对平衡点 局部(渐近)稳定性的判别,只须对原微分方程 dt F(X)
的右端项取一阶Taylor展式,构造线性动力系统
~ f i ( X ) ~ A ( X ) a 讨论,其中 ij x j
dX a11 a12 22 AX 其中 A R a dt 21 a22
平衡点类型 稳定结点 不稳定结点 鞍点 稳定退化结点 不稳定退化结点 稳定焦点 不稳定焦点 中心 稳定性 稳定 不稳定 不稳定 稳定 不稳定 稳定 不稳定 不稳定
下表给出其平衡点O(0,0)的类型和稳定性
i i 1 2 n
1 2 n
T
数学建模与模拟
X ( t ) ( x1 ( t ), x2 ( t ) xn ( t ))T 称n 维空间Rn 为相空间, 在相空间确定的曲线称为相轨线,简称轨线。
~ ~ ~ 称点 X ( x1 , x2 ~ xn )T 为动力系统 ~ 个平衡点 ,若 f i ( X ) 0(i 1..n)。
对于二维平面中(二阶方程)的情形,根 据平衡点的局部拓扑性状可将其分为结点、 焦点、鞍点以及中心等四类,其中鞍点、 中心这两种类型的平衡点是不稳定的,而 结点、焦点类型的平衡点还可以分为稳定 与不稳定的两种情形。
数学建模作业实验2微分方程实验
数学建模作业(实验2微分方程实验)基本实验1.微分方程稳定性分析绘出下列自治系统相应的轨线,并标出随t 增加的运动方向,确定平衡点,并按稳定的、渐近稳定的、或不稳定的进行分类:,,,+1,(1)(2)(3)(4);2;2;2.dx dx dx dxx x y x dt dt dt dt dy dy dy dy y y x y dt dt dt dt ⎧⎧⎧⎧==-==-⎪⎪⎪⎪⎪⎪⎪⎪⎨⎨⎨⎨⎪⎪⎪⎪===-=-⎪⎪⎪⎪⎩⎩⎩⎩解答解:(1)由平衡点的定义可得,f (x )=x=0,f (y )=y=0,因此平衡点为(0,0),微分方程组的系数矩阵为1001A ⎡⎤=⎢⎥⎣⎦,显然其特征值为12=1=1λλ,;由根与系数的关系可得:1212()2010p q λλλλ=-+=-<==>,且24p q >,由平衡点与稳定性的各种情况可知,平衡点(0,0)是不稳定的。
自治系统相应轨线为:(2)由平衡点的定义可得,f (x)=-x=0,f (y )=2y=0,因此平衡点为(0,0),微分方程组的系数矩阵为-1002A ⎡⎤=⎢⎥⎣⎦,显然其特征值为12=-1=2λλ,;由根与系数的关系可得:121210-(2<0)p q λλλλ=-+=-<==,,平衡点(0,0)是不稳定的。
自治系统相应轨线为:(3)由平衡点的定义可得,f (x )=y=0,f (y )=-2x=0,因此平衡点为(0,0),微分方程组的系数矩阵为0120A ⎡⎤=⎢⎥-⎣⎦,显然其特征值为121.4142=4142=-1.i i λλ,;由根与系数的关系可得:12120 1.41420()p q λλλλ=-+===>,,由平衡点与稳定性的各种情况可知,平衡点(0,0)是不稳定的。
自治系统相应轨线为:(4)由平衡点的定义可得,f (x )=-x=0,f (y )=-2y=0,因此平衡点为(0,0),微分方程组的系数矩阵为-100-2A ⎡⎤=⎢⎥⎣⎦,显然其特征值为12==-12-λλ,;由根与系数的关系可得:1212()3020p q λλλλ=-+=>==>,且24p q >,由平衡点与稳定性的各种情况可知,平衡点(0,0)是稳定的。
数学建模之微分方程建模与平衡点理论
微分方程列微分方程常用的方法: (1)根据规律列方程利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。
(2)微元分析法利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。
(3)模拟近似法在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。
一、模型的建立与求解 1.1传染病模型 (1)基础模型假设:t 时刻病人人数()x t 连续可微。
每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。
建模:t 到t t +∆病人人数增加()()()x t t x t x t t λ+∆-=∆ (1)0,(0)dxx x x dtλ== (2) 解得:0()t x t x e λ= (3)所以,病人人数会随着t 的增加而无限增长,结论不符合实际。
(2)SI 模型假设:1.疾病传播时期,总人数N 保持不变。
人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。
2.每位病人每天平均有效接触λ人,λ为日接触率。
有效接触后健康者变为病人。
依据:患病人数的变化率=Ni(t)(原患病人数)* λs(t)(每个病人每天使健康人变为病人的人数) 建模:di N Nsi dtλ= (4)由于()()1s t i t += (5)设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型0(1),(0)dii i i i dtλ=-= (6) 解得:01()111kti t e i -=⎛⎫+- ⎪⎝⎭(7)用Matlab 绘制图1()~i t t ,图2 ~di i dt图形如下,结论:在不考虑治愈情况下①当12i =时didt 达到最大值m di dt ⎛⎫ ⎪⎝⎭,这时101ln 1m t i λ-⎛⎫=- ⎪⎝⎭②t →∞时人类全被感染。
数学建模军备竞赛
模型的定性解释
模型
x(t) x ky g
y (t )
lx
y
h
平衡点
x0
kh g kl
,
y0
lg h kl
双方军备稳定(时间充分 , ~ 本方经济实力的制约;
长后趋向有限值)的条件 k, l ~ 对方军备数量的刺激;
的平衡点及其稳定性
平衡点 P0(0,0)
特征根 ( p p2 4q) / 2 1, 2
微分方程一般解形式
c e c e 1t 1
2t 2
1,2为负数或有负实部
p>0且q>0 p<0或q<0
平衡点 P0(0,0)稳定 平衡点 P0(0,0)不稳定
军备竞赛
模型
x(t) x ky g
也会因 x ky g 使该方重整军备, 即存在互不信任( k 0 ) 或固有争端( g 0 ) 的单方面
裁军不会持久。
线性常系数 微分方程组
x(t) ax by y(t) cx dy
的平衡点及其稳定性
ax by 0
平衡点P0(x0,y0)=(0,0) ~代数方程 cx dy 0 的根
若从P0某邻域的任一初值出发,都有
lim
t
x(t)
x0
,
lim y(t)
t
y, 0
kl
g, h ~ 本方军备竞赛的潜力。
1) 双方经济制约大于双方军备刺激时,军备竞赛 才会稳定,否则军备将无限扩张。
2) 若g=h=0, 则 x0=y0=0, 在 > kl 下 x(t), y(t)0,
数学建模稳定性在MATLAB应用
非线性系统的稳定性分析
总结词
非线性系统的稳定性分析需要考虑更多的因素,通过数值模拟和观察结果可以初步判断 系统的稳定性。
详细描述
在进行非线性系统的稳定性分析时,首先需要选择适当的数值方法对系统进行模拟。在 Matlab中,可以使用`ode45`等函数进行数值求解。然后,通过观察模拟结果,如时间 响应曲线、相图等,可以初步判断非线性系统的稳定性。如果系统在长时间内表现稳定,
稳定性定义
稳定性定义
数学建模中的稳定性是指模型在受到一定扰动后, 其状态或输出能够恢复或保持不变的性质。
稳定性分类
根据不同的分类标准,稳定性可以分为多种类型, 如局部稳定性和全局稳定性、线性稳定性和非线性 稳定性等。
稳定性分析方法
为了判断模型的稳定性,需要采用一定的分析方法 ,如线性化、Lyapunov函数、LaSalle不变集等。
参数优化
通过Matlab的优化工具箱,可以对影 响系统稳定性的参数进行优化设计, 以获得更好的系统性能。
04
数学建模稳定性在MatlabBiblioteka 的实现方法线性系统的稳定性分析
总结词
线性系统的稳定性分析是数学建模中的基础,通过Matlab可以方便地计算特征值并判断系统的稳定 性。
详细描述
在进行线性系统的稳定性分析时,首先需要建立系统的数学模型,即线性微分方程或差分方程。然后 ,通过Matlab中的`eig`函数计算系统的特征值。如果所有特征值都位于复平面的左半部分,则系统是 稳定的;否则,系统是不稳定的。
数学建模稳定性在Matlab应 用
目
CONTENCT
录
• 引言 • 数学建模稳定性 • Matlab在数学建模稳定性中的应用 • 数学建模稳定性在Matlab中的实现
数学建模差分方程
数学建模课程设计实验报告题目:差分阻滞增长模型问题研究姓名:班级:日期:摘要该文以生物数量增长的预测为例,建立了logistic 阻滞增长的微分方程模型,并把它离散化而得相应的差分方程模型。
将logistic 阻滞增长模型的差分形式进行简化并对简化差分形式进行迭代求解。
做出随固有增长率的变化, 按logistic 阻滞增长模型的差分形式增长的序列{k y }收敛、 2倍周期、 4倍周期......直至一片混乱的图形。
以参数b 为横坐标、 序列{k y }的收敛点为纵坐标,用数学软件模拟展示了这一简单差分方程从收敛、分叉、倍周期收敛进入混沌现象的过程。
为部分工程领域的混沌现象的研究提供了模拟方法。
关键词:logistic 模型 分叉 倍周期收敛 混沌现象一:问题分析生物数量在增长过程中,由于环境因素与自然资源的作用,受到阻滞。
此时,其增长率呈现递减趋势。
基于此的logistic 模型可以对类似问题进行分析。
但是,现实对象的活动一般都是具有周期性的,所以采用离散化的时间比采用连续的时间更为方便,于是采用差分形式的离散模型。
对于平衡点的稳点问题,我们知道,logistic 模型中x*=N 是稳定平衡点,x*=0不是稳定平衡点,那么对于差分形式的离散模型)1(1k k k x bx x -=+,k=0,1,2,... 是否还具有同样的性质?以下,我们将对模型从平衡点和稳定性的角度进行分析并借助计算机对倍周期收敛、分岔和混沌的现象进行分析;二:模型假设(1)自然资源,环境条件等对生物的增长起着阻滞作用,并随着数量的增加阻滞作用越来越大。
(2)自然资源与黄精条件所容纳的最大生物数量,现有生物数量和固有增长率已知。
(3)阻滞作用体现在对增长率的影响上,使得增长率随着生物数量表的增加而下降。
(4)所研究该对象每年有固定的周期性活动。
三:模型建立与图解模型建立设当前(即 t=0时) 生物数量为0x ,固有增长率为r 生物数量为x 。
微分方程的稳定性与解存在性分析
微分方程的稳定性与解存在性分析在数学领域中,微分方程是研究物理、工程、经济和生物等领域中数学建模的一种重要工具。
微分方程的稳定性和解的存在性是微分方程理论中的核心概念。
本文将对微分方程的稳定性和解的存在性进行分析。
一、微分方程的稳定性分析微分方程的稳定性描述了解的行为在不同条件下的稳定情况。
稳定性的分析通常包括平衡点的稳定性和解的稳定性两个方面。
1. 平衡点的稳定性平衡点是微分方程中解保持不变的点。
考虑一个一阶常微分方程dy/dt=f(y),当f(y)=0时,y的值处于平衡点。
为了判断平衡点的稳定性,有以下三种情况:a) 当f'(y)<0时,该平衡点是稳定的。
意味着当y离开平衡点时,解会回到平衡点附近。
b) 当f'(y)>0时,该平衡点是不稳定的。
当y离开平衡点时,解将远离平衡点。
c) 当f'(y)=0时,无法确定平衡点的稳定性,需要进行进一步的分析。
2. 解的稳定性除了平衡点的稳定性,我们还可以研究解本身的稳定性。
一般来说,稳定解具有以下特征:a) 收敛性:解在特定的条件下趋于一个有限的值。
b) 渐进稳定:解在无穷远处趋于零。
通过稳定性分析,我们可以判断系统是否具有趋于稳定状态的性质,这对于系统控制、优化问题等具有重要意义。
二、微分方程的解存在性分析解的存在性是对微分方程是否能找到满足特定条件的解进行研究。
下面介绍两个常见的解存在性定理。
1. 皮卡-林德勒夫定理对于连续函数f(x,t)和初始条件x(t0)=x0,如果f(x,t)满足利普希茨条件,则方程dx/dt=f(x,t)在区间[t0,t1]上存在唯一的解。
利普希茨条件是指存在一个常数L,使得对于t∈[t0,t1]和x1、x2∈Rn,满足|f(x1,t)-f(x2,t)|≤L|x1-x2|。
2. 广义皮卡-林德勒夫定理对于非线性连续函数f(x)和初始条件x(t0)=x0,如果f(x)满足利普希茨条件,且满足一定的增长条件,则方程dx/dt=f(x)在区间[t0,t1]上存在解。
数学建模稳定状态模型
-167-第十四章 稳定状态模型虽然动态过程的变化规律一般要用微分方程建立的动态模型来描述,但是对于某些实际问题,建模的主要目的并不是要寻求动态过程每个瞬时的性态,而是研究某种意义下稳定状态的特征,特别是当时间充分长以后动态过程的变化趋势。
譬如在什么情况下描述过程的变量会越来越接近某些确定的数值,在什么情况下又会越来越远离这些数值而导致过程不稳定。
为了分析这种稳定与不稳定的规律常常不需要求解微分方程,而可以利用微分方程稳定性理论,直接研究平衡状态的稳定性就行了。
本章先介绍平衡状态与稳定性的概念,然后列举几个这方面的建模例子。
§1 微分方程稳定性理论简介定义1 称一个常微分方程(组)是自治的,如果方程(组)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==)(),(),(1t f t x f t x F dt dx N (1) 中的)(),(x F t x F =,即在F 中不含时间变量t 。
事实上,如果增补一个方程,一个非自治系统可以转化自治系统,就是说,如果定义⎥⎦⎤⎢⎣⎡=t x y ,⎥⎦⎤⎢⎣⎡=1),()(t x F y G 且引入另一个变量s ,则方程(1)与下述方程)(y G dsdy = 是等价的。
这就是说自治系统的概念是相对的。
下面仅考虑自治系统,这样的系统也称为动力系统。
定义2 系统)(x F dtdx = (2) 的相空间是以),,(1n x x 为坐标的空间n R ,特别,当2=n 时,称相空间为相平面。
空间nR 中的点集},,1,)2()(|),,{(1n i t x x x x i i n ==满足称为系统(2)的轨线,所有轨线在相空间中的分布图称为相图。
定义3 相空间中满足0)(0=x F 的点0x 称为系统(2)的奇点(或平衡点)。
奇点可以是孤立的,也可以是连续的点集。
例如,系统⎪⎪⎩⎪⎪⎨⎧+=+=dy cx dtt dy by ax dt t dx )()( (3)当0=-bc ad 时,有一个连续的奇点的集合。
数学建模-微分方程稳定性
问题 及 分析
产量模型
规律 假设 • 无捕捞时鱼的自然增长服从 Logistic规律
x & x ( t ) = f ( x ) = rx (1 − ) N 固有增长率, 最大鱼量 x(t) ~ 渔场鱼量,r~固有增长率 N~最大鱼量 渔场鱼量, 固有增长率 • 单位时间捕捞量与渔场鱼量成正比
h(x)=Ex, E~捕捞强度 捕捞强度
差分方程模型
则 是两个不同实根时, ① 当λ1, λ2 是两个不同实根时,二阶常系 数线性差分方程的通解为 数线性差分方程的通解为 xn= x*+ C1(λ1)n + C2(λ2)n ; 是两个相同实根时, ② 当λ1, 2=λ是两个相同实根时,二阶常系 数线性差分方程的通解为 数线性差分方程的通解为 xn= x* + (C1 + C2 n)λn;
dx = f (x, y), dt dy = g(x, y). dt
代数方程组
(4 − 3)
f (x, y) = 0, g(x, y) = 0.
的实根x 称为方程(4-3)的平衡点 记作 的实根 = x0, y = y0称为方程 的平衡点, P0 (x0, y0). 它也是方程 它也是方程(4-3)的解 的解. 的解
差分方程模型
对于k阶差分方程 对于 阶差分方程 F( n; xn, xn+1, … , xn+k ) = 0 若有x 若有 n = x (n), 满足 F(n; x(n), x(n + 1) , … , x(n + k )) = 0, 则称x 是差分方程(4-6)的解, 包含 个任 是差分方程 的 包含k个任 则称 n = x (n)是差分方程 意常数的解称为(4-6)的通解 x0, x1, … , xk-1为已 意常数的解称为 的通解, 知时称为(4-6)的初始条件 通解中的任意常数都 知时称为 的初始条件,通解中的任意常数都 由初始条件确定后的解称为(4-6)的特解 由初始条件确定后的解称为 的特解. (4-6)
数学建模中实际问题的稳定性分析与优化改进
数学建模中实际问题的稳定性分析与优化改进数学建模作为一种解决实际问题的工具,已经在许多领域得到广泛应用。
然而,在实际问题的求解过程中,我们常常会面临稳定性问题,即模型的解对输入数据的微小变化非常敏感,导致结果的不确定性。
为了提高模型的可靠性和准确性,我们需要对模型的稳定性进行分析,并进行优化改进。
稳定性分析是数学建模的重要环节。
在建立数学模型时,我们需要根据实际情况选择合适的数学方法和算法。
不同的数学方法和算法对输入数据的敏感性是不同的,因此,我们需要对模型进行稳定性分析,以确定模型的可靠性和准确性。
稳定性分析可以通过敏感度分析、误差传播分析等方法来实现。
敏感度分析是一种常用的稳定性分析方法。
它通过改变输入数据的微小变化,观察模型输出结果的变化情况,从而判断模型对输入数据的敏感性。
敏感度分析可以帮助我们确定模型中哪些参数对结果影响最大,从而有针对性地进行优化改进。
例如,在交通流量预测模型中,我们可以通过敏感度分析确定哪些因素对交通流量的影响最大,进而优化交通管理措施,提高交通效率。
误差传播分析是另一种常用的稳定性分析方法。
它通过分析模型中误差的传播路径,来评估模型对输入数据误差的敏感性。
误差传播分析可以帮助我们确定模型中哪些环节对误差的传播影响最大,从而有针对性地进行优化改进。
例如,在气象预报模型中,我们可以通过误差传播分析确定哪些因素对气象预报误差的传播影响最大,进而改进气象观测设备,提高气象预报准确性。
稳定性分析只是解决实际问题的第一步,为了进一步提高模型的可靠性和准确性,我们还需要进行优化改进。
优化改进可以通过调整模型的参数、改进算法、增加数据采集点等方式来实现。
例如,在供应链管理模型中,我们可以通过优化改进来减少库存成本、提高供货速度,从而提高供应链的效率。
优化改进需要综合考虑多个因素,包括模型的稳定性、准确性、可操作性等。
在进行优化改进时,我们需要根据实际情况制定合理的目标函数和约束条件,选择合适的优化算法,并进行多次试验和验证,以确保优化结果的可靠性和准确性。
[精品]求系统平衡点及其稳固性
求线性时不变系统的平衡点,并判断其稳定性题目:已知系统:X'=AX+Bu, y=CX+Du(1)计算系统的平衡点,即获取系统在阶跃输入下的平衡点,(2)并考察平衡点的稳定性(求特征值)讲解:(1)求平衡点(a). 线性化:将状态空间所描述的线性系统输入输出关系由下式表示:x’=Ax+Buy=Cx+Du其中:x 代表状态矢量y代表输出矢量u代表输入矢量A,B,C,D为系统线性化的状态空间矩阵如创建用于线性化的系统模型名为lmod,并保存为”lmod.mdl”.在命令窗口输入命令[A B C D]=linmod(‘lmod’)就可以获得系统的常微分方程lmod的状态空间线性模型,返回系统线性化的状态空间矩阵。
[A B C D]=linmod(‘lmod’)([A,B,C,D]=LINMOD('SYS') obtains the state-space linear model of the system of ordinary differential equations described in theblock diagram 'SYS' when the state variables and inputs are setto the defaults specified in the block diagram.)(b)由状态方程转成LTI对象(transfer state equations to LTI object):一旦数据形成了状态空间形式或者转变成了LTI对象,就可以使用Control System Toolbox函数进行进一步的分析。
利用ss函数可将上面线性化的系统转成LTI对象,命令格式为:sys=ss(A,B,C,D)(c) 绘制波德图:(Bode plot drawing) 用bode 函数可绘制波德图,(相位、幅值与频率的关系图)bode(A,B,C,D) 或bode(sys)BODE(SYS) draws the Bode plot of the LTI model SYS (created with either TF, ZPK, SS, or FRD). The frequency range and number ofpoints are chosen automatically.(d)线性时间响应(Linear time response):给一个阶跃信号(step signal):step(A,B,C,D) 或step(sys) 线性化阶响应或给一个脉冲信号(impulse):impulse(A,B,C,D) 或impulse(sys)线性化脉冲响应(e)求系统平衡点(find the balance point of system):在非线性系统中,分析评估系统稳定性或稳定状态时大多需要用到平衡点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微分方程平衡点及其稳定性理论
这里简单介绍下面将要用到的有关内容:
一、 一阶方程的平衡点及稳定性
设有微分方程
()dx f x dt
= (1) 右端不显含自变量t ,代数方程
()0f x = (2)
的实根0x x =称为方程(1)的平衡点(或奇点),它也是方程(1)的解(奇解)
如果从所有可能的初始条件出发,方程(1)的解()x t 都满足
0lim ()t x t x →∞
= (3) 则称平衡点0x 是稳定的(稳定性理论中称渐近稳定);否则,称0x 是不稳定的(不渐近稳定)。
判断平衡点0x 是否稳定通常有两种方法,利用定义即(3)式称间接法,不求方程(1)的解()x t ,因而不利用(3)式的方法称直接法,下面介绍直接法。
将()f x 在0x 做泰勒展开,只取一次项,则方程(1)近似为:
0'()()dx f x x x dt
=- (4) (4)称为(1)的近似线性方程。
0x 也是(4)的平衡点。
关于平衡点0x 的稳定性有如下的结论:
若0'()0f x <,则0x 是方程(1)、(4)的稳定的平衡点。
若0'()0f x >,则0x 不是方程(1)、(4)的稳定的平衡点
0x 对于方程(4)的稳定性很容易由定义(3)证明,因为(4)的一般解是
0'()0()f x t x t ce x =+ (5)
其中C 是由初始条件决定的常数。
二、 微分方程组的平衡点和稳定性
方程的一般形式可用两个一阶方程表示为
112212()(,)()(,)dx t f x x dt dx t g x x dt
⎧=⎪⎪⎨⎪=⎪⎩ (6)
右端不显含t ,代数方程组
1212
(,)0(,)0f x x g x x =⎧⎨=⎩ (7) 的实根0012
(,)x x 称为方程(6)的平衡点。
记为00012(,)P x x 如果从所有可能的初始条件出发,方程(6)的解12(),()x t x t 都满足
101lim ()t x t x →∞= 202lim ()t x t x →∞
= (8) 则称平衡点00012(,)P x x 是稳定的(渐近稳定);否则,称P 0是不稳定的(不渐
近稳定)。
为了用直接法讨论方法方程(6)的平衡点的稳定性,先看线性常系数方程
1111222122()()dx t a x b x dt dx t a x b x dt
⎧=+⎪⎪⎨⎪=+⎪⎩ (9) 系数矩阵记作
1122a b A a b ⎡⎤=⎢⎥⎣⎦
并假定A 的行列式det 0A ≠
于是原点0(0,0)P 是方程(9)的唯一平衡点,它的稳定性由的特征方程
det()0A I λ-=
的根λ(特征根)决定,上方程可以写成更加明确的形式:
2120()det p q p a b q A λλ⎧++=⎪=-+⎨⎪=⎩
(10)
将特征根记作12,λλ,则
121,(2p λλ=- (11) 方程(9)的解一般有形式1212t t c e c e λλ+(12λλ≠)或12()t c c t e λ+(12λλλ==) 12,c c 为任意实数。
由定义(8),当12,λλ全为负数或有负的实部时0(0,0)P 是稳定的平衡点,反之,当12,λλ有一个为正数或有正的实部时0(0,0)P 是不稳定的平衡点。