初一数学上难题百道及答案
初一数学难题压轴题上册

1、小明有100元,他买了一本书花了x元,买了一个笔记本花了(30-x)元,最后他还剩下20元。
根据这些信息,他一共花了多少元?
A. 50元
B. 70元
C. 80元(答案)
D. 90元
2、一个矩形的长是宽的3倍,如果矩形的面积是75平方米,那么它的宽是多少米?
A. 5米(答案)
B. 10米
C. 15米
D. 20米
3、小红和小华一起做作业,小红用了1小时,小华用了40分钟。
如果他们在同一时间开始,那么小红比小华多用了几分钟?
A. 10分钟
B. 20分钟(答案)
C. 30分钟
D. 40分钟
4、一个数的三分之一加5等于这个数的四分之一加10,这个数是多少?
A. 10
B. 15
C. 20(答案)
D. 25
5、一列火车以每小时60公里的速度行驶,如果它需要行驶300公里,那么它需要多少小时?
A. 4小时
B. 5小时(答案)
C. 6小时
D. 7小时
6、一个正方形的周长是40厘米,那么它的边长是多少厘米?
A. 5厘米
B. 10厘米(答案)
C. 15厘米
D. 20厘米
7、小明有10个苹果,他分给小红和小华,每人得到的苹果数量相同。
每人得到多少个苹果?
A. 3个
B. 4个
C. 5个(答案)
D. 6个
8、一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,它的体积是多少立方厘米?
A. 30立方厘米
B. 40立方厘米
C. 50立方厘米
D. 60立方厘米(答案)。
七年级上数学试卷难题答案

一、选择题1. 题目:下列各数中,有理数是()A. √3B. πC. 0.1010010001…(循环小数)D. √-1答案:C解析:有理数是可以表示为两个整数之比的数,包括整数、分数和小数(有限小数和循环小数)。
选项A、B是无理数,选项D是虚数,选项C是循环小数,属于有理数。
2. 题目:下列各数中,绝对值最大的是()A. -3B. -2C. -1D. 0答案:A解析:绝对值表示一个数到数轴原点的距离,不考虑方向。
因此,绝对值最大的数是距离原点最远的数。
选项A的绝对值是3,而其他选项的绝对值都是1,所以选项A的绝对值最大。
3. 题目:若a=2,b=-1,则下列各式中,正确的是()A. a+b=3B. a-b=1C. ab=-2D. a÷b=-2答案:C解析:代入a和b的值,得到:A. a+b=2+(-1)=1B. a-b=2-(-1)=3C. ab=2×(-1)=-2D. a÷b=2÷(-1)=-2只有选项C正确。
二、填空题4. 题目:若a=-3,b=2,则|a-b|的值是()答案:5解析:|a-b|=|-3-2|=|-5|=55. 题目:若x²=25,则x的值是()答案:±5解析:x²=25,可以得出x=±√25,即x=±5。
三、解答题6. 题目:已知a、b是方程x²-4x+3=0的两个根,求a+b和ab的值。
答案:a+b=4,ab=3解析:根据韦达定理,方程x²-4x+3=0的两个根a和b满足:a+b=4(系数为-4的一次项的相反数)ab=3(系数为1的常数项)7. 题目:若x=2是方程ax²+bx+c=0的一个根,且a+b+c=0,求方程的另一个根。
答案:x=-1解析:根据题意,x=2是方程ax²+bx+c=0的一个根,代入得到:4a+2b+c=0又因为a+b+c=0,所以:2a+b=0解得b=-2a将b代入原方程,得到:ax²-2ax+c=0因为x=2是方程的一个根,所以:4a-4a+c=0c=0代入b=-2a,得到:b=-2a将b和c代入原方程,得到:ax²-2ax=0因为a≠0,所以:x(x-2)=0解得x=0或x=2由于x=2是方程的一个根,所以另一个根是x=-1。
初一数学上册精选难题

一、 初一数学上册精选难题二、 选择题1.以下各组数据为长度的三条线段,能组成三角形的是A .1,2,3B .1,4,3C .5,9,5D .2,7,3 2.下列事件中,是确定的事件为( )A 、掷一枚骰子6点朝上B 、买一张电影票,座位号是偶数C 、黑龙江冬天会下雪D 、从装有3个红球和2个白球的口袋中,摸出一个球是红球 3.为了了解某地区初一年级4500名学生的体重情况,从中抽取了500名学生的体重,就这个问题来说,下面说法中正确的是A .样本容量是500B .每个学生是个体C .500名学生是所抽取的一个样本D .4500名学生是总体 4.下列条件中,不能判定△ABC ≌△A ′B ′C ′,的是( )A .∠A=∠A ,∠C=∠C ,AC=A ′C ′B .∠B=∠B ,BC=B ′C ′,AB=A ′B ′C .∠A=∠A ′=80°,∠B=60°,∠C ′=40°,AB=A ′B ′D .∠A=∠A ,BC=B ′C ′,AB=A ′B ′ 5.如图,若AD ∥B C ,则A .∠DAC=∠BCAB .∠BAC=∠DCAC .∠DAC=∠BACD .∠B+∠BCD=180° 6.下列计算正确的是( )A 、x 2+x 3=x 5B 、x 2•x 3=x 6C 、(-x 3)2= -x 6D 、x 6÷x 3=x 37.如图,在5×5方格纸中,将图①中的三角形乙平移到图②中所示位置,与三角形拼成一个长方形,那么,下面的平移方法中,正确的是( )A .先向上平移3格,再向左平移l 格B .先向上平移2格,再向左平移1格C .先向上平移3格,再向左平移2格D .先向上平移2格,再向左平移2格8. 下列条件中,不能判定三角形全等的是( )A .三条边对应相等B .两边和一角对应相等C .两角的其中一角的对边对应相等D .两角和它们的夹边对应相等 9.下列乘法中,不能运用平方差公式进行运算的是( )A 、(x +a )(x -a )B 、(b +m )(m -b )C 、(-x -b )(x -b )D 、(a+b )(-a -b )10.如图,在△ABC 中,AD ⊥BC 于点D ,BD=CD ,若BC=6,AD=5,则图中阴影部分的面积为A .30B .15C .7.5D .611. 从数字2,3,4中任取两个不同的数字,其积不小于8,发生的概率是( ) A31 B 32 C 61 D 21 12.火车站和汽车站都为旅客提供打包服务,如果长、宽、高分别为x 、y 、z 的箱子按如图所示的方式打包,则打包带的长至少为( ) A 、z y x 1044++ B 、z y x 32++C 、z y x 642++D 、z y x 686++13. .如图,下列条件中,不能判断直线l1∥l2的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°(第13图) 14.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯角度可能是()A、第一次向右拐50°,第二次向左拐130°B、第一次向左拐30°,第二次向右拐30°C、第一次向右拐50°,第二次向右拐130°D、第一次向左拐50°,第二次向左拐130°15. 将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()16.下列图象中,哪个图象能大致刻画在太阳光的照射下,太阳能热水器里面的水的温度与时间的关系.( )0 时间0 时间0 时间0A B C D17.给出下列图形名称:(1)线段(2)梯形(3)等腰三角形(4)平行四边形(5)长方形,在这五种图形中是轴对称图形的有()(A)1个(B)2个(C)3个(D)4个二、填空题1.多项式x2y-2xy+3的是次项式,二次项的系数是.2.近似数0.055万精确到位,有个有效数字,用科学记数法表示记作。
人教版七年级上册数学难题

人教版七年级上册数学难题一、有理数运算相关难题。
1. 计算:(-2)^2020+(-2)^2021- 解析:- 根据幂运算法则a^m× a^n = a^m + n。
- 对于(-2)^2020,它是一个正数,因为负数的偶次幂是正数。
- 对于(-2)^2021,它可以写成(-2)^2020×(-2)。
- 那么(-2)^2020+(-2)^2021=(-2)^2020+(-2)^2020×(-2)。
- 提取公因式(-2)^2020得(-2)^2020×(1 - 2)。
- 因为(-2)^2020=2^2020,所以2^2020×(-1)= - 2^2020。
2. 若| a|=3,| b| = 5,且a与b异号,求a + b的值。
- 解析:- 因为| a| = 3,所以a=±3;因为| b| = 5,所以b=±5。
- 又因为a与b异号,当a = 3时,b=-5,则a + b=3+( - 5)=-2;当a=-3时,b = 5,则a + b=-3 + 5 = 2。
3. 计算:(-1)+2+(-3)+4+·s+(-99)+100- 解析:- 可以将相邻的两项看作一组,如(-1)+2 = 1,(-3)+4 = 1,以此类推。
- 从1到100共有100个数,两两一组,共有50组。
- 所以原式的值为50×1 = 50。
4. 已知a,b互为相反数,c,d互为倒数,m的绝对值是2,求(a + b)/(m)+m - cd 的值。
- 解析:- 因为a,b互为相反数,所以a + b = 0。
- 因为c,d互为倒数,所以cd = 1。
- 因为m的绝对值是2,所以m=±2。
- 当m = 2时,(a + b)/(m)+m - cd=(0)/(2)+2 - 1 = 1;当m=-2时,(a +b)/(m)+m - cd=(0)/(-2)-2 - 1=-3。
七上数学难题及答案

七上数学难题及答案【篇一:七年级上数学试题及答案】.填空题(每空2分,共24分)a的值为. bbdaa 1 0o(第7题)7.已知有理数a在数轴上的位置如图:则a?a?(第6题)(第11题)9.已知点b在线段ac上,ab=6cm,bc=12cm , p、q分别是ab、ac 中点,则pq 10.当x=_________时,代数式x-1与2x+10的值互为相反数.12.一列火车匀速行驶,经过一条长300m的隧道需要19 s的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是9 s.则火车的长度是 m.二.选择题(每小题3分,共18分. 下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内)13.-2012的倒数是()a.11b.?c.2012 d.?2012 2012201214.光年是天文学中的距离单位,1光年大约是9500 000 000000km,用科学计数法表示为()a.950?10 km b.95?10 km c.9.5?10 kmd.0.95?10 km15.如下图是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是()10111213abcd第15题16.下列关系一定成立的是()a.若a?b,则a?bb.若a?b,则a?b c.若a??b,则a?bd.若a??b,则a?b17.某项工作,甲单独做4天完成,乙单独做6天完成.若甲先做1天,然后甲、乙合作完成此项工作.若设甲一共做了x天,则所列方程为()x?1xxx?11 b.??1 4646xx?1x1x?11 d.1 c. ?46446a.18.下列四种说法:①因为am=mb,所以m是ab中点;②在线段am的延长线上取一点b,如果ab=2am,那么m是ab的中点;③因为m是ab的中点,所以am=mb=所以m是ab中点,其中正确的是()a.②③④ b.④三.解答题(共58分)19.计算(每小题5分,共10分)(1)48?(?)?(?48)?(?8)(2)?(3?5)?(?2)2?5?(?2)320.解下列方程:(每小题5分,共10分)(1)25x?(x?5)?29 (2)21.(6分)随着人们生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km为标准,多于50km的记为“?”,不足50km的记为“?”,刚好1ab;④因为a、m、b在同一条直线上,且am=bm,2d.③④c.①③④233x+13x?22 210(1)请求出这七天中平均每天行驶多少千米?(2)若每行驶100km需用汽油6升,汽油价7.22元/升,请估计小明家一个月(按30天计)的汽油费用是多少元?22.(7分)已知:a?5a?3,b?3a?2ab,c?a?6ab?2,求a??1,b?2时,a?2b?c的值.2222223.(7分)请观察下面的点阵图和相应的等式,探究其中的规律:①2②2③2④⑤①1?1;②1?3?2;③1?3?5?3;… ⑴分别写出④.⑤相应的等式;⑵通过猜想写出与第n个点阵图相对应的等式.25.(9分)某商场用2500元购进a、b两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.(1)(2)若a型台灯按标价的9折出售,b型台灯按标价的8折出售,那么这批台灯全部售出后,商场共获利多少元?dcao (第24题图)b n参考答案及评分标准1321.解:(1)方法一:总路程为:(50-8)+(50-11)+(50-14)+50+1281114016418=50 千米750?3067.22649.8元 100(2)估计小明家一个月的汽油费用是222222222222a?b?c?(5a?3)?2(3a?2ab)?(a?6ab?2)?5a?3?6a?4ab?a?6ab?2(5a26a2a2)(4a2b6a2b)(32)10a2b?1?10?(?1)2?2?1?2110a2b1当a??1,b?2时,22211(2)能.因为om、on分别是∠aoc、∠bod的平分线.所以∠moc+∠nod =111125.解:(1)设购进a型节能台灯x盏,则购进b型节能台灯(50-x)盏,根据题意列方程得:40x?65(50?x)?2500 解之得:x?3050?30?20(盏)答:购进a.b两种新型节能台灯分别为30盏.20盏.(2)(30?60?0.9?20?100?0.8)?2500?720(元)答:这批台灯全部售出后,商场共获利720元.【篇二:七年级下册数学期末考试提高题难题奥数题有答案】4-2015学年度期末模拟考卷试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第i卷(选择题)请点击修改第i卷的文字说明一、选择题(题型注释)1.如图,将矩形直尺与三角尺叠放在一起,在图中标记的所有角中,与∠1互余的角有()a.2个 b.4个 c.5个 d.6个2.如图,动点p从(0,3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点p第2015次碰到矩形的边时,点p 的坐标为(a)(1,4)(b)(5,0)(c)(6,4)(d)(8,3)试卷第1页,总7页5.如图,矩形bcde的各边分别平行于x轴或y轴,物体甲和物体乙由点a(2,0)同时出发,沿矩形bcde的边作环绕运动,物体甲按逆时针方向以l个单位,秒匀速运动,物体乙按顺时针方向以2个单位,秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是a.(2,0)b.(-1,1)c.(-2,1)d.(-1,-l) 6.若x,y满足方程组?x3y7x?y?5x-y的值等于3a.-l b.1 c.2 d.37.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,-1)?根据这个规律探索可得,第100个点的坐标为().a.(14,0) b.(14,-1) c.(14,1)d.(14,2)8.某校初二(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x名同学,捐款3 ) a.?xy27 bxy27xy27xy272x3y1002x3y66c.??3x?2y?66 d.??3x?2y?1009.若点p是第二象限内的点,且点p到x轴的距离是4,到y轴的距离是3,则点p的坐标是()试卷第2页,总7页a.(-4,3)b.(4,-3)c.(-3,4) d.(3,-4)10.一学员练习驾驶汽车,两次拐弯后行驶的路线与原来的路线平行,这两次拐弯角度不可能是()...11.如图1,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行. a.①②③ b.①②④c.①③④ d.①③12.如图,以数轴的单位长度线段为边作一个正方形,以表示数l的点为圆心,正方形对角线长为半径画弧,交数轴于点a,则点a表示的数是( )abcd试卷第3页,总7页第ii卷(非选择题)请点击修改第ii卷的文字说明二、填空题(题型注释)13.如图,把长方形abcd沿ef对折,若∠1=50,则∠aef的度数等于。
七年级上册数学难题100题之欧阳育创编

一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x 的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为(). A.0 B.1 C.-2 D.- 10.方程│3x│=18的解的情况是().A.有一个解是 6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠ ,b≠3B.a= ,b=-3C.a≠ ,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是(). 13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分 B.15分 C.20分 D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米. A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场. A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:-9.5.20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米) 1500 1130 910 622 402 219 72 0 例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员: “我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元 4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得x= )4.x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x(+ )=1,解得x=4]二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6 故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5 ∴400-600y-4.5=1-100y-9.5 500y=404 ∴y= 20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15 所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171 解得x=3 答:原三位数是437.23.解:(1)由已知可得=0.12 A站至H站的实际里程数为1500-219=1281(千米)所以A 站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66 解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486 解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得 4.5x+4.5(103-x)=486 ∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.==================== ======================= ======================= ====3.2 解一元一次方程(一)——合并同类项与移项【知能点分类训练】知能点1 合并与移项 1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6. 2.下列变形中:①由方程=2去分母,得x-12=10; ②由方程x=两边同除以,得x=1; ③由方程6x-4=x+4移项,得7x=0; ④由方程2- 两边同乘以6,得12-x-5=3(x+3). 错误变形的个数是()个. A.4 B.3 C.2 D.1 3.若式子5x-7与4x+9的值相等,则x的值等于(). A.2 B.16 C.D. 4.合并下列式子,把结果写在横线上.(1)x-2x+4x=__________; (2)5y+3y-4y=_________; (3)4y-2.5y-3.5y=__________. 5.解下列方程.(1)6x=3x-7 (2)5=7+2x (3)y- = y-2 (4)7y+6=4y-3 6.根据下列条件求x的值: (1)25与x的差是-8.(2)x 的与8的和是2. 7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________. 8.如果关于y 的方程3y+4=4a和y-5=a有相同解,则a的值是________.知能点2 用一元一次方程分析和解决实际问题 9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重 4.5千克,•桶中原有油多少千克? 10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B 内,才能使两盘内所盛盐的质量相等. 11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?【综合应用提高】 12.已知y1=2x+8,y2=6-2x.(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5? 13.已知关于x的方程x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程-15=0的解.【开放探索创新】 14.编写一道应用题,使它满足下列要求:(1)题意适合一元一次方程;(2)所编应用题完整,题目清楚,且符合实际生活.【中考真题实战】 15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A 处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A 处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).答案: 1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6. 2.B [点拨:方程x= ,两边同除以,得x= ) 3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16) 4.(1)3x (2)4y (3)-2y 5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.(3)y- = y-2,移项,得y- y=-2+ ,合并,得y=- ,系数化为1,得y=-3.(4)7y+6=4y-3,移项,得7y-4y=-3-6,合并同类项,得3y=-9,系数化为1,得y=-3. 6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.(2)根据题意可得方程:x+8=2,移项,得x=2-8,合并,得x=-6,系数化为1,得x=-10. 7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3] 8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19] 9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为 4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.解这个方程,得x=7.答:桶中原有油7千克. [点拨:还有其他列法] 10.解:设应该从盘A内拿出盐x克,可列出表格:盘 A 盘 B 原有盐(克)50 45 现有盐(克)50-x 45+x 设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.解这个方程,得x=2.5,经检验,符合题意.答:应从盘A内拿出盐2.5克放入到盘B内. 11.解:(1)设爸爸追上小明时,用了x分,由题意,得180x=80x+80×5,移项,得100x=400.系数化为1,得x=4.所以爸爸追上小明用时4分钟.(2)180×4=720(米),1000-720=280(米).所以追上小明时,距离学校还有280米. 12.(1)x=- [点拨:由题意可列方程2x+8=6-2x,解得x=- ] (2)x=- [点拨:由题意可列方程6-2x-(2x+8)=5,解得x=-] 13.解:∵ x=-2,∴x=-4.∵方程x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴ -15=0.∴x=-225. 14.本题开放,答案不唯一. 15.解:(1)设CE的长为x 千米,依据题意得 1.6+1+x+1=2(3-2×0.5)解得x=0.4,即CE的长为0.4千米.(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),则所用时间为(•1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),则所用时间为( 1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A)。
七年级数学上册难题解答

七年级数学上册难题解答
以下是一些七年级数学上册的难题,并提供了解答:
1. 题目:已知$x = 5$,$y = 2$,且$x + y = -(x + y),$求$x - y$的值.
解答:
根据绝对值的定义,我们可以得到 $x = 5$ 或 $x = -5$,以及 $y = 2$ 或$y = -2$。
根据条件 $x + y = -(x + y)$,我们可以推断 $x + y \leq 0$。
进一步分析上述不等式,我们可以得出以下结论:
① 当 $x = 5$ 时,无论 $y = 2$ 或 $y = -2$,都不满足 $x + y \leq 0$,所以该情况不成立。
② 当 $x = -5$ 时,只有 $y = -2$ 满足 $x + y \leq 0$,所以 $x - y = -5 + 2 = -3$。
2. 题目:如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数()
A.互为相反数但不等于零
B.互为倒数
C.既互为相反数又互为倒数
D.相等但不等于零
解答:两个有理数的和除以它们的积,所得的商为零。
这表明两个数的和必须为0,且它们的积不能为0。
即两个数互为相反数但不等于0。
故答案为:A. 互为相反数但不等于零。
七上数学经典难题

七年级经典数学题型一、填空题 2、若a =—20062005b =—20052004c =—20042003,则a ,b ,c 的大小关系是(用<号连接。
3、已知不相同的整数a 、b 、c 、d 满足abcd =25,且a >b >c >d , 则 a +b + c +d 等于 。
4、已知0||=--aa ,则a 是__________数;已知()01||<-=b abab ,那么a 是_________数。
5、计算:()()()200021111-+-+- =_________。
6、已知()02|4|2=-++b a a ,则b a 2+=_________。
7、由书中知识,+5的相反数是–5,–5的相反数是5,那么数x 的相反数是______,数 –x 的相反数是________;数ba 12+-的相反数是_________;数nm 21+的相反数是____________。
8、因为到点2和点6距离相等的点表示的数是4,有这样的关系()62214+=,那么到点100和到点999距离相等的数是_____________;到点76,54-距离相等的点表示的数是____________;到点m 和点–n 距离相等的点表示的数是________。
9、已知点4和点9之间的距离为5个单位,有这样的关系495-=,那么点10和点2.3-之间的距离是____________;点m 和点n (数n 比m 大)之间的距离是_____________。
10、数5的绝对值是5,是它的本身;数–5的绝对值是5,是它的相反数;以上由定理非负数的绝对值等于它本身,非正数的绝对值等于它的相反数而来。
由这句话,正数–a 的绝对值为__________;负数–b 的绝对值为________;负数1+a 的绝对值为________,正数 –a+1的绝对值___________。
12、()200720088125.0-⨯————15、计算:1-2+3-4+5-6+…+99-100=____ _ 。
(完整)初一数学(上)难题百道及答案.doc

45、如果x m 1y2m 3 xy 3x 为四次三项式,则m________。
46、观察代数式3a2b2c 和 a3 y2,把它们的共同点填写在下列横线上,⑴都是 _______ 式,⑵都是 _________。
47、如果A 3m2 m 1,B 2m2 m 7 ,且A B C 0,那么C=_______。
48、把多项式:x5 4x4 y 5xy4 6 x3 y 2 x2 y3 3y5 去括号后按字母x 的降幂排列为 ________________________ 。
49、关于a、b的单项式,a x 2 y b y 与x y a2x 1b3是同类项,它们的合并结果为_____________。
50、 p-[q+2p-( )]=3p-2q 。
51 、如果关于x 、y 的多项式,存在下列关系3x2 kxy 4 y2 mx2 3xy 3y 2 x2 xy ny2 则m=______ , n=_____ ,k=_______。
52、如果a 1 2a b 20 ,那么 a b5a4a3 2bb b a ba=____________。
53 、已知mn n 15, m mn 6 ,那么m n _________ ,2mn m n _________。
54、如果xx,那么x y z__________。
3 y, zx y z255、一船在顺水中的速度为 a 千米 / 小时,水速为 b 千米 / 小时,( a>2b),则此船在相距 S 千米的两码头间往返一次需用时间为__________小时。
56、如图是2004 年月 10 月份的日历,现在用一矩形在日历中任意框出9 个数,用 e 表示出这 9 个数的和为 _________。
57、在代数式1x y,5 a, x2 y2,1, xyz, 5 , x yz中有2 3 y 3A、 5 个整式 B 、 4 个单项, 3 个多项式C、 6 个整式, 4 个单项式 D 、 6 个整式,单项式与多项式个数相同1 2003 59200358、如果x2n 1 y2与 3x8 y2是同类项,那么代数式 1 n n 的值为3 14()A、 0 B 、 -1 C 、 +1 D 、± 159、如果M 3x2 2xy 4y2 , N 4x2 5xy y2,则 8x2 13xy 15 y2等于()A、 2M-N B 、 2M-3N C 、 3M-2N D 、 4M-N60、将代数式 a b c d a b c d 写成 M N M N 的形式正确的是()A、a b c d a b c dB、 a b d c a b d cC、 a d c b a d c bD、 a b c d a b c d61、如果x2 x 2 的值为7,则 1 x2 1 x 5 的值为()2 2A 、5B、3C、 15D、答案不惟一22262、如果 a b2 , c a3 ,则 b c24 的值为()3 b c A 、 14B、 2 C 、 44D、不能确定a b c )63、b的值是(acA 、± 3B 、± 1C 、± 1 或± 3D 、不能确定 64、商场七月份售出一种新款书包 a 只,每只 b 元,营业额c 元,八月份采取促销活动,优惠广大学子,售出该款书包3a 只,每只打八折,那么八月份该款书包的营业额比七月份增加() A 、 1.4c 元B、 2.4c 元C、 3.4c 元D、 4.4c 元65、一件工作,甲单独做 x 天完成,乙单独做 y 天完成。
七年级上册数学难题(集萃)

七年级上册数学难题集萃1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?答案1.设甲、乙一起做还需x小时才能完成工作.根据题意,得×+(+ )x=1解这个方程,得x==2小时12分答:甲、乙一起做还需2小时12分才能完成工作.2.设x年后,兄的年龄是弟的年龄的2倍,则x年后兄的年龄是15+x,弟的年龄是9+x.由题意,得2×(9+x)=15+x18+2x=15+x,2x-x=15-18∴x=-3答:3年前兄的年龄是弟的年龄的2倍.(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)3.设圆柱形水桶的高为x毫米,依题意,得·()2x=300×300×80x≈229.3答:圆柱形水桶的高约为229.3毫米.4.设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需的时间为分.过完第二铁桥所需的时间为分.依题意,可列出方程+ =解方程x+50=2x-50得x=100∴2x-50=2×100-50=150答:第一铁桥长100米,第二铁桥长150米.5.设这种三色冰淇淋中咖啡色配料为2x克,那么红色和白色配料分别为3x克和5x克.根据题意,得2x+3x+5x=50解这个方程,得x=5于是2x=10,3x=15,5x=25答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.6.设这一天有x名工人加工甲种零件,则这天加工甲种零件有5x个,乙种零件有4(16-x)个.根据题意,得16×5x+24×4(16-x)=1440解得x=6答:这一天有6名工人加工甲种零件.7.(1)由题意,得0.4a+(84-a)×0.40×70%=30.72解得a=60(2)设九月份共用电x千瓦时,则0.40×60+(x-60)×0.40×70%=0.36x解得x=90所以0.36×90=32.40(元)答:九月份共用电90千瓦时,应交电费32.40元.8.按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算, 设购A种电视机x台,则B种电视机y台.(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程1500x+2100(50-x)=90000即5x+7(50-x)=3002x=50x=2550-x=25②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=900003x+5(50-x)=1800x=3550-x=15③当购B,C两种电视机时,C种电视机为(50-y)台.可得方程2100y+2500(50-y)=9000021y+25(50-y)=900,4y=350,不合题意由此可选择两种方案:一是购A,B两种电视机25台;二是购A 种电视机35台,C种电视机15台.(2)若选择(1)中的方案①,可获利150×25+250×15=8750(元)若选择(1)中的方案②,可获利150×35+250×15=9000(元)9000>8750 故为了获利最多,选择第二种方案.。
七年级数学上册难题汇总(含答案),月考前赶紧练习!

初一数学上册难题和答案1.若干学生住若干间房间,如果每间住4人,则有20人没有地方住,如果每间房住8人,则有一间只有4人住,问共有多少个学生?设有x间宿舍每间住4人,则有20人无法安排所以有4x+20人每间住8人,则最后一间不空也不满所以x-1间住8人,最后一间大于小于8所以0<(4x+20)-8(x-1)<80<-4x+28<8乘以-1,不等号改向-8<4x-28<0加上2820<4x<28除以45<x<7x是整数所以x=64x+20=44所以有6间宿舍,44人2.甲对乙说:“你给我100元,我的钱将比你多1倍。
”乙对甲说:“你只要给我10元,我的钱将比你多5倍。
”问甲乙两人各有多少元钱?设甲原有x元,乙原有y元.x+100=2*(y-100)6*(x-10)=y+10x=40y=1703.小王和小李从A B两地,相向而行,80分钟后相遇,小王先出发60分钟后小李在出发,40分钟后相遇,问小李和小王单独走完这段距离需要多长时间?解:设小王的速度为x,小李的速度为y根据:路程=路程,可列出方程:80(x+y)=60x+40(x+y)解得y=1\2x设路程为单位1,则:80(1\2x+x)=1解得x=1\120所以y=1\240所以小王单独用的时间:1*1\120=120(分)小李单独用的时间:1*1\240=240(分)4.一天,猫发现前面20米的地方有只老鼠,立即去追,同时,老鼠也发现了猫,马上就跑。
猫每秒跑7米,用了10秒追上老鼠。
老鼠每秒跑多少米?解:设老鼠每秒跑X米7*10=10X+2010X=70-20X=5答:老鼠每秒跑5米。
5.一项工程,甲单独做10天完成,乙单独做6天完成。
先由甲先做2天,然后甲乙合作,问:甲乙合作还需要多少天完成工作?设甲乙合作一起还需要x天完成总工程为1甲先做了2天他完成了总工程的2*1/10=1/5那么此时还剩下为1-1/5=4/5那么就有了(1/10+1/6)*x=4/5解得x=3即一起工作3天完成整个工作思路:主要是看每个完成的工作量跟整个的相对关系的。
七年级上册试卷及数学难题

一、选择题1. 下列数中,是质数的是()A. 8B. 10C. 11D. 12答案:C2. 下列图形中,是轴对称图形的是()A. 长方形B. 等腰三角形C. 平行四边形D. 梯形答案:B3. 已知一个等边三角形的边长为a,则其周长为()A. 3aB. 2aC. aD. a/3答案:A4. 下列函数中,是反比例函数的是()A. y = x + 2B. y = 2xC. y = 1/xD. y = x^2答案:C5. 已知等腰三角形的底边长为6cm,腰长为8cm,则该三角形的面积是()A. 24cm^2B. 30cm^2C. 36cm^2D. 48cm^2答案:C二、填空题6. 一个数既是2的倍数,又是3的倍数,那么这个数一定是()答案:6的倍数7. 下列数中,是偶数的是()A. 7B. 9C. 10D. 12答案:C8. 下列图形中,是圆的是()A. 长方形B. 正方形C. 圆形D. 三角形答案:C9. 已知一个等腰三角形的底边长为5cm,腰长为8cm,则该三角形的面积是()答案:20cm^210. 下列函数中,是正比例函数的是()A. y = 2x + 3B. y = 3/xC. y = 3xD. y = x^2 + 1答案:C三、解答题11. 已知一个等腰三角形的底边长为6cm,腰长为8cm,求该三角形的面积。
解答:(1)作高线,将等腰三角形分为两个直角三角形。
(2)在直角三角形中,根据勾股定理,可得高线长度为√(8^2 - 3^2) = √(64 - 9) = √55。
(3)根据三角形的面积公式,可得该等腰三角形的面积为(6 √55)/ 2 = 3√55 cm^2。
12. 已知一个数既是2的倍数,又是3的倍数,且这个数的最大公约数是6,求这个数。
解答:(1)根据题意,这个数是6的倍数,可以表示为6n(n为正整数)。
(2)由于这个数是2的倍数,所以n也是2的倍数,可以表示为2m(m为正整数)。
七年级上册数学难题100题

七年级上册数学难题100题(总16页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式 x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解 D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠ ,b≠3B.a= ,b=-3C.a≠ ,b=-3D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分 B.15分 C.20分 D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减 D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( •)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组 B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡()A.3个 B.4个 C.5个 D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程: -9.5.20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米) 1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员: “我快到站了吗”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数 1~50人 51~100人 100人以上票价 5元 4.5元 4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱(2)两班各有多少名学生(提示:本题应分情况讨论)答案:一、1.32.-3(点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程 x-1=- ,得x= )4. x+3x=2x-65.y= - x6.525(点拨:设标价为x元,则 =5%,解得x=525元)7.18,20,228.4[点拨:设需x天完成,则x( + )=1,解得x=4]二、9.D10.B(点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D(点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B(点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C(点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B(点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D17.C18.A(点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得 =0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D 站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.===================================================================== =3.2 解一元一次方程(一)——合并同类项与移项【知能点分类训练】知能点1 合并与移项1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程 =2去分母,得x-12=10;②由方程 x= 两边同除以,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2- 两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子5x-7与4x+9的值相等,则x的值等于().A.2 B.16 C. D.4.合并下列式子,把结果写在横线上.(1)x-2x+4x=__________; (2)5y+3y-4y=_________; (3)4y-2.5y-3.5y=__________.5.解下列方程.(1)6x=3x-7 (2)5=7+2x(3)y- = y-2 (4)7y+6=4y-36.根据下列条件求x的值:(1)25与x的差是-8.(2)x的与8的和是2.7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.知能点2 用一元一次方程分析和解决实际问题9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,•桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?【综合应用提高】12.已知y1=2x+8,y2=6-2x.(1)当x取何值时,y1=y2 (2)当x取何值时,y1比y2小513.已知关于x的方程 x=-2的根比关于x的方程5x-2a=0的根大2,求关于x 的方程 -15=0的解.【开放探索创新】14.编写一道应用题,使它满足下列要求:(1)题意适合一元一次方程;(2)所编应用题完整,题目清楚,且符合实际生活.【中考真题实战】15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).答案:1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.2.B [点拨:方程 x= ,两边同除以,得x= )3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(1)3x (2)4y (3)-2y5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=-.(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.(3)y- = y-2,移项,得y- y=-2+ ,合并,得 y=- ,系数化为1,得y=-3.(4)7y+6=4y-3,移项,得7y-4y=-3-6,合并同类项,得3y=-9,系数化为1,得y=-3.6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.(2)根据题意可得方程: x+8=2,移项,得 x=2-8,合并,得 x=-6,系数化为1,得x=-10.7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19] 9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.解这个方程,得x=7.答:桶中原有油7千克.[点拨:还有其他列法]10.解:设应该从盘A内拿出盐x克,可列出表格:盘A 盘B原有盐(克) 50 45现有盐(克) 50-x 45+x设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.解这个方程,得x=2.5,经检验,符合题意.答:应从盘A内拿出盐2.5克放入到盘B内.11.解:(1)设爸爸追上小明时,用了x分,由题意,得180x=80x+80×5,移项,得100x=400.系数化为1,得x=4.所以爸爸追上小明用时4分钟.(2)180×4=720(米),1000-720=280(米).所以追上小明时,距离学校还有280米.12.(1)x=-[点拨:由题意可列方程2x+8=6-2x,解得x=- ](2)x=-[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ]13.解:∵ x=-2,∴x=-4.∵方程 x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴ -15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设CE的长为x千米,依据题意得1.6+1+x+1=2(3-2×0.5)解得x=0.4,即CE的长为0.4千米.(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),则所用时间为(•1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),则所用时间为(1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A)。
七年级上册数学难题第一单元

七年级上册数学难题第一单元一、有理数的概念与分类相关。
1. 把下列各数分别填入相应的集合里:- - 5,- 2.626626662·s(每两个2之间依次多1个6),0,π,-(7)/(4),0.12,| - 6|。
- 有理数集合:{-5,0,-(7)/(4),0.12,| - 6|};- 无理数集合:{-2.626626662·s(每两个2之间依次多1个6),π}。
- 解析:有理数是整数和分数的统称,包括有限小数和无限循环小数;无理数是无限不循环小数。
-5是整数,属于有理数;-2.626626662·s是无限不循环小数,是无理数;0是整数,是有理数;π是无理数;-(7)/(4)是分数,是有理数;0.12是有限小数,是有理数;| - 6|=6,是整数,是有理数。
2. 下列说法正确的是()- A. 有理数都是有限小数。
- B. 无理数都是无限不循环小数。
- C. 带根号的数都是无理数。
- D. 数轴上的点表示的数都是有理数。
- 答案:B。
- 解析:A选项,有理数包括有限小数和无限循环小数,所以A错误;B选项,无理数的定义就是无限不循环小数,所以B正确;C选项,比如√(4) = 2是有理数,所以C错误;D选项,数轴上的点表示的数既有有理数也有无理数,所以D错误。
二、数轴相关。
3. 在数轴上表示数-3,0,5,2,-1的点中,在原点右边的有()- A. 0个。
- B. 1个。
- C. 2个。
- D. 3个。
- 答案:C。
- 解析:在数轴上,原点右边的数是正数。
5和2是正数,所以在原点右边的数有2个。
4. 已知数轴上点A表示的数为-2,点B与点A的距离为3,则点B表示的数为____。
- 答案:1或-5。
- 解析:当点B在点A右侧时,点B表示的数为-2 + 3=1;当点B在点A左侧时,点B表示的数为-2-3=-5。
三、相反数与绝对值相关。
5. 若| a| = 5,则a=____。
七年级上册数学难题100题

一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠ ,b≠3B.a= ,b=-3C.a≠ ,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:-9.5.20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员: “我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元 4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得x= )4.x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x(+ )=1,解得x=4]二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得=0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.====================================================== ================3.2 解一元一次方程(一)——合并同类项与移项【知能点分类训练】知能点1 合并与移项1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程=2去分母,得x-12=10;②由方程x= 两边同除以,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2- 两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子5x-7与4x+9的值相等,则x的值等于().A.2 B.16 C.D.4.合并下列式子,把结果写在横线上.(1)x-2x+4x=__________; (2)5y+3y-4y=_________;(3)4y-2.5y-3.5y=__________.5.解下列方程.(1)6x=3x-7 (2)5=7+2x(3)y- = y-2 (4)7y+6=4y-36.根据下列条件求x的值:(1)25与x的差是-8.(2)x的与8的和是2.7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.知能点2 用一元一次方程分析和解决实际问题9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,•桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?【综合应用提高】12.已知y1=2x+8,y2=6-2x.(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?13.已知关于x的方程x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程-15=0的解.【开放探索创新】14.编写一道应用题,使它满足下列要求:(1)题意适合一元一次方程;(2)所编应用题完整,题目清楚,且符合实际生活.【中考真题实战】15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).答案:1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.2.B [点拨:方程x= ,两边同除以,得x= )3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(1)3x (2)4y (3)-2y5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.(3)y- = y-2,移项,得y- y=-2+ ,合并,得y=- ,系数化为1,得y=-3.(4)7y+6=4y-3,移项,得7y-4y=-3-6,合并同类项,得3y=-9,系数化为1,得y=-3.6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.(2)根据题意可得方程:x+8=2,移项,得x=2-8,合并,得x=-6,系数化为1,得x=-10.7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3] 8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.解这个方程,得x=7.答:桶中原有油7千克.[点拨:还有其他列法]10.解:设应该从盘A内拿出盐x克,可列出表格:盘A 盘B原有盐(克)50 45现有盐(克)50-x 45+x设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.解这个方程,得x=2.5,经检验,符合题意.答:应从盘A内拿出盐2.5克放入到盘B内.11.解:(1)设爸爸追上小明时,用了x分,由题意,得180x=80x+80×5,移项,得100x=400.系数化为1,得x=4.所以爸爸追上小明用时4分钟.(2)180×4=720(米),1000-720=280(米).所以追上小明时,距离学校还有280米.12.(1)x=-[点拨:由题意可列方程2x+8=6-2x,解得x=- ](2)x=-[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ]13.解:∵x=-2,∴x=-4.∵方程x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴-15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设CE的长为x千米,依据题意得1.6+1+x+1=2(3-2×0.5)解得x=0.4,即CE的长为0.4千米.(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),则所用时间为(•1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),则所用时间为(1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A)。
七年级上学期数学难题难度训练含答案解析

七年级上数学难题训练1一.主观题(共12小题,每题1分)1. 为了解某学校学生的个性特长发展情况,在全校范围内随机抽查了部分学生参加音乐、体育、美术、书法等活动项目(每人只限一项)的情况.并将所得数据进行了统计,结果如图所示.(1)求在这次调查中,一共抽查了多少名学生;(2)求出扇形统计图中参加“音乐”活动项目所对扇形的圆心角的度数;(3)若该校有名学生,请估计该校参加“美术”活动项目的人数. 2. 某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有______人达标;(3)若该校学生有人,请你估计此次测试中,全校达标的学生有多少人?3. 下列调查中,哪些用的是普查方式,哪些用的是抽样调查方式?(1)了解一批空调的使用寿命;(2)出版社审查书稿的错别字的个数;(3)调查全省全民健身情况.4. 为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 l95 180 250 270 455 170请你估算一下小亮家平均每年(每年按52周计算)的日常生活消费总费用.5. 某班有学生50人,根据全班学生的课外活动情况绘制的统计图(如图),求参加其他活动的人数.6. 将一批工业最新动态信息输入管理储存网络,甲单独做需要6小时,乙单独做需要4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需要多长时间才能完成工作?7. 有一火车要以每分钟600米的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5秒时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50米,试求两座铁桥的长分别为多少.8. 江南生态食品加工厂收购了一批质量为的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量倍还多,求粗加工的该种山货质量.9. 植树节期间,两所学校共植树棵,其中海石中学植树的数量比励东中学的倍少棵,求两校各植树多少棵.10. 某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1 440元,•求这一天有几名工人加工甲种零件.11. 解下列方程:(1);(2);(3);(4).12. 为何值时,关于的方程的解是的解的2倍?二.填空题(共9小题,每题0分)1. 某校为了了解初一年级名学生每天完成作业所用时间的情况,从中对名学生每天完成作业所用时间进行了抽查,这个问题中的样本容量是_______.2. 某果园有果树200棵,从中随机抽取5棵,每棵果树的产量如下:(单位:kg)98 102 97 103 105这棵果树的平均产量为kg,估计这棵果树的总产量约为kg.3. 学校团委会为了举办“庆祝五·四”活动,调查了本校所有学生,调查结果如图所示,根据图中给出的信息,这次学校赞成举办郊游活动的学生有人.4. 某住宅小区6月份随机抽查了该小区6天的用水量(单位:t),结果分别是:30、34、32、37、28、31,那么,请你估计该小区6月份(30天)的总用水量约是t.5. 近五年来,某校图书拥有量统计表如下:根据统计表,2009年该校图书有______册,从2008年到2012年该校图书增加了_____册.6. 为了预防“禽流感”的传播,检疫人员对某养殖场的家禽进行检验,任意抽取了其中的100只,此种方式属于______调查,样本容量是______.7. 某商品按进价增加出售,因积压需降价处理,如果仍想获得的利润,则出售价需打折.8. 如果,那么=___________.9. 如果关于的方程与方程是同解方程,则=___________.三.单选题(共9小题,每题0分)1. 某校公布了该校反映各年级学生体育达标情况的两张统计图,该校A.甲和乙B.乙和丙C.甲和丙D.甲和乙及丙2. 学校以年级为单位开展广播操比赛,全年级有个班级,每个班级有名学生,规定每班抽名学生参加比赛,这时样本容量是()A.13B.50C.650D.3253. 某市有名学生参加考试,为了了解考试情况,从中抽取名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①名考生是总体的一个样本;②名考生是总体;③样本容量是其中正确的说法有()A.0种B.1种C.2种D.3种4. ①为了了解全校学生对任课教师的意见,学校向全校学生进行问卷调查;②为了了解初中生上网情况,某市团委对所初中的部分学生进行调查;③某班学生拟组织一次春游活动,为了确定春游的地点,向同学们进行调查;④为了解全班同学的作业完成情况,对学号为奇数的学生进行调查.以上调查中,用普查方式收集数据的是()A.①③B.①②C.②④D.②③5. 在选取样本时,下列说法不正确的是( )A.所选样本必须足够大B.所选样本要具有普遍代表性C.所选样本可按自己的爱好抽取D.仅仅增加调查人数不一定能提高调查质量6. 下列调查中,适合进行普查的是()A.《新闻联播》电视栏目的收视率B.我国中小学生喜欢上数学课的人数C.一批灯泡的使用寿命D.一个班级学生的体重7. 把过期的药品随意丢弃,会造成对土壤和水体的污染,危害人们的健康.如何处理过期药品,有关机构随机对若干家庭进行调查,调查结果如图,其中对过期药品处理不正确的家庭达到()A. B. C. D.8. 某校七班的全体同学最喜欢的球类运动用如图所示的统计图来表示,下面说法正确的是()A.从图中可以直接看出喜欢各种球类的具体人数B.从图中可以直接看出全班的总人数C.从图中可以直接看出全班同学一学期来喜欢各种球类的变化情况D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系9. 宾馆有100间相同的客房,经过一段时间的经营,发现客房定价与客房的入住率之间有下表所示的关系,按照这个关系,要使客房的收入最高,每间客房的定价应为()A.300元B.280元C.260元D.220元1. 答案:(1)48 (2)90°(3)300【解析】解:(1)因为,所以在这次调查中,一共抽查了名学生.(2)因为.所以参加“音乐”活动项目在扇形统计图中所对扇形的圆心角为.(3)因为,所以该校参加“美术”活动项目的人数约为.2. 答案:(1)见解析(2)96 (3)960【解析】解:(1)成绩一般的学生占的百分比为,测试的学生总人数为,成绩优秀的人数为,所补充图形如下所示:(2)该校被抽取的学生中达标的人数为.(3).答:估计全校达标的学生有人.3. 答案:(1)抽样调查(2)普查(3)抽样调查【解析】解:(1)了解一批空调的使用寿命,调查过程带有破坏性,只能采取抽样调查方式;(2)出版社审查书稿的错别字的个数,要求精确、难度相对不大、实验无破坏性,应选择普查方式.(3)调查全省全民健身情况,因工作量较大,只能采取抽样调查的方式.所以(1)(3)适合用抽样调查方式;(2)适合用普查方式.4. 答案: 13000元【解析】解:由题中7周的数据,可知小亮家平均每周日常生活消费的费用为答:小亮家平均每年的日常生活消费总费用约为元.5. 答案: 10【解析】解:由扇形图,知参加其他活动的人数占全班总人数的百分比为,又知该班有学生50人,所以参加其他活动的人数为.6. 答案:甲、乙一起做还需要2小时12分才能完成工作【解析】解:设甲、乙一起做还需要小时才能完成工作.根据题意,得,解这个方程,得=..答:甲、乙一起做还需要2小时12分才能完成工作.7. 答案:第一座铁桥长100米,第二座铁桥长150米【解析】解:设第一座铁桥的长为米,那么第二座铁桥的长为米,•过完第一座铁桥所需要的时间为分,过完第二座铁桥所需要的时间为分.依题意,可列出方程+=解方程得所以答:第一座铁桥长100米,第二座铁桥长150米.8. 答案:【解析】解:设粗加工的该种山货质量为,根据题意,得,解得.答:粗加工的该种山货质量为.9. 答案:励东中学植树棵,海石中学植树棵【解析】解:设励东中学植树棵.依题意,得解得.答:励东中学植树棵,海石中学植树棵.10. 答案:这一天有6名工人加工甲种零件【解析】解:设这一天有名工人加工甲种零件,则这一天加工甲种零件个,乙种零件个.根据题意,得,解得.答:这一天有6名工人加工甲种零件.11. 答案:(1)(2)(3)(4)【解析】解:(1),去括号,得移项,得,系数化为1,得(2) ,去分母,得,去括号,得,移项,得,合并同类项,得系数化为1,得(3),去括号,得,移项,得,合并同类项,得,系数化为1,得(4),去分母,得,去括号,得,移项,得,合并同类项,得,系数化为1,得12. 答案:12. 解释:【解析】解:关于的方程的解为,关于的方程的解为.因为关于的方程的解是的解的2倍,所以,所以二.填空题1. 答案: 20【解析】因为某校为了了解初一年级名学生每天完成作业所用时间的情况,从中对名学生每天完成作业所用的时间进行了抽查,所以这个问题中的样本容量是.2. 答案:【解析】抽取的5棵果树的平均产量为;估计这棵果树的总产量约为.3. 答案: 250【解析】,.4. 答案: 960【解析】因为,所以该小区6月份的总用水量约是.5. 答案:【解析】2009年该校图书有册,从2008年到2012年该校图书增加了.6. 答案:抽样100【解析】任意抽取了其中的100只,此种方式属于抽样调查,样本容量是100.7. 答案: 9【解析】设进价为,出售价需打折,根据题意可列方程将方程两边的约掉,可得.所以出售价需打折.8. 答案: -2或-48. 【解析】因为可解得9. 答案:【解析】由可得,又因为与是同解方程,所以也是的解代入可求得三.单选题1. 答案: B【解析】由题图可以得出:八年级共有学生;九年级的达标率为;八年级的达标率为.所以九年级的达标率最高.故乙、丙的说法是正确的,故选B.2. 答案: D【解析】因为每班抽名学生参加比赛且有个班级,所以样本容量为.3. 答案: B【解析】抽取的名学生的成绩是一个样本,故①错误;名考生的考试成绩是总体,故②错误;因为从中抽取名学生的成绩,所以样本容量是,故③正确.4. 答案: A【解析】②不是对全体初中生进行的调查,④不是对全班同学作业完成情况的调查,故②④不是采用的普查方式. ①③采用的是普查方式,所以选A.5. 答案: C【解析】选取样本必须足够大,且要具有普遍代表性,对于总体的估计才准确,所以不正确的是C.6. 答案: D【解析】《新闻联播》电视栏目的收视率、我国中小学生喜欢上数学课的人数,对它们进行一次全面的调查,需要耗费大量的人力物力,是得不偿失的,采取抽样调查即可;了解一批灯泡的使用寿命,会给被调查对象带来损伤破坏,不适合采用普查,适合采用抽样调查;D.了解一个班级学生的体重,要求精确,难度相对不大,实验无破坏性,应选择普查方式.故选D.7. 答案: D【解析】由图可知,只有封存家中等待处理的属于正确的处理方法,所以对过期药品处理不正确的家庭达到,故选D.8. 答案: D【解析】因为扇形统计图直接反映部分占总体的百分比大小,不能反映具体数量的多少和变化情况,所以A、B、C都错误,故选D.9. 答案: C【解析】当每间客房的定价为元时,客房的收入为;当每间客房的定价为元时,客房的收入为;当每间客房的定价为元时,客房的收入为;当每间客房的定价为元时,客房的收入为.所以当每间客房的定价为元时,客房的收入最高.故选C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
45、如果()1233m xy m xy x ---+为四次三项式,则m =________。
46、观察代数式223a b c 和32a y ,把它们的共同点填写在下列横线上,⑴都是_______式,⑵都是_________。
47、如果2231,27A m m B m m =-+=--,且0A B C -+=,那么C=_______。
48、把多项式:()()()544322354563x x y xy x y x y y --+--++-去括号后按字母x 的降幂排列为________________________。
49、关于a 、b 的单项式,2x y y a b +与()213x x y a b +-+是同类项,它们的合并结果为_____________。
50、p-[q+2p-()]=3p-2q 。
51、如果关于x 、y 的多项式,存在下列关系()()2222223433xkxy y mx xy y x xy ny -+-+-=-+则m=______,n=_____,k=_______。
52、如果()2120a a b +++=,那么()()()()()5432a b a b a b a b a b +++++++++=____________。
53、已知15,6mn n m mn -=-=,那么m n -=_________,2mn m n -++=_________。
54、如果3,2xx y z ==,那么x y z x y z -+=++__________。
55、一船在顺水中的速度为a 千米/小时,水速为b 千米/小时,(a>2b ),则此船在相距S 千米的两码头间往返一次需用时间为__________小时。
56、如图是2004年月10月份的日历,现在用一矩形在日历中任意框出9个数,用e 表示出这9个数的和为_________。
57、在代数式21215,5,,,,,233x y zx y a x y xyz y π+---+-中有A 、5个整式B 、4个单项,3个多项式C 、6个整式,4个单项式D 、6个整式,单项式与多项式个数相同58、如果21213n x y --与823x y 是同类项,那么代数式()2003200359114n n ⎛⎫-⋅- ⎪⎝⎭的值为()A 、0B 、-1C 、+1D 、±159、如果2222324,45M x xy y N x xy y =--=+-,则2281315x xy y --等于()A 、2M-NB 、2M-3NC 、3M-2ND 、4M-N60、将代数式()()a b c d a b c d -+-+--写成()()M N M N +-的形式正确的是()A 、()()a b c d a b c d -+-+--⎡⎤⎡⎤⎣⎦⎣⎦B 、()()a b d c a b d c -+++--⎡⎤⎡⎤⎣⎦⎣⎦C 、()()()()a d c b a d c b -+--+-⎡⎤⎡⎤⎣⎦⎣⎦D 、()()()()a b c d a b c d -+-+--⎡⎤⎡⎤⎣⎦⎣⎦61、如果22x x -+的值为7,则211522x x -++的值为()A 、52B 、32C 、152D 、答案不惟一 62、如果2a b -=,3c a -=,则()()234b c b c ---+的值为()A、14B、2C、44D、不能确定63、a b ca b c++的值是()A 、±3B、±1 C、±1或±3D、不能确定64、商场七月份售出一种新款书包a只,每只b元,营业额c元,八月份采取促销活动,优惠广大学子,售出该款书包3a只,每只打八折,那么八月份该款书包的营业额比七月份增加()A、1.4c元B、2.4c元C、3.4c元D、4.4c元65、一件工作,甲单独做x天完成,乙单独做y天完成。
如果两人合作,各自可提高工作效率20%,那么两人合作完成这件工作的时间为()A、120%11x y++B、120%11x y-+C、()()1120%x y++D、()111120%x y⎛⎫+⋅+⎪⎝⎭66、如图,M、N是表示两个曲边形的面积,那么()A、M>NB、M<NC、M=ND、无法确定67、()()11232n n n n nx x x x x+++-----68、()()()22222234232x y x xy y x xy y⎡⎤⎡⎤-+-------⎣⎦⎣⎦69、()(){}233286x z x z y x y z-----+-⎡⎤⎣⎦70、()(){}222223243453x y xyz xyz x z x z x y xyz x z xyz⎡⎤----+---⎣⎦71、()222221557472x y xy x y xy xy x y xy xy ⎧⎫⎡⎤⎛⎫+--+-+-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭,其中14x =-,16y =-。
72、2222424,363,A x xy y B x xy y =-+=-+且23,16,1,x y x y ==+=求()()423A A B A B +--+⎡⎤⎣⎦的值。
73、如果340m n -+=,求:()()233237321m n m m n m n -+---+()33232m m n m n n +-+310m m --的值。
74、定义一种运算,观察下列式子。
1⊙3=1×2+3=53⊙1=3×2+1=73⊙4=3×2+4=104⊙3=4×2+3=11……⑴请你猜想:a ⊙b=___________,b ⊙a=_________;若a ≠b ,那么a ⊙b______b ⊙a (填“=”或“≠”)⑵计算:()()3x y x y x +-⎡⎤⎣⎦75、阅读下列材料:111111111111;,13233523557257⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭…… 解答问题:⑴111133557+++⨯⨯⨯…()()12121n n -+ ⑵模仿上面的解法,计算111266101014+++⨯⨯⨯ (1)3842+⨯ 76、某科技馆对学生参观实行优惠,个人票每张6元,团体票每10人45元。
⑴如果参观的学生人数36人,至少应付多少元?⑵如果参观的学生人数为48人,至少应付多少元?⑶如果参观的学生人数为一个两位数ab,用含a、b的代数式表示应付给科技馆的总金额。
77.某商人一次卖出两件商品。
一件赚了15%,一件赔了15%,卖价都是1955元,在这次买卖过程中,商人()A、赔了90元;B、赚了90元;C、赚了100元;D、不赔不赚。
78.甲比乙大15岁,5年前甲的年龄是乙的两倍,乙现在的年龄是()A.10岁B.15岁C.20岁D.30岁79.若代数式22x+3y-7的值为8,则代数式42x+6y+10的值为()A.40B.30C.15D.2580.收割一块小麦,第一组需要5小时收割完,第二组需要7小时收割完。
第一组收割1小时后再增加第二组一起收割,两组共同收割完用了x小时列方程得:________________81.某地上网有两种收费方式,用户可以任选其一:(A)记时制:2.8元/小时,(B)包月制:60元/月。
此外,每一种上网方式都加收通讯费1.2元/小时。
(1)某用户上网20小时,选用哪种上网方式比较合算?(2)某用户有120元钱用于上网(1个月),选用哪种上网方式比较合算?(3)请你为用户设计一个方案,使用户能合理地选择上网方式。
82.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55?cm,此时木桶中水的深度是________cm.A83.惠民新村分给小慧家一套价格为12万元的住房.按要求,需首期(第一年)付房款3万元,从第二年起,每年应付房款0.5万元与上一年剩余房款的利息的和.假设剩余房款年利率为0.4%,小慧列表推算如下:若第n 年小慧家仍需还款,则第n 年应还款万元(n >1)84.为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?(2)该校准备再次..购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于...1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?85.如图,已知AB=8,AP=5,OB=6,则OP 的长是() A.2B.3 C.4D.586.由两个角的和组成的角与这两个角的差组成的角互补,则这两个角()A.一个是锐角一个是钝角;B 都是钝角;C.都是直角;D.必有一个是直角87.已知1条直线能将平面分成两部分,2条直线能将平面分成3和4部分,则3条直线最多能将平面分成()A.4部分B.6部分C.7部分D.8部分88.从一点O 引三条直线,以O 为顶点且小于平角的角在图中有()C F AHED BGA.5个B.10个C.12个D.18个89.如图,若AB ∥CD,则∠A+∠M+∠N+∠C=() A.180°B.360°C.540°D.720°90.用一平面去截一正方体,得到的截面的图形可能是以下图形中的() (1)三角形;(2)四边形;(3)五边形;(4)六边形.A.(1)(2)(3)B.(1)(2)(4);C.(1)(3)(4)D.(1)(2)(3)(4) 91.若平行直线EF,GH 与相交直线AB,CD 相交成如图所示的图形, 则共得同旁内角() A.4对B.8对C.12对D.16对92.一个角的补角减去这个角的余角,所得的角等于__________.93.如图,其中共有_______个三角形.94.一个角余角的2倍和它的补角的12互为补角,则这个角的度数为______.95.如图,已知AB ∥CD,E 在AB 和CD 之间,且∠B=40°,∠D=20°,则∠BED=____.96.如图,已知∠ABC+∠BCD+∠EDC=360°,则AB 和ED 的位置关系是_______.97.如果一条直线和两条平行线中的一条垂直,那么这条直线和另一条直线的位置关系是__________.98.如图,C,D,E 将线段AB 分成四部分,且AC:CD:DE:EB=2:3:4:5,M,P,Q,N 分别是AC,CD,DE,EB 的中点,且MN=21cm,求PQ 的长.99.如图,在△ABC中,DE∥BC,CD是∠ACB的平分线,∠B=70°,∠A=56°,求∠BDC的度数.100.过点O任意作四条直线,求证:以O为顶点的角中至少有一个不大于45°.答案:一、84.B2.D3.C4.C5.C6.D7.C提示:5.过M,N分别作AB的平行线.二、8.90°9.1010.36°11.60°提示:过E作EF∥AB.12.平行提示:过C作CG∥AB.13.垂直三、14.PQ=7(cm)15.∠BDC=83°99.证明:如答图,实际上只需证8个角中至少有一个不大于45°即可.所以假设∠1,∠2,…,∠8都大于45°,则∠1+∠2+…+∠8>45°×8=360°,而由周角定义可知∠1+∠2+…+∠8=360°,E C ADB这与上式矛盾. 所以结论成立. 参考答案一、45、1m =-2、⑴单项⑵5次3、28m --4、543223466x x y x y x y ++-4553xy y --5、1137a b -6、4p q -7、2,7,2m n k ===-8、59、21,-910、71111、2s s a a b+-12、9e 二、1、D2、B3、D4、C5、A6、C7、C8、A9、D10、C三、1、132n n x x +-+2、2254x y -3、46x y z -+4、222xyz x z -四、1、原式2142xy x y =-,当14x =-,16y =-时,原式=6 2、先化简()()42334A A B A B A B +⋅--+=-⎡⎤⎣⎦,把2222424,363A x xy y B x xy y =-+=-+代入3418A B xy -=。