直线与圆锥曲线的综合应用
直线与圆锥曲线的位置关系综合应用(附详细答案)【打印讲义】
二轮专题——直线与圆锥曲线的位置关系综合应用【目标】掌握直线与圆锥曲线的位置关系,并会综合应用知识处理相关问题。
【重点】直线与圆锥曲线中的最值、值域、参数范围问题,定点、定值以及探究性问题。
【难点】圆锥曲线与三角、函数与方程、不等式、数列、平面向量等知识的的综合应用. 【知识与方法】圆锥曲线中的定点、定值、最值问题是圆锥曲线的综合问题,解决此类问题需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整.解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的.1.在几何问题中,有些几何量与参数无关,这就构成了定值问题,解决这类问题一种思路是进行一般计算推理求出其结果;另一种是通过考查极端位置,探索出“定值”是多少,然后再进行一般性证明或计算,即将该问题涉及的几何式转化为代数式或三角形式,证明该式是恒定的。
如果试题以客观题形式出现,特殊方法往往比较奏效。
2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决。
3.解析几何的最值和范围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值或值域. 当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解. 【基础训练】1、若实数x 、y 满足x 2+y 2-2x+4y=0,则x-2y 的最大值是( )A 、5B 、10C 、9D 、5+25 2、若关于x 的方程)2(12-=-x k x有两个不等实根,则实数k 的取值范围是( )A 、)33,33(-B 、)3,3(-C 、⎥⎦⎤⎝⎛-0,33D 、⎪⎪⎭⎫⎢⎣⎡⋃⎥⎦⎤ ⎝⎛--33,2121,33 3、已知P 、Q 分别在射线y=x(x>0)和y=-x(x>0)上,且△POQ 的面积为1,(0为原点),则线段PQ 中点M 的轨迹为( )A 、双曲线x 2-y 2=1 B 、双曲线x 2-y 2=1的右支 C 、半圆x 2+y 2=1(x<0) D 、一段圆弧x 2+y 2=1(x>22)4、一个等边三角形有两个顶点在抛物线y 2=20x 上,第三个顶点在原点,则这个三角形的面积为5、椭圆191622=+yx在第一象限上一动点P ,若A(4,0),B(0,3),O(0,0),则APBOS 四边形的最大值为题型一、最值及值域问题例1.【广东省梅州市2013届高三总复习质检】已知F 1,F 2分别是椭圆C :22221(0)y x a b ab+=>>的上、下焦点,其中F 1也是抛物线C 1:24x y =的焦点,点M 是C 1与C 2在第二象限的交点,且15||3MF =。
圆锥曲线的综合问题:直线与圆锥曲线的位置关系
圆锥曲线的综合问题:直线与圆锥曲线的位置关系ZHI SHI SHU LI 知识梳理1.直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点,仅有一个公共 点及有两个相异的公共点. (2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断.设直线l 的方程为Ax +By +C =0,圆锥曲线方程f (x ,y )=0.由⎩⎪⎨⎪⎧Ax +By +C =0,f (x ,y )=0消元,如消去y 后得ax 2+bx +c =0, ①若a =0,当圆锥曲线是双曲线时,直线l 与双曲线的渐近线平行;当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行(或重合). ②若a ≠0,设Δ=b 2-4ac .当Δ__>___0时,直线和圆锥曲线相交于不同两点; 当Δ__=___0时,直线和圆锥曲线相切于一点; 当Δ__<___0时,直线和圆锥曲线没有公共点. 2.直线与圆锥曲线相交时的弦长问题(1)斜率为k (k 不为0)的直线与圆锥曲线交于两点P 1(x 1,y 1)、P 2(x 2,y 2),则所得弦长|P 1P 2|=1+k 2·|x 1-x 2|或|P 1P 2|=__1+1k2·|y 1-y 2|___. (2)当斜率k 不存在时,可求出交点坐标,直接运算(利用两点间距离公式). 3.圆锥曲线的中点弦问题遇到中点弦问题常用“根与系数的关系”或“点差法”求解.在椭圆x 2a 2+y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =-b 2x 0a 2y 0;在双曲线x 2a 2-y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =b 2x 0a 2y 0;在抛物线y 2=2px (p >0)中,以P (x 0,y 0)为中点的弦所在直线的斜率k =p y 0.ZHONG YAO JIE LUN重要结论求解圆锥曲线标准方程的方法是“先定型,后计算”(1)定型,就是指定类型.也就是确定圆锥曲线的焦点位置,从而设出标准方程.(2)计算,就是利用待定系数法求出方程中的a 2,b 2或p .另外.当焦点位置无法确定时,椭圆常设为mx 2+ny 2=1(m >0,n >0),双曲线常设为mx 2-ny 2=1(mn >0),抛物线常设为y 2=2ax 或x 2=2ay (a ≠0).SHUANG JI ZI CE双基自测1.(2019·天津模拟)若双曲线x 23-16y 2p 2=1(p >0)的左焦点在抛物线y 2=2px 的准线上,则p =( D ) A .14B .12C .2D .4[解析] 因为双曲线x 23-16y 2p 2=1(p >0)的左焦点为(-3+p 216,0),抛物线y 2=2px 的准线方程为x =-p2,所以-3+p 216=-p2,得p =4,故选D . 2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为23,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的方程为( D ) A .x 23+y 2=1B .x 23+y 22=1C .x 29+y 24=1D .x 29+y 25=1[解析] 由椭圆的定义,知|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,所以△AF 1B 的周长为|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =12,所以a =3.因为椭圆的离心率e =c a =23,所以c =2,所以b 2=a 2-c 2=5,所以椭圆C 的方程为x 29+y 25=1,故选D .3.(2019·宁夏模拟)直线l 过抛物线y 2=-2px (p >0)的焦点,且与该抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是( B ) A .y 2=-12x B .y 2=-8x C .y 2=-6xD .y 2=-4x[解析] 设A (x 1,y 1),B (x 2,y 2),根据抛物线的定义可知|AB |=-(x 1+x 2)+p =8.又AB 的中点到y 轴的距离为2,∴-x 1+x 22=2,∴x 1+x 2=-4,∴p =4,∴所求抛物线的方程为y 2=-8x .故选B .4.已知抛物线x 2=8y 与双曲线y 2a2-x 2=1(a >0)的一个交点为M ,F 为抛物线的焦点,若|MF |=5,则该双曲线的渐近线方程为( B ) A .5x ±3y =0 B .3x ±5y =0 C .4x ±5y =0D .5x ±4y =0[解析] 设点M (x 0,y 0),则有|MF |=y 0+2=5,y 0=3,x 20=24,由点M (x 0,y 0)在双曲线y 2a2-x 2=1上,得y 20a 2-x 20=1,9a 2-24=1,a 2=925,所以双曲线y 2a 2-x 2=1的渐近线方程为y 2a2-x 2=0,即3x ±5y =0,选B .5.(2019·桂林模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,原点O 到经过(c,0),(0,b )两点的直线的距离为c2,则椭圆的离心率为( A )A .32B .22 C .12D .33[解析] 经过(c,0),(0,b )两点的直线方程为x c +yb =1,即bx +cy -bc =0,所以由题设得bcb 2+c 2=c2,化简得c 2=3b 2,得c 2=3(a 2-c 2),所以4c 2=3a 2,所以2c =3a ,故椭圆的离心率e =c a =32.故选A .6.(2019·温州模拟)双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点M (-3,4)关于一条渐近线的对称点恰为双曲线的右焦点F 2,则该双曲线的标准方程为__x 25-y 220=1___.[解析] 由题设知点M (-3,4)与右焦点F 2(c,0)关于直线y =ba x 对称,所以-4c +3·b a =-1,即4b =a (c +3)①,且线段MF 2的中点(c -32,2)在直线y =ba x 上,即2=b a ·c -32,得b (c -3)=4a ②.由①÷②得4c -3=c +34,得c 2=25,c =5,代入①可得b =2a .又c 2=a 2+b 2,所以25=a 2+(2a )2,所以a 2=5,从而b 2=4a 2=20. 故所求双曲线的标准方程为x 25-y 220=1.考点1 直线与圆锥曲线的位置关系——自主练透例1 (1)(2019·兰州检测)若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( B )A .至多一个B .2C .1D .0(2)(2019·湖北武汉调研)已知不过原点O 的直线交抛物线y 2=2px 于A ,B 两点,若OA ,AB 的斜率分别为k OA =2,k AB =6,则OB 的斜率为( D ) A .3 B .2 C .-2D .-3(3)已知直线y =kx -1与双曲线x 2-y 2=4的右支有两个交点,则k 的取值范围为( D ) A .(0,52) B .[1,52] C .(-52,52) D .(1,52) [解析] (1)∵直线mx +ny =4和圆O :x 2+y 2=4没有交点,∴4m 2+n 2>2,∴m 2+n 2<4.∴m 29+n 24<m 29+4-m 24=1-536m 2<1, ∴点(m ,n )在椭圆x 29+y 24=1的内部,∴过点(m ,n )的直线与椭圆x 29+y 24=1的交点有2个,故选B .(2)由题意可知,直线OA 的方程为y =2x ,与抛物线方程y 2=2px联立得⎩⎪⎨⎪⎧y =2x ,y 2=2px ,得⎩⎪⎨⎪⎧x =p 2,y =p ,即A (p 2,p ),则直线AB 的方程为y -p =6(x -p2),即y =6x -2p ,与抛物线方程y 2=2px 联立得⎩⎪⎨⎪⎧y =6x -2p ,y 2=2px ,得⎩⎨⎧ x =2p9,y =-2p 3或⎩⎪⎨⎪⎧x =p 2,y =p ,所以B (2p 9,-2p3),所以直线OB 的斜率为k OB =-2p 32p9=-3.故选D .(3)由题意知k >0,联立⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=4,整理得(1-k 2)x 2+2kx -5=0,因为直线y =kx -1与双曲线x 2-y 2=4的右支有两个交点,则联立所得方程有两个不同的正实数根x 1,x 2,所以⎩⎪⎨⎪⎧Δ=4k 2+20(1-k 2)>0,x 1+x 2=-2k 1-k2>0,x 1x 2=-51-k 2>0,解得1<k <52,即k ∈(1,52),故选D . 名师点拨 ☞研究直线和圆锥曲线的位置关系,一般转化为研究直线方程与圆锥曲线方程组成的方程组的解的个数.注意:(1)在没有给出直线方程时,要对直线斜率不存在的情况进行讨论,避免漏解;(2)对于选择题、填空题,常利用几何条件,利用数形结合的方法求解.考点2 直线与圆锥曲线的弦长问题——师生共研例2 (2019·常州模拟)已知抛物线E :x 2=2py (p >0)上一点P 的纵坐标为4,且点P 到焦点F 的距离为5. (1)求抛物线E 的方程;(2)如图,设斜率为k 的两条平行直线l 1,l 2分别经过点F 和H (0,-1),l 1与抛物线E 交于A ,B 两点,l 2与抛物线E 交于C ,D 两点.问:是否存在实数k ,使得四边形ABDC 的面积为43+4?若存在,求出k 的值;若不存在,请说明理由.[解析] (1)由抛物线的定义知,点P 到抛物线E 的准线的距离为5. ∵抛物线E 的准线方程为y =-p 2,∴4+p2=5,解得p =2,∴抛物线E 的方程为x 2=4y . (2)由已知得,直线l 1:y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,消去y 得x 2-4kx -4=0, Δ1=16(k 2+1)>0恒成立,|AB |=1+k 2·16(k 2+1)=4(k 2+1).直线l 2:y =kx -1,由⎩⎪⎨⎪⎧y =kx -1,x 2=4y ,消去y 得x 2-4kx +4=0,由Δ2=16(k 2-1)>0得k 2>1, |CD |=1+k 2·16(k 2-1)=4(k 2+1)(k 2-1), 又直线l 1,l 2间的距离d =2k 2+1,∴四边形ABDC 的面积S =12·d ·(|AB |+|CD |)=4(k 2+1+k 2-1).解方程4(k 2+1+k 2-1)=4(3+1),得k 2=2(满足k 2>1),∴存在满足条件的k ,k 的值为± 2. 名师点拨 ☞处理弦长问题的两个注意点(1)利用弦长公式求弦长要注意斜率k 不存在的情形,若k 不存在时,可直接求交点坐标再求弦长;(2)涉及焦点弦长时要注意圆锥曲线定义的应用. 〔变式训练1〕(2019·贵阳模拟)在平面直角坐标系xOy 中,已知椭圆C :x 24+y 2=1,点P (x 1,y 1),Q (x 2,y 2)是椭圆C 上两个动点,直线OP ,OQ 的斜率分别为k 1,k 2,若m =(x 12,y 1),n =(x 22,y 2),m ·n =0.(1)求证:k 1·k 2=-14;(2)试探求△OPQ 的面积S 是否为定值?并说明理由. [解析] (1)∵k 1,k 2存在,∴x 1x 2≠0,∵m ·n =0, ∴x 1x 24+y 1y 2=0,∴k 1·k 2=y 1y 2x 1x 2=-14. (2)①当直线PQ 的斜率不存在,即x 1=x 2,y 1=-y 2时, 由y 1y 2x 1x 2=-14,得x 214-y 21=0, 又由P (x 1,y 1)在椭圆上,得x 214+y 21=1, ∴|x 1|=2,|y 1|=22,∴S △POQ =12|x 1||y 1-y 2|=1.②当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +b .由⎩⎪⎨⎪⎧y =kx +b ,x 24+y 2=1得(4k 2+1)x 2+8kbx +4b 2-4=0,Δ=64k 2b 2-4(4k 2+1)(4b 2-4)=16(4k 2+1-b 2)>0, ∴x 1+x 2=-8kb4k 2+1,x 1x 2=4b 2-44k 2+1.∵x 1x 24+y 1y 2=0, ∴x 1x 24+(kx 1+b )(kx 2+b )=0,得2b 2-4k 2=1, ∵原点O 到直线PQ 的距离d =|b |1+k 2,∴S △POQ =12·|b |1+k 2·|PQ |=12|b |(x 1+x 2)2-4x 1x 2=2|b |4k 2+1-b 24k 2+1=1.综上可得,△POQ 的面积S 为定值.考点3 中点弦问题——多维探究角度1 利用中点弦确定直线方程例3 已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为__x +2y -3=0___.[解析] 易知此弦所在直线的斜率存在,所以设斜率为k .设A (x 1,y 1)、B (x 2,y 2),则x 214+y 212=1①,x 224+y 222=1②,①-②得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)2=0,∵x 1+x 2=2,y 1+y 2=2,∴x 1-x 22+y 1-y 2=0,∴k =y 1-y 2x 1-x 2=-12.∴此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0.角度2 利用中点弦确定曲线方程例4 过点M (2,-2p )作抛物线x 2=2py (p >0)的两条切线,切点分别为A ,B ,若线段AB 的中点的纵坐标为6,则抛物线方程为__x 2=2y 或x 2=4y ___.[解析] 设点A (x 1,y 1),B (x 2,y 2),依题意得,y ′=x p ,切线MA 的方程是y -y 1=x 1p(x -x 1),即y =x 1p x -x 212p .又点M (2,-2p )位于直线MA 上,于是有-2p =x 1p ×2-x 212p ,即x 21-4x 1-4p 2=0;同理有x 22-4x 2-4p 2=0,因此x 1,x 2是方程x 2-4x -4p 2=0的两根,则x 1+x 2=4,x 1x 2=-4p 2.由线段AB 的中点的纵坐标是6得,y 1+y 2=12,即x 21+x 222p =(x 1+x 2)2-2x 1x 22p=12,16+8p 22p =12,解得p =1或p =2. 角度3 利用中点弦解决对称问题例5 已知双曲线x 2a 2-y 2b 2=1(a ,b >0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y =ax 2上的两点A (x 1,y 1),B (x 2,y 2)关于直线y =x +m 对称,且x 1x 2=-12,则m 的值为( A ) A .32B .52C .2D .3[解析] 由双曲线的定义知2a =4,得a =2,所以抛物线的方程为y =2x 2.因为点A (x 1,y 1),B (x 2,y 2)在抛物线y =2x 2上,所以y 1=2x 21,y 2=2x 22,两式相减得y 1-y 2=2(x 1-x 2)(x 1+x 2),不妨设x 1<x 2,又A ,B 关于直线y =x +m 对称,所以y 1-y 2x 1-x 2=-1,故x 1+x 2=-12,而x 1x 2=-12,解得x 1=-1,x 2=12,设A (x 1,y 1),B (x 2,y 2)的中点为M (x 0,y 0),则x 0=x 1+x 22=-14,y 0=y 1+y 22=2x 21+2x 222=54,因为中点M 在直线y =x +m 上,所以54=-14+m ,解得m =32,选A . 名师点拨 ☞处理中点弦问题常用的求解方法提醒:中点弦问题常用的两种求解方法各有弊端:根与系数的关系在解题过程中易产生漏解,需关注直线的斜率问题;点差法在确定范围方面略显不足. 〔变式训练2〕(1)(角度1)(2019·江西五市联考)已知直线y =1-x 与双曲线ax 2+by 2=1(a >0,b <0)的渐近线交于A 、B 两点,且过原点和线段AB 中点的直线的斜率为-32,则ab的值为( A ) A .-32B .-233C .-932D .-2327(2)(角度3)已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点.设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,点A 和点B 关于直线l 对称,l 与x 轴交于点G ,则点G 横坐标的取值范围是__(-12,0)___.[解析] (1)由双曲线ax 2+by 2=1知其渐近线方程为ax 2+by 2=0,设A (x 1,y 1),B (x 2,y 2),则有ax 21+by 21=0①,ax 22+by 22=0②,由①-②得a (x 21-x 22)=-b (y 21-y 22),整理得y 1+y 2x 1+x 2·y 1-y 2x 1-x 2=-a b ,设AB 的中点为M (x 0,y 0),则k OM =y 0x 0=2y 02x 0=y 1+y 2x 1+x 2=-32,又知k AB =-1,∴-32×(-1)=-a b ,∴a b =-32,故选A .(2)设直线AB 的方程为y =k (x +1)(k ≠0),代入x 22+y 2=1,整理得(1+2k 2)x 2+4k 2x +2k 2-2=0.因为直线AB 过椭圆的左焦点F 且不垂直于x 轴, 所以方程有两个不等实根.设A (x 1,y 1),B (x 2,y 2),AB 的中点N (x 0,y 0), 则x 1+x 2=-4k 22k 2+1,x 0=12(x 1+x 2)=-2k 22k 2+1,y 0=k (x 0+1)=k2k 2+1,因为点A 和点B 关于直线l 对称, 所以直线l 为AB 的垂直平分线,其方程为 y -y 0=-1k(x -x 0).令y =0,得x G =x 0+ky 0=-2k 22k 2+1+k 22k 2+1=-k 22k 2+1=-12+14k 2+2,因为k ≠0,所以-12<x G <0,即点G 横坐标的取值范围为(-12,0).故填(-12,0).。
【数学】2019届一轮复习人教B版直线与圆锥曲线的综合应用学案
高考必考题突破讲座(五)直线与圆锥曲线的综合应用考情分析命题趋势题型特点圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、抛物线的准线、双曲线的渐近线是常考题型.2.圆锥曲线中的定点与定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.3.圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.4.圆锥曲线中的探索性问题圆锥曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.解决此类问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.反证法与验证法也是求解探索性问题常用的方法.【例1】 (1)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( D )A .x 29-y 213=1B .x 213-y 29=1C .x 23-y 2=1D .x 2-y 23=1 (2)已知椭圆x 2a 2+y 2b 2=1(a >b >0)与抛物线y 2=2px (p >0)有相同的焦点F .点P ,Q 是椭圆与抛物线的交点,若直线PQ 经过焦点F ,则椭圆x 2a 2+y 2b2=1(a >b >0)解析 (1)双曲线x 2a 2-y 2b 2=1的一个焦点为F (2,0),则a 2+b 2=4,①双曲线的渐近线方程为y =±ba x ,由题意得2ba 2+b 2=3,② 联立①②解得b =3,a =1,所求双曲线的方程为x 2-y 23=1.故选D.(2)因为抛物线y 2=2px (p >0)的焦点F 为⎝⎛⎭⎫p 2,0,设椭圆另一焦点为E .如图所示,将x =p2代入抛物线方程得y =±p ,又因为PQ 经过焦点F ,所以P ⎝⎛⎭⎫p 2,p ,且PF ⊥OF . 所以|PE |=⎝⎛⎭⎫p 2+p 22+p 2=2p ,|PF |=p ,|EF |=p .故2a =2p +p,2c =p ,e =2c2a=2-1.【例2】 (2017·山东卷)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆C 截直线y =1所得线段的长度为2 2. (1)求椭圆C 的方程;(2)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M ,点N 是点M 关于O 的对称点,⊙N 的半径为|NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.解析 (1)由椭圆的离心率为22,得a 2=2(a 2-b 2). 又当y =1时,x 2=a 2-a 2b 2,得a 2-a 2b 2=2,所以a 2=4,b 2=2,因此椭圆方程为x 24+y 22=1. (2)设A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧y =kx +m ,x 2+2y 2=4,得(2k 2+1)x 2+4kmx +2m 2-4=0, 由Δ>0,得m 2<4k 2+2, (*) 且x 1+x 2=-4km 2k 2+1,因此y 1+y 2=2m2k 2+1,所以D ⎝⎛⎭⎫-2km 2k 2+1,m 2k 2+1.又N (0,-m ),所以|ND |2=⎝⎛⎭⎫-2km 2k 2+12+⎝⎛⎭⎫m 2k 2+1+m 2, 整理得|ND |2=4m 2(1+3k 2+k 4)(2k 2+1)2,因为|NF |=|m |,所以|ND |2|NF |2=4(k 4+3k 2+1)(2k 2+1)2=1+8k 2+3(2k 2+1)2.令t =8k 2+3,t ≥3.故2k 2+1=t +14,所以|ND |2|NF |2=1+16t (1+t )2=1+16t +1t+2. 令y =t +1t ,所以y ′=1-1t 2.当t ≥3时,y ′>0,从而y =t +1t 在[3,+∞)上单调递增,因此t +1t ≥103,当且仅当t =3时等号成立,此时k =0,所以|ND |2|NF |2≤1+3=4,故|NF ||ND |≥12,设∠EDF =2θ,则sin θ=|NF |ND ≥12,所以θ的最小值为π6.从而∠EDF 的最小值为π3,此时直线l 的斜率是0.由(*)得-2<m <2且m ≠0.综上所述,当k =0,m ∈(-2,0)∪(0,2)时,∠EDF 取到最小值π3.【例3】 已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝⎛⎭⎫m3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.解析 (1)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入9x 2+y 2=m 2, 得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9bk 2+9.于是直线OM 的斜率k OM =y M x M =-9k ,即k OM ·k =-9.所以直线OM 的斜率与l 的斜率的乘积为定值.(2)四边形OAPB 能为平行四边形.因为直线l 过点⎝⎛⎭⎫m 3,m ,且l 不过原点,所以k ≠3.由(1)可知Δ=4k 2b 2-4(k 2+9)(b 2-m 2)>0,即k 2m 2>9b 2-9m 2.将⎝⎛⎭⎫m 3,m 代入直线l 的方程,得b =m -km3,∴k 2m 2>9⎝⎛⎭⎫m -km 32-9m 2,即6k >0,∴k >0.所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3.由(1)得OM 的方程为y =-9k x .设点P 的横坐标为x P ,由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2,得x 2P =k 2m 29k 2+81,即x P =±km 3k 2+9. 将b =m -km3代入x M =-kb k 2+9,得x M =k (k -3)m 3(k 2+9).四边形OAPB 为平行四边形,当且仅当线段AB 与线段OP 互相平分,即x P =2x M .于是±km3k 2+9=2×k (k -3)m 3(k 2+9),解得k 1=4-7,k 2=4+7.因为k i >0,k i ≠3,i =1,2,所以当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.1.(2018·河北衡水质检)已知椭圆x 24+y 22=1的左、右焦点分别为F 1,F 2,过F 1且倾斜角为45°的直线l 交椭圆于A ,B 两点,以下结论:①△ABF 2的周长为8;②原点到l 的距离为1,③|AB |=83.其中正确结论的个数为( A )A .3B .2C .1D .0解析 ①由椭圆的定义,得|AF 1|+|AF 2|=4,|BF 1|+|BF 2|=4,又|AF 1|+|BF 1|=|AB |,所以△ABF 2的周长为|AB |+|AF 2|+|BF 2|=8,故①正确;②由条件,得F 1(-2,0),因为过F 1且倾斜角为45°的直线l 的斜率为1,所以直线l 的方程为y =x +2,则原点到l 的距离d=|2|2=1,故②正确;③设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =x +2,x 24+y 22=1,得3x 2+42x =0,解得x 1=0,x 2=-423,所以|AB |=1+1·|x 1-x 2|=83,故③正确.故选A .2.已知抛物线C :y 2=2px (p >0)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点.(1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.解析 (1)因为抛物线y 2=2px (p >0)的焦点坐标为(1,0),所以p2=1,所以p =2.所以抛物线C 的方程为y 2=4x .(2)证明:①当直线AB 的斜率不存在时,设A ⎝⎛⎭⎫t 24,t ,B ⎝⎛⎭⎫t24,-t .因为直线OA ,OB 的斜率之积为-12,所以t t 24·-t t 24=-12,化简得t 2=32.所以A (8,t ),B (8,-t ),此时直线AB 的方程为x =8.②当直线AB 的斜率存在时,设其方程为y =kx +b ,A (x 1,y 1),B (x 2,y 2),联立得⎩⎪⎨⎪⎧y 2=4x ,y =kx +b ,化简得ky 2-4y +4b =0. 根据根与系数的关系得y 1y 2=4b k ,因为直线OA ,OB 的斜率之积为-12,所以y 1x 1·y 2x 2=-12,即x 1x 2+2y 1y 2=0,即y 214·y 224+2y 1y 2=0,解得y 1y 2=0(舍去)或y 1y 2=-32.所以y 1y 2=4bk =-32,即b =-8k ,所以y =kx -8k ,即y =k (x -8).综上所述,直线AB 过定点(8,0).3.(2017·天津卷)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),右顶点为A ,点E的坐标为(0,c ),△EF A 的面积为b 22.(1)求椭圆的离心率;(2)设点Q 在线段AE 上,|FQ |=32c ,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM ∥QN ,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .①求直线FP 的斜率; ②求椭圆的方程.解析 (1)设椭圆的离心率为e .由已知,可得12(c +a )c =b 22.又由b 2=a 2-c 2,可得2c 2+ac-a 2=0,即2e 2+e -1=0.又因为0<e <1,解得e =12.所以椭圆的离心率为12.(2)①依题意,设直线FP 的方程为x =my -c (m >0),则直线FP 的斜率为1m.由(1)知a =2c ,可得直线AE 的方程为x 2c +yc =1,即x +2y -2c =0,与直线FP 的方程联立,可解得x =(2m -2)c m +2,y =3c m +2,即点Q 的坐标为⎝ ⎛⎭⎪⎫(2m -2)c m +2,3c m +2.由已知|FQ |=32c ,有⎣⎢⎡⎦⎥⎤(2m -2)c m +2+c 2+⎝⎛⎭⎫3c m +22=⎝⎛⎭⎫3c 22,整理得3m 2-4m =0,所以m =43,即直线FP 的斜率为34.②由a =2c ,可得b =3c ,故椭圆方程可以表示为x 24c 2+y 23c2=1.由①得直线FP 的方程为3x -4y +3c =0,与椭圆方程联立⎩⎪⎨⎪⎧3x -4y +3c =0,x 24c 2+y 23c 2=1,消去y ,整理得7x 2+6cx -13c 2=0,解得x =-13c7(舍去)或x =c .因此可得点P ⎝⎛⎭⎫c ,3c 2,进而可得|FP |=(c +c )2+⎝⎛⎭⎫3c 22=5c 2,所以|PQ |=|FP |-|FQ |=5c2-3c2=c . 由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离,故直线PM 和QN 都垂直于直线FP .因为QN ⊥FP ,所以|QN |=|FQ |·tan ∠QFN =3c 2×34=9c 8,所以△FQN 的面积为12|FQ |·|QN |=27c 232,同理△FPM 的面积等于75c 232,由四边形PQNM 的面积为3c ,得75c 232-27c 232=3c ,整理得c 2=2c ,又由c >0,得c =2.所以椭圆的方程为x 216+y 212=1.4.(2016·浙江卷)如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于||AF -1.(1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.解析 (1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离,由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0), 可设A (t 2,2t ),t ≠0,t ≠±1.因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0),由⎩⎪⎨⎪⎧y 2=4x ,x =sy +1,消去x 得y 2-4sy -4=0,故y 1y 2=-4,所以B ⎝⎛⎭⎫1t2,-2t . 又直线AB 的斜率为2tt 2-1,故直线FN 的斜率为-t 2-12t ,从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t ,所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .设M (m,0),由A ,M ,N 三点共线得2t t 2-m =2t +2t t 2-t 2+3t 2-1,于是m =2t 2t 2-1=2+2t 2-1,所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞).课时达标 讲座(五)[解密考纲]圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.1.(2018·福建三明一中期中)已知双曲线C 1与椭圆x 225+y 29=1有相同的焦点,并且经过点⎝⎛⎭⎫52,-332.(1)求C 1的标准方程;(2)直线l :y =kx -1与C 1的左支有两个相异的公共点,求k 的取值范围.解析 (1)依题意,双曲线C 1的焦点坐标为F 1(-4,0),F 2(4,0),设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),则2a =⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫52+42+⎝⎛⎭⎫-3322-⎝⎛⎭⎫52-42+⎝⎛⎭⎫-3322=4,即a =2,又因为c =4,所以b 2=c 2-a 2=12.故双曲线的标准方程为x 24-y 212=1.(2)由⎩⎪⎨⎪⎧y =kx -1,x 24-y 212=1,得(3-k 2)x 2+2kx -13=0,设该方程的两根分别为x 1,x 2,则依题意可知⎩⎪⎨⎪⎧3-k 2≠0,Δ=4k 2+52(3-k 2)=156-48k 2>0,x 1+x 2=-2k3-k 2<0,x 1x 2=-133-k 2>0,解得-132<k <- 3.故k 的取值范围是⎝⎛⎭⎫-132,-3. 2.(2017·全国卷Ⅰ)设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.解析 (1)设A (x 1,y 1),B (x 2,y 2),则x 1≠x 2,y 1=x 214,y 2=x 224,x 1+x 2=4,于是直线AB 的斜率k =y 1-y 2x 1-x 2=x 1+x 24=1.(2)由y =x 24,得y ′=x2.设M (x 3,y 3),由题设知x 32=1,解得x 3=2,于是M (2,1).设直线AB 的方程为y =x +m ,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|. 将y =x +m 代入y =x 24,得x 2-4x -4m =0.当Δ=16(m +1)>0,即m >-1时,x 1=2+2m +1,x 2=2-2m +1, 从而|AB |=2|x 1-x 2|=42(m +1).由题设知|AB |=2|MN |,即42(m +1)=2(m +1), 解得m =7.所以直线AB 的方程为y =x +7.3.(2018·四川绵阳南山中学期中)如果点M (x ,y )在运动过程中总满足关系式()x -22+y 2+()x +22+y 2=23.(1)说明点M 的轨迹是什么曲线并求出它的轨迹方程;(2)O 是坐标原点,直线l :y =kx +2与点M 的轨迹交于不同的A ,B 两点,求△AOB 面积的最大值.解析 (1)(x -2)2+y 2+(x +2)2+y 2=23可表示(x ,y )与(2,0),(-2,0)的距离之和等于常数23,由椭圆的定义,可知此点的轨迹为焦点在x 轴上的椭圆,且a =3,c =2,故轨迹方程为x 23+y 2=1.(2)由⎩⎪⎨⎪⎧x 23+y 2=1,y =kx +2,得(1+3k 2)x 2+12kx +9=0.∵Δ=(12k )2-36(1+3k 2)=36k 2-36>0,k 2>1, x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2,且点O 到直线l 的距离为d =2k 2+1,|AB |=k 2+1·|x 1-x 2|, ∴S =12|AB |·d =12×2|x 1-x 2|=(x 1+x 2)2-4x 1x 2=6k 2-11+3k 2.令t =k 2-1(t >0),则k 2=t 2+1,∴S =6t 3t 2+4=63t +4t ≤32,当且仅当t =233,即k =±213时,等号成立,即S 取最大值32. 4.(2017·北京卷)已知抛物线C :y 2=2px 过点P (1,1).过点⎝⎛⎭⎫0,12作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作 x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.解析 (1)由抛物线C :y 2=2px 过点P (1,1),得p =12.所以抛物线C 的方程为y 2=x .抛物线C 的焦点坐标为⎝⎛⎭⎫14,0,准线方程为x =-14. (2)证明:由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +12,y 2=x ,得4k 2x 2+(4k -4)x +1=0, 则x 1+x 2=1-k k 2,x 1x 2=14k2.因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1). 直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝⎛⎭⎫x 1,y 2x 1x 2. 因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2=⎝⎛⎭⎫kx 1+12x 2+⎝⎛⎭⎫kx 2+12x 1-2x 1x 2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2=(2k -2)×14k 2+1-k2k2x 2=0,所以y 1+y 2x 1x 2=2x 1,故A 为线段BM 的中点.5.在平面直角坐标系xOy 中,过点C (2,0)的直线与抛物线y 2=4x 相交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2).(1)求证:y 1y 2为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长;如果不存在,说明理由.解析 (1)方法一 当直线AB 垂直于x 轴时, y 1=22,y 2=-22,因此y 1y 2=-8为定值.当直线AB 不垂直于x 轴时,设直线AB 的方程y =k (x -2),由⎩⎪⎨⎪⎧y =k (x -2),y 2=4x ,得ky 2-4y -8k =0.∴y 1y 2=-8. 因此有y 1y 2=-8为定值.方法二 设直线AB 的方程为my =x -2,由⎩⎪⎨⎪⎧my =x -2,y 2=4x ,得y 2-4my -8=0,∴y 1y 2=-8. 因此有y 1y 2=-8为定值.(2)设存在直线l :x =a 满足条件,则AC 的中点E ⎝⎛⎭⎫x 1+22,y 12,|AC |=(x 1-2)2+y 21.点A在抛物线上,所以y 21=4x 1,因此以AC 为直径的圆的半径 r =12|AC |=12(x 1-2)2+y 21=12x 21+4,又点E 到直线x =a 的距离d =⎪⎪⎪⎪x 1+22-a .故直线l 被圆截得的弦长为 2r 2-d 2=214(x 21+4)-⎝⎛⎭⎫x 1+22-a 2=x 21+4-(x 1+2-2a )2=-4(1-a )x 1+8a -4a 2. 当1-a =0,即a =1时,弦长为定值2,这时直线方程为x =1.6.已知中心在坐标原点,焦点在x 轴上的椭圆过点P (2,3),且它的离心率e =12.(1)求椭圆的标准方程;(2)与圆(x -1)2+y 2=1相切的直线l :y =kx +t 交椭圆于M ,N 两点,若椭圆上一点C 满足OM →+ON →=λOC →,求实数λ的取值范围.解析 (1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由已知得⎩⎪⎨⎪⎧4a 2+3b 2=1,c a =12,c 2=a 2-b 2,解得⎩⎪⎨⎪⎧a 2=8,b 2=6,所以椭圆的标准方程为x 28+y 26=1.(2)因为直线l :y =kx +t 与圆(x -1)2+y 2=1相切, 所以|t +k |1+k2=1⇒2k =1-t 2t (t ≠0), 把y =kx +t 代入x 28+y 26=1并整理,得(3+4k 2)x 2+8ktx +(4t 2-24)=0.设M (x 1,y 1),N (x 2,y 2),则有x 1+x 2=-8kt3+4k 2, y 1+y 2=kx 1+t +kx 2+t =k (x 1+x 2)+2t =6t3+4k 2.因为λOC →=(x 1+x 2,y 1+y 2),所以C ⎝ ⎛⎭⎪⎫-8kt (3+4k 2)λ,6t (3+4k 2)λ, 又因为C 在椭圆上,所以8k 2t 2(3+4k 2)2λ2+6t 2(3+4k 2)2λ2=1⇒λ2=2t 23+4k 2=2⎝⎛⎭⎫1t 22+1t 2+1, 因为t 2>0,所以⎝⎛⎭⎫1t 22+1t 2+1>1,所以0<λ2<2,所以λ的取值范围为(-2,0)∪(0,2).7.如图,已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :x 2+y 2-6x -2y +7=0相切.(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 相交于P ,Q 两点,且AP →·AQ →=0,求证:直线l 过定点,并求出该定点N 的坐标.解析 (1)将圆M 的一般方程x 2+y 2-6x -2y +7=0化为标准方程为(x -3)2+(y -1)2=3, 圆M 的圆心为M (3,1),半径为r = 3.由A (0,1),F (c,0)(c =a 2-1)得直线AF :xc +y =1,即x +cy -c =0.由直线AF 与圆M 相切,得|3+c -c |c 2+1= 3.∴c =2或c =-2(舍去).∴a =3,∴椭圆C 的方程为x 23+y 2=1.(2)证明:由AP →·AQ →=0,知AP ⊥AQ ,从而直线AP 与坐标轴不垂直,由A (0,1)可设直线AP 的方程为y =kx +1,直线AQ 的方程为y =-1kx +1(k ≠0),将y =kx +1代入椭圆C 的方程x 23+y 2=1并整理,得(1+3k 2)x 2+6kx =0,解得x =0或x =-6k1+3k 2,因为P 的坐标为⎝⎛⎭⎫-6k 1+3k 2,-6k 21+3k 2+1, 即⎝ ⎛⎭⎪⎫-6k 1+3k 2,1-3k 21+3k 2.将上式中的k 换成-1k ,得Q ⎝ ⎛⎭⎪⎫6k k 2+3,k 2-3k 2+3. ∴直线l 的方程为y =k 2-3k 2+3-1-3k 21+3k 26k k 2+3+6k 1+3k 2⎝⎛⎭⎫x -6k k 2+3+k 2-3k 2+3,化简得直线l 的方程为y =k 2-14k x -12.因此直线l 过定点N ⎝⎛⎭⎫0,-12. 8.(2018·广西桂林中山中学阶段性测试)已知焦距为2的椭圆W :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,上、下顶点分别为B 1,B 2,点M (x 0,y 0)为椭圆W 上不在坐标轴上的任意一点,且四条直线MA 1,MA 2,MB 1,MB 2的斜率之积为14.(1)求椭圆W 的标准方程;(2)如图所示,点A ,D 是椭圆W 上两点,点A 与点B 关于原点对称,AD ⊥AB ,点C 在x 轴上,且AC 与x 轴垂直,求证:B ,C ,D 三点共线.解析 (1)由题意可知2c =2,即c =1,a 2-b 2=1. ∵M (x 0,y 0)为椭圆W 上不在坐标轴上的任意一点,∴x 20a 2+y 20b 2=1,y 20=b 2a 2(a 2-x 20),x 20=a 2b2(b 2-y 20), ∴kMA 1·kMA 2·kMB 1·kMB 2=y 0x 0+a ·y 0x 0-a ·y 0-b x 0·y 0+b x 0=y 20x 20-a 2·y 20-b 2x 20=b 2a 2(a 2-x 20)x 20-a 2·y 20-b 2a 2b 2(b 2-y 20)=⎝⎛⎭⎫b 2a 22=14, 则a 2=2b 2,∴a 2=2,b 2=1, ∴椭圆W 的标准方程为x 22+y 2=1.(2)证明:不妨设点A (x 1,y 1),D (x 2,y 2), 则B (-x 1,-y 1),C (x 1,0).∵A ,D 在椭圆上,∴⎩⎪⎨⎪⎧x 21+2y 21=2,x 22+2y 22=2, 即(x 1-x 2)(x 1+x 2)+2(y 1-y 2)(y 1+y 2)=0, ∴y 1-y 2x 1-x 2=-x 1+x 22(y 1+y 2). ∵AD ⊥AB ,∴k AD ·k AB =-1,即y 1x 1·y 1-y 2x 1-x 2=-1,即y 1x 1·⎣⎢⎡⎦⎥⎤-x 1+x 22(y 1+y 2)=-1,∴y 1x 1=2(y 1+y 2)x 1+x 2, ∴k BD -k BC =y 1+y 2x 1+x 2-y 12x 1=y 1+y 2x 1+x 2-y 1+y 2x 1+x 2=0, 即k BD =k BC .∴B ,C ,D 三点共线.。
解析几何中的对称“美”——探析直线与圆锥曲线综合应用中的对称性问题
求解 , 最终 得 出参 数 的取 值 范 围.
总之 , 在 圆锥 曲线 上 两 点 关 于 直 线 对 称 问 题 的 实
例 已知抛物线 C : 。 一 与直线 z : 一是 . z +÷,
试问: C上 能否存 在关 于直线 z对称 的两 点 ?若 存在 , 求 出实 数 k的取 值 范 围 ; 若不 存在 , 说明理 由.
, (
探 析 直 线 与 圆 锥 曲 线 综 合 应 用 中 的 对 称 性 问 题
◇ 江苏 范金 良
k +3 ) <0 , 解得 一1 <走 <0 , 所 以抛 物线 C上存 在两 点 关 于 直线 z 对称 , 此时 k的取值 范 围为( 一1 , O ) .
方 法 2 联 立 方 程 △ 判 别 法
人 着 迷 的 是 理 论 与 思 想 方 法 的 系 统 性 和 思 维 的 高 度
是正 确 构造 出 合 适 的不 等 式 , 主 要 是 利 用 中点 M 在
曲线 c 内 , 当然 也 可 以利用 判别 式构 造不 等式 . 解 假设 c上 存 在两 点 A ( , ) , B( 。 , ) 关
设线 段 AB 的 中 点 为 M ( z 。 , y 。 ) , = = = z , ; 一
—一
M( x 。 , y 。 ) 在直 线 AB上 , 所以
6 = Y o + 去 X O 一 一 k — 1 1 十 3 ) 一 一 鲁 一 1 痞,
ห้องสมุดไป่ตู้所 以
△一 是( + 4 6 )一 是( 志 2 k一 2
一
3) >0
直线和圆锥曲线的综合问题
第九节直线和圆锥曲线的综合问题[知识能否忆起]1.直线与圆锥曲线的位置关系判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0).若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0⇔直线与圆锥曲线相交; Δ=0⇔直线与圆锥曲线相切; Δ<0⇔直线与圆锥曲线相离.若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则弦长|AB |=1+k 2|x 1-x 2|或1+1k2|y 1-y 2|.典题导入[例1] (2012·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N . (1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值.由题悟法研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解.以题试法1.(2012·信阳模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎡⎦⎤-12,12 B .[-2,2] C .[-1,1]D .[-4,4]例2.(2013·长沙月考)直线l :x -y =0与椭圆x 22+y 2=1相交于A 、B 两点,点C 是椭圆上的动点,求△ABC 面积的最大值。
例3.(2012·郑州模拟)已知圆C 的圆心为C (m,0),m <3,半径为5,圆C 与离心率e >12的椭圆E :x 2a 2+y 2b 2=1(a >b >0)的其中一个公共点为A (3,1),F 1,F 2分别是椭圆的左、右焦点.(1)求圆C 的标准方程;(2)若点P 的坐标为(4,4),试探究直线PF 1与圆C 能否相切?若能,设直线PF 1与椭圆E 相交于D ,B 两点,求△DBF 2的面积;若不能,请说明理由.。
直线与圆锥曲线综合性问题(含答案)
直线与圆锥曲线综合性问题(含答案)一.考点分析。
⑴直线与圆锥曲线的位置关系和判定直线与圆锥曲线的位置关系有三种情况:相交、相切、相离.直线方程是二元一次方程,圆锥曲线方程是二元二次方程,由它们组成的方程组,经过消元得到一个一元二次方程,直线和圆锥曲线相交、相切、相离的充分必要条件分别是、、.⑵直线与圆锥曲线相交所得的弦长直线具有斜率,直线与圆锥曲线的两个交点坐标分别为,则它的弦长上面的公式实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为,运用韦达定理来进行计算. 当直线斜率不存在是,则.注:,1.圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质,以简化运算;2.当涉及到弦的中点时,通常有两种处理方法:一是韦达定理,二是点差法;3.圆锥曲线中参数取值范围问题通常从两个途径思考:一是建立函数,用求值域的方法求范围,二是建立不等式,通过解不等式求范围. 二.考试探究圆锥曲线是解析几何的核心内容,也是高考命题的热点之一.高考对圆锥曲线的考查,总体上是以知识应用和问题探究为主,一般是给出曲线方程,讨论曲线的基本元素和简单的几何性质;或给出曲线满足的条件,判断(求)其轨迹;或给出直线与曲线、曲线与曲线的位置关系,讨论与其有关的其他问题(如直线的方程、直线的条数、弦长、曲线中参变量的取值范围等);或考查圆锥曲线与其他知识综合(如不等式、函数、向量、导数等)的问题等. 1.,(2006年北京卷,文科,19)椭圆C:的两个焦点为F1,F2,点P 在椭圆C 上,且0∆>0∆=0∆<k 1122(,),(,)A x y B x y 1212()y y x x -=-k 12AB y y =-22221(0)x y a b a b+=>>(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 过圆x 2+y 2+4x-2y=0的圆心M ,交椭圆C 于A 、B 两点,且A 、B 关于点M对称,求直线l 的方程.〖解析〗(Ⅰ)由椭圆的定义及勾股定理求出a,b,c 的值即可,(Ⅱ)可以设出A 、B 点的坐标及直线方程,联立直线方程和椭圆方程后利用一元二次方程根与系数关系即可求出直线方程,也可以利用“点差法”求出直线的斜率,然后利用点斜式求出直线方程. 〖答案〗解法一:(Ⅰ)因为点P 在椭圆C 上,所以,a=3.在Rt △PF1F2中,故椭圆的半焦距c=,从而b2=a2-c2=4,所以椭圆C 的方程为=1. (Ⅱ)设A ,B 的坐标分别为(x1,y1)、(x2,y2).已知圆的方程为(x+2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 从而可设直线l 的方程为y=k(x+2)+1,代入椭圆C 的方程得(4+9k2)x2+(36k2+18k)x+36k2+36k -27=0. 因为A ,B 关于点M 对称.所以,,,解得, 所以直线l 的方程为,,,,,即8x-9y+25=0. (经检验,所求直线方程符合题意) 解法二: (Ⅰ)同解法一.(Ⅱ)已知圆的方程为(x+2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1).11212414,||,||.33PF F F PF PF ⊥==6221=+=PF PF a ,52212221=-=PF PF F F 54922y x +.29491822221-=++-=+kkk x x 98=k ,1)2(98++=x y,设A ,B 的坐标分别为(x1,y1),(x2,y2).由题意x1x2且,,,,,,,,,①,,,,,,,,,②由①-②得,,,,,,,,,③因为A 、B 关于点M 对称,所以x1+,x2=-4,,y1+,y2=2,代入③得=,即直线l 的斜率为,所以直线l 的方程为y -1=(x+2),即8x -9y+25=0. (经检验,所求直线方程符合题意.) 2.(2008年山东卷,文科,22)已知曲线所围成的封闭图形的面积为曲线的内切圆半径为.记为以曲线与坐标轴的交点为顶点的椭圆.(Ⅰ)求椭圆的标准方程;(Ⅱ)设是过椭圆中心的任意弦,是线段的垂直平分线.是上异于椭圆中心的点.(1)若(为坐标原点),当点在椭圆上运动时,求点的轨迹方程;(2)若是与椭圆的交点,求的面积的最小值.≠,1492121=+yx ,1492222=+yx .04))((9))((21212121=+-++-y y y y x x x x 2121x x y y --98989811(0)xyC a b a b+=>>:1C 32C 1C 2C AB 2C l AB M l MO OA λ=O A 2C M M l 2C AMB △〖解析〗(Ⅰ)由三角形面积公式和点到直线的距离公式可得关于a ,b 的方程组,,曲线与坐标轴的交点为椭圆的顶点,显然为焦点在x 轴的椭圆;(Ⅱ)(1)设出的方程,,,联立直线与椭圆得到方程组后,由可得的轨迹方程,注意或不存在时所得方程仍然成立;(2)由直线的方程:和椭圆方程联立后表示出由不等式放缩即可求出最小值.〖答案〗(Ⅰ)由题意得又,解得,.因此所求椭圆的标准方程为.(Ⅱ)(1)假设所在的直线斜率存在且不为零,设所在直线方程为,.解方程组得,, 所以. 设,由题意知,所以,即, 因为是的垂直平分线,所以直线的方程为,即,因此, 1C 2C AB (0)y kx k =≠()A A A x y ,()M x y ,(0)MO OA λλ=≠M 0k =l 1y x k =-22214AMB S ABOM =△2ab ⎧=⎪⎨=0a b >>25a =24b =22154x y +=AB AB (0)y kx k =≠()A A A x y ,22154x y y kx ⎧+=⎪⎨⎪=⎩,,222045A x k =+2222045A k y k =+22222222202020(1)454545AAk k OA x y k k k+=+=+=+++()M x y ,(0)MO OA λλ=≠222MO OA λ=2222220(1)45k x y kλ++=+l AB l 1y x k=-x k y =-22222222222220120()4545x y x y x y x y x yλλ⎛⎫+ ⎪+⎝⎭+==++又,所以,故. 又当或不存在时,上式仍然成立.综上所述,的轨迹方程为.(2)当存在且时,由(1)得,, 由解得,, 所以,,. 解法一:由于 , 当且仅当时等号成立,即时等号成立, 此时面积的最小值是. 当,. 当不存在时,. 综上所述,的面积的最小值为. 解法二:因为, 220x y +≠2225420x y λ+=22245x y λ+=0k=M 222(0)45x y λλ+=≠k 0k ≠222045Ax k =+2222045A k y k=+221541x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,2222054M k x k =+222054M y k =+2222220(1)45AAk OA x y k +=+=+222280(1)445k AB OA k +==+22220(1)54k OM k+=+22214AMBSAB OM =△2222180(1)20(1)44554k k k k++=⨯⨯++2222400(1)(45)(54)k k k +=++22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭224554k k +=+1k =±AMB △409AMB S=△0k=140229AMB S =⨯=>△k 140429AMB S ==>△AMB △409222222111120(1)20(1)4554k k OA OMk k +=+++++2224554920(1)20k k k +++==+。
教案~直线与圆锥曲线综合
直线与圆锥曲线综合~~高三复习课教学目标1、会利用圆锥曲线的定义处理离心率、弦长等问题;2、能够根据圆锥曲线图形的特征判断直线与曲线的位置关系问题,进而判断直线与曲线的交点个数;3、强化运用数形结合的思想方法分析、判断,能综合运用函数、方程、不等式的知识解决相关问题.教学重难点综合运用函数、方程、不等式的知识解决相关问题教学过程一.分析总体近几年来直线与圆锥曲线综合在高考中占据高考解答题压轴题的位置,且选择、填空也有涉及。
二.《考试说明》要求:1.掌握椭圆、抛物线的定义、几何图形、标准方程及简单几何性质.2.了解双曲线的定义,掌握其几何图形、标准方程,理解它的简单几何性质.3.能解决直线与椭圆、抛物线的位置关系等问题.4.理解数形结合的思想.三.知识点回顾1.点M(x0,y0)与圆锥曲线C:f(x,y)=0的位置关系2.直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点直线与圆锥曲线的位置关系可分为:相交、相切、相离.3.直线与圆锥曲线相交的弦长公式四.例题讲解22212(0),11II||||y px p Mx M A BMMA MB=>+例:已知抛物线常数是轴正半轴上一点,过点任意作直线交抛物线于、两点。
()探究:是否存在定点,使为定值?240,||2||.12,?A B C ABC O AC BC BC ACP Q PCQ AOPQ ABλλ==∠=例:如图,、、是长轴长为的椭圆上的三点,点是椭圆的右顶点,过椭圆中心,且()求椭圆方程;()如果椭圆上的两点、使的角平分线垂直于,是否总存在实数,使请说明理由.234||4,.y kx b x y A B AB AB M x=+==例:若直线与抛物线相交于、两点,且求弦的中点离轴的最短距离.课堂练习:课堂小结:1.几何问题代数化,代数问题几何化.2. 一般问题标准化.3.眼尖、心细、手勤作业:1.《专题测评19》2.预习下一节22::43x y l y kx m C A B A B AB C l =+已知直线与椭圆+=1相交于、两点(点、不是左、右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.。
圆锥曲线的综合问题
[例 1] P(1,1)为椭圆x42+y22=1 内的一定点,过 P 点引一 弦,与椭圆相交于 A、B 两点,且 P 恰好为弦 AB 的中点,如 图所示,求弦 AB 所在的直线方程及弦 AB 的长度.
解析:设弦 AB 所在的直线方程为 y-1=k(x-1),A、B 两点坐标分别为 (x1,y1),(x2,y2),则 x12+2y21=4,① x22+2y22=4.② ①-②得: (x1+x2)(x1-x2)+2(y1+y2)(y1-y2)=0. ∵P(1,1)为弦 AB 的中点,∴x1+x2=2,y1+y2=2. ∴k=xy11--xy22=-12.
上述两种情形联立方程组消元后,二次项系数为 0,即只 能得到一个一次方程.
思想方法技巧
一、向量法 向量的坐标可以用其起点、终点的坐标表示,因此向量 与解析几何保持着天然的联系.通过向量的坐标可以把解析 几何的很多问题向量化,利用向量的共线、垂直、夹角、距 离等公式巧妙地解决解析几何问题.
二、点差法 涉及到直线被圆锥曲线截得弦的中点问题(即中点弦问题) 时,常用根与系数的关系及点差法求解.
(1)求点 M 的轨迹方程; (2)过点 F(0,1)作互相垂直的两条直线 l1、l2,l1 与点 M 的 轨迹交于点 A、B,l2 与点 M 的轨迹交于点 C、Q,求A→C·Q→B的 最小值.
解析:(1)设 M(x,y),E(a,0),由条件知 D(0,-8), N(a+2 x,2y+0),∵N 在 y 轴上,∴x=-a, ∵E→D⊥E→M,∴E→D·E→M=(-a,-8)·(x-a,y)=-a(x- a)-8y=2x2-8y=0,∴x2=4y(x≠0), ∴点 M 的轨迹方程为 x2=4y(x≠0).
(2)设 A(x1,y1),B(x2,y2),C(x3,y3),Q(x4,y4),直线 l1: y=kx+1(k≠0),则直线 l2:y=-1kx+1,
直线与圆锥曲线的综合应用
直线和圆锥曲线经常考查的一些题型直线与椭圆、双曲线、抛物线中每一个曲线的位置关系都有相交、相切、相离三种情况,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.直线和椭圆、双曲线、抛物线中每一个曲线的公共点问题,可以转化为它们的方程所组成的方程组求解的问题,从而用代数方法判断直线与曲线的位置关系。
解决直线和圆锥曲线的位置关系的解题步骤是: (1)直线的斜率不存在,直线的斜率存,(2)联立直线和曲线的方程组; (3)讨论类一元二次方程(4)一元二次方程的判别式 (5)韦达定理,同类坐标变换(6)同点纵横坐标变换 (7)x,y ,k(斜率)的取值范围(8)目标:弦长,中点,垂直,角度,向量,面积,范围等等1:已知椭圆)0(1:2222>>=+b a by a x C 过点)23,1(,且离心率21=e 。
(Ⅰ)求椭圆方程;(Ⅱ)若直线)0(:≠+=k m kx y l 与椭圆交于不同的两点M 、N ,且线段MN 的垂直平分线过定点)0,81(G ,求k 的取值范围。
解:(Ⅰ)Q 离心率21=e ,2213144b a ∴=-=,即2243b a =(1);又椭圆过点)23,1(,则221914a b +=,(1)式代入上式,解得24a =,23b =,椭圆方程为22143x y +=。
(Ⅱ)设1122(,),(,)M x y N x y ,弦MN 的中点A 00(,)x y由223412y kx m x y =+⎧⎨+=⎩得:222(34)84120k x mkx m +++-=, Q 直线)0(:≠+=k m kx y l 与椭圆交于不同的两点,2222644(34)(412)0m k k m ∴∆=-+->,即2243m k <+ (1)由韦达定理得:21212228412,3434mk m x x x x k k -+=-=++, 则2000222443,343434mk mk mx y kx m m k k k =-=+=-+=+++,直线AG 的斜率为:22232434413234348AGmm k K mk mk k k +==-----+, 由直线AG 和直线MN 垂直可得:22413234m k mk k=----g ,即2348k m k +=-,代入(1)式,可得22234()438k k k +<+,即2120k >,则1010k k ><-。
直线的参数方程在圆锥曲线中的应用
直线的参数方程在圆锥曲线中的应用直线的参数方程在圆锥曲线中•引言•圆锥曲线的定义•直线的参数方程•例子:直线在圆锥曲线上的应用–切线–弦–切割•结论引言直线的参数方程是描述直线上的点与直线上某一点之间的关系的数学表达式。
在圆锥曲线中,直线的参数方程可以应用于描述直线与曲线的关系以及相关性质。
圆锥曲线的定义圆锥曲线是平面上一条曲线,其定义可以通过一个发光点(焦点)和一个动点(准线)的直线运动来得到。
根据焦点和准线之间的不同位置关系,圆锥曲线可分为三种类型:椭圆、抛物线和双曲线。
直线的参数方程直线的参数方程可以表示为以下形式:x = x₀ + at y = y₀ + bt其中,x₀和y₀是直线过点的坐标,a和b是直线的斜率。
例子:直线在圆锥曲线上的应用切线直线的参数方程可以用来表示圆锥曲线上某一点的切线。
通过选择合适的参数,使得直线与曲线在该点处相切,可以得到该点处的切线方程。
弦直线的参数方程也可以用来表示圆锥曲线上的一条弦。
对于圆锥曲线上的两个点,可以选择合适的参数,使得直线穿过这两个点,从而得到这两个点之间的弦的方程。
切割直线的参数方程还可以用来判断直线与圆锥曲线的交点个数。
通过求解直线方程和圆锥曲线方程的交点,可以确定交点的个数以及具体的坐标。
结论直线的参数方程在圆锥曲线中有着广泛的应用。
通过选择合适的参数,可以描述曲线上的切线、弦以及切割点的情况。
这些应用使得直线的参数方程成为研究圆锥曲线中与直线相关性质的重要工具。
2023届高三数学一轮复习专题 直线与圆锥曲线的综合运用 讲义 (解析版)
直线与圆锥曲线的综合运用一、知识梳理1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0①直线与圆锥曲线相交;①Δ=0①直线与圆锥曲线相切;①Δ<0①直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;①若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.3.过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线; 过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.二、课前预习1.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是____.2.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为____.3.直线mx +ny =4与①O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是____个.4.已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C 上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为____.5.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点)23,1(P ,离心率为12.(1) 求椭圆C 的方程. (2) 若斜率为32的直线l 与椭圆C 交于A ,B 两点,试探究OA 2+OB 2是否为定值?若为定值,求出此定值;若不是定值,请说明理由.三、典型例题题型一. 直线与圆锥曲线的位置关系例1已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.变式 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.例2 如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6. (1)求椭圆E 的标准方程; (2)过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于M 点,求M 点的坐标.题型二 弦长问题例3 如图,在平面直角坐标系xOy中,已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的离心率e =22,右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.变式 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4. (1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.BAOxy lP C题型三 定点问题例4 如图,在平面直角坐标系xOy中,离心率为2的椭圆:C 22221(0)x y a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点.若直线PQ斜率为2时,PQ = (1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.例5 已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :x 2+y 2-6x -2y +7=0相切.(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 相交于P 、Q 两点,且AP →·AQ →=0,求证:直线l 过定点,并求出该定点N 的坐标.变式1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点1P (1,1),2P (0,1),)23,1(3 P ,)23,1(4P 中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.变式2 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上动点P 到一个焦点的距离的最小值为3(2-1).(1) 求椭圆C 的标准方程;(2) 已知过点M (0,-1)的动直线l 与椭圆C 交于A ,B 两点,试判断以线段AB 为直径的圆是否恒过定点,并说明理由.题型四 定值问题例6 已知椭圆)(:012222>>=+b a by a x C 的离心率为23,且过点),(12-P .(1)求椭圆C 的方程;(2)设点Q 在椭圆C 上,且PQ 与x 轴平行,过P 点作两条直线分别交椭圆C 于),(11y x A),(22y x B 两点,若直线PQ 平分APB ∠,求证:直线AB 的斜率是定值,并求出这个定值.变式 在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的焦距为2,离心率为22,椭圆的右顶点为A . (1)求该椭圆的方程;(2)过点(2,2)D -作直线PQ 交椭圆于两个不同点,P Q ,求证:直线,AP AQ 的斜 率之和为定值.例7 如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(0)a b >>,焦点到相应准线的距离为1. (1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =于点Q ,求2211OP OQ +的值.变式在平面直角坐标系xOy 中,已知圆222:O x y b +=经过椭圆222:14x y E b +=(02)b <<的焦点.(1)求椭圆E 的标准方程;(2)设直线:l y kx m =+交椭圆E 于,P Q 两点,T 为弦PQ 的中点,(1,0),(1,0)M N -,记直线,TM TN 的斜率分别为12,k k ,当22221m k -=时,求12k k ⋅的值.题型五 最值、范围问题例8 已知椭圆C :22221(0)x y a b a b+=>>的左焦点为F (-1,0),左准线方程为x =-2.(1) 求椭圆C 的标准方程;(2) 若椭圆C 上有A ,B 两点,满足OA ①OB (O 为坐标原点),求①AOB 面积的取值范围.例9 如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的左顶点为A ,点B 是椭圆C 上异于左、右顶点的任一点,P 是AB 的中点,过点B 且与AB 垂直的直线与直线OP 交于点Q ,已知椭圆C 的离心率为12,点A 到右准线的距离为6。
高考必会题型篇:36高考数学直线圆锥曲线的综合应用
讲师:邹老师
精品课件
题型透析
精品课件
真题展示
1.(2013 年高考新课标Ⅱ卷数学(理))
平面直角坐标系
xOy
中,过椭圆
M
:
x2 a2
y2 b2
1(a
b
0) 的右焦点
F 作直 x y 3 0 交 M 于 A,B 两点,P 为 AB 中点,OP 斜率 1 .
r
2
AB 2
2
,得 k
3 ,带入 4
y 2 k(x 1) ,
得
y
2
3 4
(x
1)
,即
3x
4
y
5
0 .所以直线
l
的方程为
3
x
4
y
5
0
.
精品课件
精品课件
备考指津
精品课件
【高考题型】:主要考察直线与圆锥曲线的位置关系. 【技巧归纳】:韦达定理的应用,设而不求的解题技巧. 【复习建议】:直线与圆锥曲线的关系、是高考命题的重要的一个点.高考十分注重
2
求椭圆 C 的方程(Ⅱ)当△AMN 的面积为 10 时,求 k 的值
3
精品课件
破题技巧
精品课件
精品课件
题型突破
精品课件
题型一:直线与圆锥曲线的位置关系问题
【湖北省荆门市龙泉中学 2014 届高三 8 月月考数学(理)】
已知椭圆 C
:
x2 a2
y2 b2
1(a
b
0)
的离心率为
1 2
,以Байду номын сангаас点为圆
对此知识点的考查,有的是考查理解和应用,有的是考查直线与圆和圆锥曲线的位置关 系等.
一轮复习课时训练§8.9:直线与圆锥曲线的综合应用
第八章§9:直线与圆锥曲线的综合应用(与一轮复习课件对应的课时训练)满分100,训练时间60钟一、选择题:本大题共5小题,每小题8分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若椭圆x 236+y 29=1的弦被点(4,2)平分,则此弦所在直线的斜率为A .2B .-2C .13D .-122.若双曲线x 2-y 2=1的右支上一点P(a ,b)到直线y =x 的距离为2,则a +b 的值为A .-12B .12C .±12D .±23.已知A ,B ,C 三点在曲线y =x 上,其横坐标依次为1,m ,4(1<m <4),当△ABC 的面积最大时,m 等于A .3B .94C .52D .324.设直线l :2x +y +2=0关于原点对称的直线为l ′.若l ′与椭圆x 2+y 24=1的交点为A ,B ,点P 为椭圆上的动点,则使△PAB 的面积为12的点P 的个数是A .1B .2C .3D .45.过抛物线y 2=4x 的焦点F 作两条弦AB 和CD ,且AB ⊥x 轴,|CD|=2|AB|,则弦CD 所在直线的方程是A .x -y -1=0B .x -y -1=0或x +y -1=0C .y =2(x -1)D .y =2(x -1)或y =-2(x -1)二、填空题:本大题共3小题,每小题8分,共24分.6.已知以F 为焦点的抛物线y 2=4x 上的两点A ,B 满足A F →=3F B →,则弦AB 的中点到准线的距离为__________.7.过抛物线y 2=2px(p>0)的焦点的直线x -my +m =0与抛物线交于A ,B 两点,且△OAB 的面积为22,则p =______.8.如果双曲线x 2a 2-y 2b 2=1右支上总存在到双曲线的中心与右焦点距离相等的两个不同点,则双曲线离心率的取值范围是______.三、解答题:本大题共2小题,共36分.解答应写出文字说明、证明过程或演算步骤.9.(本小题满分18分,(1)小问8分,(2)小问10分)已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1. (1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,|OP||OM|=λ,求点M的轨迹方程,并说明轨迹是什么曲线.10.(本小题满分18分,(1)小问8分,(2)小问10分)已知椭圆x 2a 2+y 2b 2=1(a>b>0)的一个顶点为A(0,1),且它的离心率与双曲线x 23-y 2=1的离心率互为倒数. (1)求椭圆的方程;(2)过点A 且斜率为k 的直线l 与椭圆相交于A ,B 两点,点M 在椭圆上,且满足 OM →=12OA →+32OB →,求k 的值.参考答案及其解析一、选择题:本大题共5小题,每小题8分,共40分.1.解析:设弦的端点为A ,B ,且A(x 1,y 1),B(x 2,y 2),则x 1+x 2=8,y 1+y 2=4,又x 2136+y 219=1,x 2236+y 229=1.两式相减得(x 1-x 2)(x 1+x 2)36+(y 1-y 2)(y 1+y 2)9=0. ∴y 1-y 2x 1-x 2=-9(x 1+x 2)36(y 1+y 2)=-9×836×4=-12.答案:D2.解析:∵P(a ,b)在双曲线上,则a 2-b 2=1,∴(a +b)(a -b)=1.∵d =|a -b|2=2,∴|a -b|=2.又∵点P 在右支上,∴a>b ,∴a -b =2,∴a +b =12.故选B 项.答案:B3.解析:由题意知A(1,1),B(m ,m),C(4,2).直线AC 所在的方程为x -3y +2=0,点B 到该直线的距离为d =|m -3m +2|10.S △ABC =12|AC|·d =12×10×|m -3m +2|10=12|m -3m +2|=12|(m -32)2-14|.∵m ∈(1,4),∴当m =32时,S △ABC 有最大值,此时m =94.答案:B4.解析:由题意知直线l 关于原点对称的直线l ′:2x +y -2=0,它与椭圆x 2+y 24=1的交点A(0,2),B(1,0),故|AB|= 5.由题意知P 到直线AB 的距离为55,设过P 且与l ′平行的直线为2x +y +m =0,由|m +2|22+1=55,得m =-1,即与l ′平行且距l ′距离为55的直线有且只有一条,故点P 有2个. 答案:B5.解析:依题意知AB 为抛物线的通径,|AB|=2p =4,|CD|=2|AB|=8,显然满足条件的直线CD 有两条,验证B 项,由⎩⎪⎨⎪⎧y 2=4xy =x -1得:x 2-6x +1=0,x 1+x 2=6,此时|CD|=x 1+x 2+p =8,符合题意.同理,x +y -1=0也符合题意. 答案:B二、填空题:本大题共3小题,每小题8分,共24分.6. 解析:如图,F 为抛物线的焦点,作AH 垂直准线于点H ,交y 轴于点D ,作BG 垂直准线于点G ,交y 轴于点C.∵y 2=4x ,∴p =2,|OF|=1, 设直线AB 为y =k(x -1), 代入抛物线方程得 k 2x 2-(2k 2+4)x +k 2=0, ∴x A ·x B =1.① ∵BG AH =BFAF ,∴x B +1x A +1=13,② ①②联立解得x A =3,x B =13,∴AB 中点到准线的距离为|AH|+|BG|2=x A +1+x B +12=3+1+13+12=83.答案:837.解析:设A(x 1,y 1),B(x 2,y 2),联立方程得⎩⎪⎨⎪⎧y 2=2pxx =my -m,消x 得y 2-2mpy +2pm =0∴y 1+y 2=2pm ,y 1y 2=2pm ,∴(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=4p 2m 2-8pm.又∵焦点(p2,0)在直线x -my +m =0上,∴p =-2m ,∴|y 1-y 2|=4m 4+m 2.∴S △AOB =12×p2×|y 1-y 2|=22,∴m 6+m 4=2.得m =-1或m =1(舍去),∴p =2. 答案:28.解析:由已知满足条件的点在OF 的中垂线l 上,∴l 与双曲线的右支交于不同两点, ∴c 2>a ,∴e =c a >2. 答案:(2,+∞)三、解答题:本大题共2小题,共36分.9.(本小题满分18分,(1)小问8分,(2)小问10分)解:(1)设椭圆长半轴长及半焦距分别为a ,c ,由已知得⎩⎪⎨⎪⎧a -c =1a +c =7,解得a =4,c =3,所以椭圆C 的方程为x 216+y 27=1.(2)设M(x ,y),其中x ∈[-4,4].由已知|OP|2|OM|2=λ2及点P 在椭圆C 上可得9x 2+11216(x 2+y 2)=λ2, 整理得(16λ2-9)x 2+16λ2y 2=112,其中x ∈[-4,4]. ①λ=34时,化简得9y 2=112,所以点M 的轨迹方程为y =±473(-4≤x ≤4),轨迹是两条平行于x 轴的线段.②λ≠34时,方程变形为x 211216λ2-9+y 211216λ2=1,其中x ∈[-4,4].当0<λ<34时,点M 的轨迹为中心在原点、实轴在y 轴上的双曲线满足-4≤x ≤4的部分;当34<λ<1时,点M 的轨迹为中心在原点、长轴在x 轴上的椭圆满足-4≤x ≤4的部分; 当λ≥1时,点M 的轨迹为中心在原点、长轴在x 轴上的椭圆. 10.(本小题满分18分,(1)小问8分,(2)小问10分)解:(1)∵双曲线x 23-y 2=1的离心率为233,∴椭圆的离心率为32. 又∵b =1,∴a =2. ∴椭圆的方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +1,A(x 1,y 1),B(x 2,y 2),M(m ,n). 由⎩⎪⎨⎪⎧y =kx +1x 24+y 2=1,得(1+4k 2)x 2+8kx =0, ∴x 1+x 2=-8k1+4k 2,x 1·x 2=0, ∵OM →=12OA →+32OB →,∴m =12(x 1+3x 2),n =12(y 1+3y 2),∵点M 在椭圆上, ∴m 2+4n 2=4,∴14(x 1+3x 2)2+(y 1+3y 2)2 =14[(x 21+4y 21)+3(x 22+4y 22)+23x 1x 2+83y 1y 2] =14[4+12+83y 1y 2]=4. ∴y 1y 2=0,∴(kx 1+1)(kx 2+1)=k 2x 1x 2+k(x 1+x 2)+1=k·(-8k1+4k 2)+1=0,化简得k 2=14,∴k =±12.。
直线和圆锥曲线的综合应用教案
教学过程复习引入一、设计理念著名教育学家布鲁纳说过:“知识的获得是一个主动过程. 学习者不应该是信息的被动接受者,而应是知识获取的主动参与者.”《数学课程标准》又提出数学教育要以有利于学生的全面发展为中心;以提供有价值的数学和倡导有意义的学习方式为基本点. 本节课的设计正是以此为理念,在整个授课过程中努力体现学生的主体地位,使学生亲自参与获取知识和技能的全过程,亲身体验知识的发生和发展过程,从而激发学生学习数学的兴趣,培养学生运用数学的意识和能力.二、教材分析<<直线与椭圆的位置关系>>解析几何中的重要内容之一,又是代数和几何衔接的枢纽,揭示了客观世界中相互依存又相互制约的关系.因而直线与圆锥曲线(椭圆)渗透了数形结合的思想。
在新课程数学教学有着不可代替的作用。
本节要求学生通过数形结合能够判断直线和椭圆的位置的关系:(代数和几何)①公共点的个数:联立方程组消元(消还是y)→一元方程②截得弦长、中点、垂直、向量等问题(用韦达定理或点叉法来解决)三、学情分析高二(8)班学生通过高二的学习和前面的复习,已初步掌握了圆锥曲线定义、方程、性质以及对直线和圆的位置关系,掌握了一定的分析问题和解决问题的能力。
本节课借助多媒体的强大功能,运用运动变化的观念,让学生在自主探究的过程中,直接观察、运动变化,在轻松的学习环境中激发潜能、体验成功,领会到数形结合解决问题的美妙。
二、知识讲解考点/易错点1圆锥曲线的统一定义平面内到一个定点F和到一条定直线l(F不在l上)的距离的比等于常数e的轨迹.当0<e<1时,它表示椭圆;当e>1时,它表示双曲线;当e=1时,它表示抛物线.曲线的方程与方程的曲线在直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1) 曲线上的点的坐标都是这个方程的解;(2) 以这个方程的解为坐标的点都在曲线C上,那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线(图形).平面解析几何研究的两个主要问题(1) 根据已知条件,求出表示曲线的方程;(2) 通过曲线的方程研究曲线的性质.求曲线方程的一般方法(五步法)求曲线(图形)的方程,一般有下面几个步骤:(1) 建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;(2) 写出适合条件p的点M的集合P={M|p(M)};(3) 用坐标表示条件p(M),列出方程f(x,y)=0;(4) 化方程f(x,y)=0为最简形式;(5) 说明已化简后的方程的解为坐标的点都在曲线上.三、例题精析 【例题1】 最值问题【题干】 如图,椭圆C :x2a2+y2b2=1(a >b >0)的离心率为12,其左焦点到点P(2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(1) 求椭圆C 的方程; (2) 求△ABP 面积取最大值时直线l 的方程. 【解析】解:(1) 设椭圆左焦点为F(-c ,0),则由题意得⎩⎪⎨⎪⎧(2+c )2+1=10,c a =12,得⎩⎪⎨⎪⎧c =1,a =2.所以椭圆方程为x24+y23=1.(2) 设A(x1,y1),B(x2,y2),线段AB 的中点为M.当直线AB 与x 轴垂直时,直线AB 的方程为x =0,与不过原点的条件不符,舍去.故可设直线AB 的方程为y =kx +m(m≠0),由⎩⎪⎨⎪⎧y =kx +m ,3x2+4y2=12消去y ,整理得(3+4k2)x2+8kmx +4m2-12=0,① 则Δ=64k2m2-4(3+4k2)(4m2-12)>0,⎩⎪⎨⎪⎧x1+x2=-8km3+4k2,x1x2=4m2-123+4k2,所以线段AB 的中点为M ⎝⎛⎭⎫-4km 3+4k2,3m 3+4k2.因为M 在直线OP :y =12x 上,所以3m 3+4k2=-2km 3+4k2,得m =0(舍去)或k =-32.此时方程①为3x2-3mx +m2-3=0,则Δ=3(12-m2)>0,⎩⎪⎨⎪⎧x1+x2=m ,x1x2=m2-33.所以AB =1+k2²|x1-x2|=396²12-m2,设点P 到直线AB 的距离为d ,则d =|8-2m|32+22=2|m -4|13.设△ABP 的面积为S ,则S =12AB ²d =36²(m -4)2+12-m2.其中m ∈(-23,0)∪(0,23).令u(m)=(12-m2)(m -4)2,m ∈[-23,23],u ′(m)=-4(m -4)(m2-2m -6)=【题干】 如图,在平面直角坐标系xOy 中,椭圆的中心在原点O ,右焦点F 在x 轴上,椭圆与y 轴交于A 、B 两点,其右准线l 与x 轴交于T 点,直线BF 交椭圆于C 点,P 为椭圆上弧AC 上的一点.(1) 求证:A 、C 、T 三点共线;(2) 如果BF →=3FC →,四边形APCB 的面积最大值为6+23,求此时椭圆的方程和P 点坐标. 【解析】(1) 证明:设椭圆方程为x2a2+y2b2=1(a >b >0) ①,则A(0,b),B(0,-b),T ⎝⎛⎭⎫a2c ,0.AT :x a2c+y b =1 ②,BF :x c +y -b =1 ③,解得交点C(2a2c a2+c2,b3a2+c2),代入①得⎝⎛⎭⎫2a2c a2+c22a2+⎝⎛⎭⎫b3a2+c22b2=4a2c2(a2-c2)2(a2+c2)2=1,满足①式,则C 点在椭圆上,即A 、C 、T 三点共线.(2) 解:过C 作CE ⊥x 轴,垂足为E , 则△OBF ∽△ECF.∵ BF →=3FC →,CE =13b ,EF =13c ,则C ⎝⎛⎭⎫4c 3,b 3,代入①得⎝⎛⎭⎫43c 2a2+⎝⎛⎭⎫b 32b2=1,∴ a2=2c2,b2=c2.设P(x0,y0),则x0+2y20=2c2.此时C ⎝⎛⎭⎫4c 3,c 3,AC =235c ,S △ABC =12²2c ²4c 3=43c2,直线AC 的方程为x +2y -2c =0,P 到直线AC 的距离为d =|x0+2y0-2c|5=x0+2y0-2c5,S △APC =12d ²AC =12²x0+2y0-2c 5²23 5c =x0+2y0-2c 3²c.只须求x0+2y0的最大值, (解法1)∵ (x0+2y0)2=x20+4y20+2·2x0y0≤x20+4y20+2(x20+y20)=3(x20+2y20)=6c2,∴ x0+2y0≤6c.当且仅当x0=y0=63c 时,(x0+2y0)max =6c.(解法2)令x0+2y0=t ,代入x20+2y20=2c2得(t -2y0)2+2y20-2c2=0,即6y20-4ty0+t2-2c2=0.Δ=(-4t)2-24(t2-2c2)≥0,得t≤6c.当t =6c ,代入原方程解得x0=y0=63c. ∴ 四边形的面积最大值为6-23c2+43c2=6+23c2=6+23,∴ c2=1,a2=2,b2=1,此时椭圆方程为x22+y2=1.P 点坐标为⎝ ⎛⎭⎪⎫63,63.【例题2】定值问题【题干】如图,椭圆C0:x2a2+y2b2=1(a>b>0,a 、b 为常数),动圆C1:x2+y2=t21,b<t1<a.点A1、A2分别为C0的左、右顶点,C1与C0相交于A 、B 、C 、D 四点.(1) 求直线AA1与直线A2B 交点M 的轨迹方程; (2) 设动圆C2:x2+y2=t22与C0相交于A ′,B ′,C ′,D ′四点,其中b<t2<a ,t1≠t2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t21+t22为定值. 【解析】(1) 解:设A(x1,y1),B(x1,-y1),又知A1(-a ,0),A2(a ,0),则直线A1A 的方程为y =y1x1+a (x +a),①直线A2B 的方程为y =-y1x1-a (x -a).②由①②得y2=-y21x21-a2(x2-a2).③ 由点A(x1,y1)在椭圆C0上,故x21a2+y21b2=1.从而y21=b2⎝⎛⎭⎫1-x21a2,代入③得x2a2-y2b2=1(x<-a ,y<0). (2) 证明:设A ′(x2,y2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x1||y1|=4|x2||y2|,故x21y21=x22y22.因为点A ,A ′均在椭圆上,所以b2x21⎝⎛⎭⎫1-x21a2=b2x22⎝⎛⎭⎫1-x22a2.由t1≠t2,知x1≠x2,所以x21+x22=a2,从而y21+y22=b2,因此t21+t22=a2+b2为定值.【题干】在平面直角坐标系xOy 中,椭圆C :x2a2+y2b2=1(a >b >0)的右焦点为F(4m ,0)(m >0,m 为常数),离心率等于0.8,过焦点F 、倾斜角为θ的直线l 交椭圆C 于M 、N 两点.(1) 求椭圆C 的标准方程;(2) 若θ=90°,1MF +1NF =5 29,求实数m ;(3) 试问1MF +1NF 的值是否与θ的大小无关,并证明你的结论.【解析】解:(1) ∵ c =4m ,椭圆离心率e =c a =45,∴ a =5m.∴ b =3m.∴ 椭圆C 的标准方程为x225m2+y29m2=1.(2) 在椭圆方程x225m2+y29m2=1中,令x =4m ,解得y =±9m 5.∵ 当θ=90°时,直线MN ⊥x 轴,此时FM =FN =9m 5,∴ 1MF +1NF =109m .∵ 1MF +1NF =5 29,∴ 109m =5 29,解得m = 2.(3) 1MF +1NF 的值与θ的大小无关.证明如下:(证法1)设点M 、N 到右准线的距离分别为d1、d2.∵ MF d1=45,NF d2=45,∴ 1MF +1NF =54⎝⎛⎭⎫1d1+1d2. 又由图可知,MFcos θ+d1=a2c -c =9m 4,∴ d1⎝⎛⎭⎫45cosθ+1=9m 4,即1d1=49m ⎝⎛⎭⎫45cosθ+1. 同理,1d2=49m ⎣⎡⎦⎤45cos (π-θ)+1=49m (-45cos θ+1). ∴ 1d1+1d2=49m ⎝⎛⎭⎫45cosθ+1+49m (-45cos θ+1)=89m . ∴ 1MF +1NF =54²89m =109m .显然该值与θ的大小无关.(证法2)当直线MN 的斜率不存在时,由(2)知,1MF +1NF 的值与θ的大小无关.当直线MN 的斜率存在时,设直线MN 的方程为y =k(x -4m),代入椭圆方程x225m2+y29m2=1,得(25k2+9)m2x2-200m3k2x +25m4(16k2-9)=0.设点M(x1,y1)、N(x2,y2),∵Δ>0恒成立,∴ x1+x2=200mk225k2+9,x1²x2=25m2(16k2-9)25k2+9.∵MF 25m 4-x1=45,NF 25m 4-x2=45,∴ MF =5m -45x1,NF =5m -45x2.∴1MF +1NF =15m -45x1+15m -45x2=10m -45(x1+x2)1625x1x2-4m (x1+x2)+25m2=90k2+9081mk2+81m =109m . 显然该值与θ的大小无关.【例题3】 定点问题【题干】在平面直角坐标系xOy 中,已知圆C1:(x +3)2+(y -1)2=4和圆C2:(x -4)2+(y -5)2=4.(1) 若直线l 过点A(4,0),且被圆C1截得的弦长为23,求直线l 的方程;(2) 设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P 的坐标.【解析】解:(1) 设直线l 的方程为y =k(x -4),即kx -y -4k =0.由垂径定理,得圆心C1到直线l 的距离d =22-⎝ ⎛⎭⎪⎫2 322=1,结合点到直线距离公式,得|-3k -1-4k|k2+1=1,化简得24k2+7k =0,解得k =0或k =-724.所求直线l 的方程为y =0或y =-724(x -4),即y =0或7x +24y -28=0.(2) 设点P 坐标为(m ,n),直线l1、l2的方程分别为y -n =k(x -m),y -n =-1k (x -m),即kx -y +n -km =0,-1k x -y +n +1k m =0.因为直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,两圆半径相等.由垂径定理,得圆心C1到直线l1与圆心C2到直线l2的距离相等.故有|-3k -1+n -km|k2+1=⎪⎪⎪⎪-4k-5+n +1k m 1k2+1,化简得(2-m -n)k =m -n -3或(m -n +8)k =m +n -5.因为关于k 的方程有无穷多解,所以有⎩⎪⎨⎪⎧2-m -n =0,m -n -3=0或⎩⎪⎨⎪⎧m -n +8=0,m +n -5=0,解得点P 坐标为⎝⎛⎭⎫-32,132或⎝⎛⎭⎫52,-12. 【题干】已知椭圆x24+y2=1的左顶点为A ,过A 作两条互相垂直的弦AM 、AN 交椭圆于M 、N 两点.(1) 当直线AM 的斜率为1时,求点M 的坐标;(2) 当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.【解析】解:(1) 直线AM 的斜率为1时,直线AM 为y =x +2,代入椭圆方程并化简得5x2+16x +12=0,解之得x1=-2,x2=-65,∴ 点M 的坐标为⎝⎛⎭⎫-65,45. (2) 设直线AM 的斜率为k ,则AM 为y =k(x +2),则⎩⎪⎨⎪⎧y =k (x +2),x24+y2=1,化简得(1+4k2)x2+16k2x +16k2-4=0.∵ 此方程有一根为-2,∴ xM =2-8k21+4k2, 同理可得xN =2k2-8k2+4. 由(1)知若存在定点,则此点必为P ⎝⎛⎭⎫-65,0. ∵ kMP =yM xM +65=k ⎝ ⎛⎭⎪⎫2-8k21+4k2+22-8k21+4k2+65=5k 4-4k2, 同理可计算得kPN =5k 4-4k2. ∴直线MN 过x 轴上的一定点P ⎝⎛⎭⎫-65,0.【例题4】 轨迹问题【题干】 如图,已知梯形ABCD 中|AB|=2|CD|,点E 满足AE →=λEC →,双曲线过C 、D 、E三点,且以A 、B 为焦点.当23≤λ≤34时,求双曲线离心率e 的取值范围.【解析】解:如题图,以直线AB 为x 轴,AB 的垂直平分线为y 轴,建立直角坐标系xOy ,则CD ⊥y 轴.因为双曲线经过点C 、D ,且以A 、B 为焦点,由双曲线的对称性知C 、D 关于y轴对称.根据已知,设A(-c ,0),C ⎝⎛⎭⎫c 2,h ,E(x0,y0),其中c =12|AB|为双曲线的半焦距,h 是梯形的高.由AE →=λEC →,即(x0+c ,y0)=λ⎝⎛⎭⎫c 2-x0,h -y0,得x0=(λ-2)c 2(1+λ),y0=λh 1+λ.不妨设双曲线的方程为x2a2-y2b2=1,则离心率e =c a .由点C 、E 在双曲线上,将点C 、E 的坐标和e =c a 代入双曲线的方程得⎩⎪⎨⎪⎧e24-h2b2=1,①e24⎝ ⎛⎭⎪⎫λ-2λ+12-⎝⎛⎭⎫λλ+12h2b2=1,② 由①式得h2b2=e24-1, ③将③式代入②式,整理得 e24(4-4λ)=1+2λ,所以λ=1-3e2+2.由已知23≤λ≤34,所以23≤1-3e2+2≤34,解之得 7≤e ≤10,所以双曲线的离心率的取值范围为[7,10]. 【题干】在平面直角坐标系xOy 中,已知定点A(-4,0)、B(4,0),动点P 与A 、B 连线的斜率之积为-14.(1) 求点P 的轨迹方程;(2) 设点P 的轨迹与y 轴负半轴交于点C.半径为r 的圆M 的圆心M 在线段AC 的垂直平分线上,且在y 轴右侧,圆M 被y 轴截得的弦长为3r.(ⅰ) 求圆M 的方程;(ⅱ) 当r 变化时,是否存在定直线l 与动圆M 均相切?如果存在,求出定直线l 的方程;如果不存在,说明理由.【解析】解:(1) 设P(x ,y),则直线PA 、PB 的斜率分别为k1=y x +4、k2=y x -4. 由题意知y x +4²y x -4=-14,即x216+y24=1(x≠±4). 所以动点P 的轨迹方程是x216+y24=1(x≠±4).(2) (ⅰ)由题意C(0,-2),A(-4,0),所以线段AC 的垂直平分线方程为y =2x +3.设M(a ,2a +3)(a >0),则圆M 的方程为(x -a)2+(y -2a -3)2=r2.圆心M 到y 轴的距离d =a ,由r2=d2+⎝ ⎛⎭⎪⎫3r 22,得a =r 2. 所以圆M 的方程为⎝⎛⎭⎫x -r 22+(y -r -3)2=r2.(ⅱ)假设存在定直线l 与动圆M 均相切.当定直线的斜率不存在时,不合题意.设直线l :y =kx +b , 则⎪⎪⎪⎪k×r 2-r -3+b 1+k2=r 对任意r >0恒成立. 由⎪⎪⎪⎪⎝⎛⎭⎫k 2-1r +(b -3)=r 1+k2, 得⎝⎛⎭⎫k 2-12r2+(k -2)(b -3)r +(b -3)2=(1+k2)r2. 所以⎩⎪⎨⎪⎧⎝⎛⎭⎫k 2-12=1+k2,(k -2)(b -3)=0,(b -3)2=0,解得⎩⎪⎨⎪⎧k =0,b =3或⎩⎪⎨⎪⎧k =-43,b =3.所以存在两条直线y =3和4x +3y -9=0与动圆M 均相切.四、课堂运用【基础】1.【题干】 (选修11P44习题4改编)以双曲线x24-y25=1的中心为顶点,且以该双曲线的右焦点为焦点的拋物线方程是__________.【答案】 y2=12x【解析】 双曲线x24-y25=1的中心为O(0,0),该双曲线的右焦点为F(3,0),则拋物线的顶点为(0,0),焦点为(3,0),所以p =6,所以拋物线方程是y2=12x.2.【题干】 以双曲线-3x2+y2=12的焦点为顶点,顶点为焦点的椭圆的方程是________.【答案】 x24+y216=1【解析】 双曲线方程可化为y212-x24=1,焦点为(0,±4),顶点为(0,±23).∴ 椭圆的焦点在y 轴上,且a =4,c =23,此时b =2,∴ 椭圆方程为x24+y216=1.3.【题干】 若抛物线y2=2px 的焦点与椭圆x26+y22=1的右焦点重合,则p =________.【答案】 4椭圆x26+y22=1的右焦点(2,0)是抛物线y2=2px 的焦点,所以p 2=2,p =4.4.【题干】已知双曲线x2-y23=1的左顶点为A1,右焦点为F2,P 为双曲线右支上一点,则PA1→²PF2→的最小值为________.【答案】-2【解析】设点P(x ,y),其中x≥1.依题意得A1(-1,0),F2(2,0),由双曲线方程得y2=3(x2-1).PA1→²PF2→=(-1-x ,-y)·(2-x ,-y)=(x +1)(x -2)+y2=x2+y2-x -2=x2+3(x2-1)-x -2=4x2-x -5=4⎝⎛⎭⎫x -182-8116,其中x≥1.因此,当x =1时,PA1→²PF2→取得最小值-2.5. 【题干】已知椭圆C :x22+y2=1的两焦点为F1,F2,点P(x0,y0)满足x202+y20≤1,则PF1+PF2的取值范围为________.【题干】[2,22]【题干】当P 在原点处时,PF1+PF2取得最小值2;当P 在椭圆上时,PF1+PF2取得最大值22,故PF1+PF2的取值范围为[2,22].课程小结1. 圆锥曲线的最值与范围问题常见的解法有两种:几何法和代数法.(1) 若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;(2) 若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.2. 求定值问题常见的方法有两种(1) 从特殊入手,求出表达式,再证明这个值与变量无关;(2) 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.3. 定点的探索与证明问题(1) 探索直线过定点时,可设出直线方程为y=kx+b,然后利用条件建立b,k等量关系进行消元,借助于直线系方程找出定点;(2) 从特殊情况入手,先探求定点,再证明一般情况.课后作业【基础】1. 已知抛物线y2=2px(p≠0)上存在关于直线x +y =1对称的相异两点,则实数p 的取值范围为________.答案:⎝⎛⎭⎫0,23 解析:设抛物线上关于直线x +y =1对称的两点是M(x1,y1)、N(x2,y2),设直线MN 的方程为y =x +b.将y =x +b 代入抛物线方程,得x2+(2b -2p)x +b2=0,则x1+x2=2p -2b ,y1+y2=(x1+x2)+2b =2p ,则MN 的中点P 的坐标为(p -b ,p).因为点P 在直线x +y =1上,所以2p -b =1,即b =2p -1.又Δ=(2b -2p)2-4b2=4p2-8bp >0,将b =2p -1代入得4p2-8p(2p -1)>0,即3p2-2p <0,解得0<p <23.2. 已知抛物线y2=2px(p≠0)及定点A(a ,b),B(-a ,0),ab ≠0,b2≠2pa ,M 是抛物线上的点.设直线AM 、BM 与抛物线的另一个交点分别为M1、M2,当M 变动时,直线M1M2恒过一个定点,此定点坐标为________.答案:⎝⎛⎭⎫a ,2pa b 解析:设M ⎝⎛⎭⎫y202p ,y0,M1⎝⎛⎭⎫y212p ,y1,M2⎝⎛⎭⎫y222p ,y2,由点A 、M 、M1共线可知y0-b y202p -a =y1-y0y212p -y202p ,得y1=by0-2pay0-b,同理由点B 、M 、M2共线得y2=2pay0. 设(x ,y)是直线M1M2上的点, 则y2-y1y222p -y212p =y2-y y222p -x , 即y1y2=y(y1+y2)-2px , 又y1=by0-2pa y0-b,y2=2pay0,则(2px -by)y20+2pb·(a -x)y0+2pa·(by -2pa)=0. 当x =a ,y =2pab 时上式恒成立, 即定点为⎝⎛⎭⎫a ,2pa b . 3. 在平面直角坐标系xOy 中,抛物线C 的顶点在原点,焦点F 的坐标为(1,0).(1) 求抛物线C 的标准方程;(2) 设M 、N 是抛物线C 的准线上的两个动点,且它们的纵坐标之积为-4,直线MO 、NO 与抛物线的交点分别为点A 、B ,求证:动直线AB 恒过一个定点.解:(1) 设抛物线的标准方程为y2=2px(p>0),则p2=1,p =2,所以抛物线方程为y2=4x. (2) 抛物线C 的准线方程为x =-1,设M(-1,y1),N(-1,y2),其中y1y2=-4,直线MO的方程:y =-y1x ,将y =-y1x 与y2=4x 联立解得A 点坐标⎝⎛⎭⎫4y21,-4y1.同理可得B 点坐标⎝⎛⎭⎫4y22,-4y2,则直线AB 的方程为:y +4y1-4y2+4y1=x -4y214y22-4y21,整理得(y1+y2)y -4x +4=0,故直线AB 恒过定点(1,0).【巩固】4. 已知椭圆E :x2a2+y2=1(a >1)的上顶点为M(0,1),两条过M 的动弦MA 、MB 满足MA ⊥MB. (1) 当坐标原点到椭圆E 的准线距离最短时,求椭圆E 的方程; (2) 若Rt △MAB 面积的最大值为278,求a ;(3) 对于给定的实数a(a >1),动直线AB 是否经过一定点?如果经过,求出定点坐标(用a 表示);反之,说明理由.解:(1) 由题,a2=c2+1,d =a2c =c2+1c =c +1c ≥2,当c =1时取等号,此时a2=1+1=2,故椭圆E 的方程为x22+y2=1.(2) 不妨设直线MA 的斜率k>0,直线MA 方程为y =kx +1,由⎩⎪⎨⎪⎧y =kx +1,①x2a2+y21=1,②① 代入②整理得(a2k2+1)x2+2a2kx =0,解得xA =-2a2ka2k2+1,故A ⎝ ⎛⎭⎪⎫-2a2k a2k2+1,1-a2k2a2k2+1,由MA ⊥MB 知直线MB 的斜率为-1k , 可得B(2a2k a2+k2,k2-a2a2+k2),则MA =1+k2²2a2ka2k2+1,MB =1+1k22a2k a2+k2=k2+12a2a2+k2.则S △MAB =12MA ²MB=12(1+k2)4a4k (a2k2+1)(a2+k2)=⎝⎛⎭⎫k +1k 2a4a2⎝⎛⎭⎫k2+1k2+(a4+1) =⎝⎛⎭⎫k +1k 2a4a2⎝⎛⎭⎫k +1k 2+(a4-2a2+1). 令k +1k =t(t≥2),则S △MAB =2a4t a2t2+(a2-1)2=2a4a2t +(a2-1)2t≤2a42a (a2-1)=a3a2-1.当t =a2-1a 时取“=”,∵ t =a2-1a ≥2,得a>2+1.而(S △MAB)max =a3a2-1=278,故a =3或a =3±29716(舍).综上a =3.(3) 由对称性,若存在定点,则必在y 轴上.当k =1时,A ⎝ ⎛⎭⎪⎫-2a2a2+1,1-a2a2+1,直线AB 过定点Q ⎝ ⎛⎭⎪⎫0,1-a2a2+1.下面证明A 、Q 、B 三点共线:∵ kAQ =1-a2k21+a2k2-1-a21+a2-2a2k1+a2k2=(1-a2k2)(1+a2)-(1-a2)(1+a2k2)-2a2k (1+a2)=k2-1k (1+a2),kBQ =k2-a2a2+k2-1-a21+a22a2kk2+a2=(k2-a2)(1+a2)-(1-a2)(a2+k2)2a2k (1+a2)=k2-1k (1+a2).由kAQ =kBQ 知A 、Q 、B 三点共线,即直线AB 过定点Q ⎝ ⎛⎭⎪⎫0,1-a2a2+1.5. 设A1、A2与B 分别是椭圆E :x2a2+y2b2=1(a >b >0)的左、右顶点与上顶点,直线A2B 与圆C :x2+y2=1相切. (1) 求证:1a2+1b2=1;(2) P 是椭圆E 上异于A1、A2的一点,若直线PA1、PA2的斜率之积为-13,求椭圆E 的方程;(3) 直线l 与椭圆E 交于M 、N 两点,且OM →²ON →=0,试判断直线l 与圆C 的位置关系,并说明理由.(1) 证明:已知椭圆E :x2a2+y2b2=1(a>b>0), A1、A2与B 分别为椭圆E 的左、右顶点与上顶点, 所以A1(-a ,0),A2(a ,0),B(0,b), 直线A2B 的方程是x a +yb =1. 因为A2B 与圆C :x2+y2=1相切, 所以11a2+1b2=1, 即1a2+1b2=1.(2) 解:设P(x0,y0),则直线PA1、PA2的斜率之积为kPA1²kPA2=y0x0+a ²y0x0-a =y20x20-a2=-13,x20a2+3y20a2=1,而x20a2+y20b2=1,所以b2=13a2.结合1a2+1b2=1,得a2=4,b2=43.所以椭圆E 的方程为x24+3y24=1.(3) 解:设点M(x1,y1),N(x2,y2).① 若直线l 的斜率存在,设直线l 为y =kx +m ,由y =kx +m 代入x2a2+y2b2=1,得x2a2+(kx +m )2b2=1.化简得(b2+a2k2)x2+2a2kmx +a2m2-a2b2=0(Δ>0).∴ x1x2=a2m2-a2b2b2+a2k2,y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=a2k2m2-a2b2k2b2+a2k2+km ⎝⎛⎭⎫-2a2km b2+a2k2+m2=b2m2-a2b2k2b2+a2k2.因为OM →²ON →=0,所以x1x2+y1y2=0.代入得(a2+b2)m2-a2b2(1+k2)=0.结合(1)的1a2+1b2=1,得m2=1+k2.圆心到直线l 的距离为d =|m|1+k2=1,所以直线l 与圆C 相切. ② 若直线l 的斜率不存在,设直线l 为x =n.代入x2a2+y2b2=1,得y =±b 1-n2a2.∴ |n|=b·1-n2a2,∴ a2n2=b2(a2-n2).解得n =±1,所以直线l 与圆C 相切.6. 已知曲线C 上动点P(x ,y)到定点F1(3,0)与定直线l1∶x =433的距离之比为常数32. (1) 求曲线C 的轨迹方程;(2) 以曲线C 的左顶点T 为圆心作圆T :(x +2)2+y2=r2(r>0),设圆T 与曲线C 交于点M 与点N ,求TM →²TN →的最小值,并求此时圆T 的方程. 解:(1) 过点P 作直线的垂线,垂足为D. |PF1||PM|=32,(x -3)2+y2⎪⎪⎪⎪⎪⎪x -433=32, 所以该曲线的方程为x24+y2=1.(2) 点M 与点N 关于x 轴对称,设M(x1,y1),N(x1,-y1),不妨设y1>0.由于点M 在椭圆C 上,所以y21=1-x214.由已知T(-2,0),则TM →=(x1+2,y1),TN →=(x1+2,-y1),∴ TM →²TN →=(x1+2,y1)·(x1+2,-y1)=(x1+2)2-y21=(x1+2)2-⎝⎛⎭⎫1-x214=54x21+4x1+3=54²⎝⎛⎭⎫x1+852-15.由于-2<x1<2,故当x1=-85时,TM →²TN →取得最小值为-15.计算得,y1=35,故M ⎝⎛⎭⎫-85,35.又点M 在圆T 上,代入圆的方程得到r2=1325. 故圆T 的方程为(x +2)2+y2=1325.【拔高】6. 已知椭圆C :x2a2+y2b2=1(a>b>0)的离心率e =63,一条准线方程为x =362(1) 求椭圆C 的方程;(2) 设G 、H 为椭圆C 上的两个动点,O 为坐标原点,且OG ⊥OH. ① 当直线OG 的倾斜角为60°时,求△GOH 的面积;② 是否存在以原点O 为圆心的定圆,使得该定圆始终与直线GH 相切?若存在,请求出该定圆方程;若不存在,请说明理由.解:( 1) 因为c a =63,a2c =362,a2=b2+c2, 解得a =3,b =3,所以椭圆方程为x29+y23=1. (2) ① 由⎩⎪⎨⎪⎧y =3x ,x29+y23=1,解得⎩⎨⎧x2=910,y2=2710,由⎩⎪⎨⎪⎧y =-33x ,x29+y23=1, 得⎩⎨⎧x2=92,y2=32,所以OG =3105,OH =6,所以S △GOH =3155.② 假设存在满足条件的定圆,设圆的半径为R ,则OG·OH =R·GH ,因为OG2+OH2=GH2,故1OG2+1OH2=1R2,当OG 与OH 的斜率均存在时,不妨设直线OG 方程为y =kx,由⎩⎪⎨⎪⎧y =kx ,x29+y23=1,得⎩⎪⎨⎪⎧x2G =91+3k2,y2G =9k21+3k2,所以OG2=9+9k21+3k2,同理可得OH2=9k2+93+k2,(将OG2中的k 换成-1k 可得)1OG2+1OH2=49=1R2,R =32,当OG 与OH 的斜率有一个不存在时,可得1OG2+1OH2=49=1R2, 故满足条件的定圆方程为:x2+y2=94.7. 已知椭圆C 的方程为x2a2+y2b2=1(a>b>0),双曲线x2a2-y2b2=1的两条渐近线为l1、l2,过椭圆C 的右焦点F 作直线l ,使l ⊥l1.又l 与l2交于P 点,设l 与椭圆C 的两个交点由上至下依次为A 、B(如图).(1) 当l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C 的方程; (2) 当FA →=λAP →,求λ的最大值. 解:(1) ∵双曲线的渐近线为y =±ba x , 两渐近线夹角为60°,又ba <1, ∴∠POx =30°, 即b a =tan30°=33.∴a =3b.又a2+b2=4,∴a2=3,b2=1. 故椭圆C 的方程为x23+y2=1.(2) 由已知l :y =a b (x -c),与y =b a x 解得P ⎝⎛⎭⎫a2c ,ab c .由FA →=λAP →,得A⎝ ⎛⎭⎪⎪⎫c +λ·a2c 1+λ,λ²ab c 1+λ. 将A 点坐标代入椭圆方程,得(c2+λa 2)2+λ2a4=(1+λ)2a2c2. ∴(e2+λ)2+λ2=e2(1+λ)2.∴λ2=e4-e2e2-2=-⎣⎡⎦⎤(2-e2)+22-e2+3≤3-2 2. ∴λ的最大值为2-1.8. 在平面直角坐标系xOy 中,已知点A(-1,1),P 是动点,且△POA 的三边所在直线的斜率满足kOP +kOA =kPA.(1) 求点P 的轨迹C 的方程;(2) 若Q 是轨迹C 上异于点P 的一个点,且PQ →=λOA →,直线OP 与QA 交于点M ,问:是否存在点P ,使得△PQA 和△PAM 的面积满足S △PQA =2S △PAM ?若存在,求出点P 的坐标;若不存在,说明理由.解:(1) 设点P(x ,y)为所求轨迹上的任意一点,则由kOP +kOA =kPA 得y x +1-1=y -1x +1,整理得轨迹C 的方程为y =x2(x≠0且x≠-1).(2) 设P(x1,x21),Q(x2,x22),M(x0,y0), 由PQ →=λOA →可知直线PQ ∥OA ,则kPQ =kOA , 故x22-x21x2-x1=1-0-1-0,即x2+x1=-1, 由O 、M 、P 三点共线可知, OM →=(x0,y0)与OP →=(x1,x21)共线, ∴ x0x21-x1y0=0,由(1)知x1≠0,故y0=x0x1,同理,由AM →=(x0+1,y0-1)与AQ →=(x2+1,x22-1)共线可知(x0+1)(x22-1)-(x2+1)(y0-1)=0,即(x2+1)[(x0+1)·(x2-1)-(y0-1)]=0,由(1)知x2≠-1,故(x0+1)(x2-1)-(y0-1)=0,将y0=x0x1,x2=-1-x1代入上式得(x0+1)(-2-x1)-(x0x1-1)=0, 整理得-2x0(x1+1)=x1+1,由x1≠-1得x0=-12,由S △PQA =2S △PAM ,得到QA =2AM , ∵ PQ ∥OA , ∴ OP =2OM , ∴ PO →=2OM →, ∴ x1=1,∴ P 的坐标为(1,1).。
直线与圆锥曲线位置关系的综合应用
解 (1)因为 AB∥l,且 AB 边通过点(0,0),
所以 AB 所在直线的方程为 y=x.
设 A,B 两点坐标分别为(x1,y1),(x2,y2).
由xy=2+x3,y2=4,
得 x=±1,
所以|AB|= 2|x1-x2|=2 2.
又因为 AB 边上的高 h 等于原点到直线 l 的距离,
(2)设椭圆与 x 轴正半轴、y 正半轴的交点分别为 A 、B ,
是否存在实数 k,使得 OPOQ与AB共线?如果存在,
求 k 值;如果不存在,请说明理由.
解 (1)由已知条件,直线 l 的方程为 y=kx+ 2,
代入椭圆方程得x22+(kx+ 2)2=1, 整理得12+k2x2+2 2kx+1=0①
(1)求过点 O、F,且与直线 l:-2 相切的圆的方程; (2)设过点 F 且不与坐标轴垂直的直线交椭圆于 A,B 两点,线段 AB 的垂直平分线与 x 轴交于点 G,求点 G 横坐标的取值范围. 思维启迪 (1)求出圆心和半径,得出圆的标准方程;
(2)设直线 AB 的点斜式方程,由已知得出线段 AB 的
两式相减,得 kAB=xy11--yx22
=-396((xy11++xy22))=-4×2×2×4 2=-12.
∴l 的方程为:y-2=-12(x-4),即 x+2y-8=0.
4.过椭圆 3x2+4y2=48 的左焦点引斜率为 1 的直线交
椭圆于 A、B 两点,则|AB|等于
(C )
A.172
B.274
(3k2+1)x2+6kmx+3m2-3=0, ∴x1+x2=3-k26+km1,x1x2=33(mk22+-11). ∴|AB|2=(1+k2)(33k62k+2m12)2-123(km2+2-11) =12(k2+(13)k(23+k21+)21-m2)
专题二:直线与圆锥曲线的综合问题
专题二 直线与圆锥曲线的综合问题第一课时一.知识体系小结()()()222222222222222222cos 1(0)()sin 11(0)1(00)1(00)2(0)2(0213x a x y x a b y b a b y xy a b a bx y y x x a b y a b a b a b y px p y px p ϕϕϕ=⎧+=>>⇔⎨=⎩+=>>-=>>-=>>=>=->圆锥曲线的标准方程椭圆:焦点在轴上时参数方程,其中为参数; 焦点在轴上时.双曲线:焦点在轴上:,;焦点在轴上:,.抛物线:开口向右时,,开口向左时,.22)2(0)2(0)x py p x py p =>=->,开口向上时,开口向下时.()()()()2222222222222222222222222211111(0)123142x y x y a b a b x y x ya b a b x y x ya b a bmx ny λλλλλλ+=+=---=-=---=-=≠+=常用曲线方程设法技巧共焦点的设法:与椭圆有公共焦点的椭圆方程为;与双曲线有公共焦点的双曲线方程为;与双曲线共渐近线的双曲线方程为;中心在原点,对称轴为坐标轴的椭圆、双曲线方程可设为;不清楚开口方向的抛.物线设法:焦22(0)(0)x y mx m y x my m =≠=≠点在轴上,; 焦点在轴上,.3.解决直线与圆锥曲线问题的通法: (1)设方程及点的坐标;(2)联立直线方程与曲线方程得方程组,消元得方程; (3)应用韦达定理及判别式;(4)结合已知、中点坐标公式、斜率公式及弦长公式求解.1212|||| |.AB AB x x y y ==-==-(5)直线与圆锥曲线相交的弦长公式或 2220002220222000222020001()1()2(0)().b x x y P x y k a b a y b x x yP x y k a b a y py px p P x y k y +==--===>=圆锥曲线中点弦斜率公式在椭圆中,以,为中点的弦所在直线的斜率;在双曲线中,以,为中点的弦所在直线的斜率;在抛物线中,以,为中点的弦所在直线的斜率以上公式均可由点4.差法可得.()()()()(1)(1234)05.()n k m n k mOA OB AB OA OB AB PM PN P MN AP AQ BP BQ A B PQ λ==+++=+=+解析几何与向量综合的有关结论给出直线的方向向量,或,,等价于已知直线的斜率或给出与相交,等价于已知过的中点.给出,等价于已知是的中点.给出,.等价于已知,与的中点三点共线.u u()()106//50AB AC AB AC OC OA OB A B C MA MB MA MB AMB MA MB m AMB MA MB m λλαβαβαβ=+==+⋅=⊥∠⋅=<∠⋅=>给出以下情形之一:①;②存在实数,使;③若存在实数,,且,使,等价于已知,,三点共线.给出,等价于已知,即是直角;给出,等价于已知是钝角或反向共线;给出()70()AMB MA MBMP MP AMB MA MBλ∠+=∠,等价于已知是锐角或同向共线.给出,等价于已知是的角平分线.二.例题剖析1.概念性质22121221259||12||______1____.x y F F F A B F A F B AB +=+==已知、为椭圆的两个焦点,过的直线交椭圆于、两点.若,则【例】 解析:由椭圆的定义可知:|F 1A |+|F 2A |=2a =10,|F 1B |+|F 2B |=2a =10,所以|AB |=20-|F 2A |-|F 2B |=8.小结: 1.对椭圆、双曲线,已知曲线上的点与一个焦点的距离时,常作辅助线:连结它与另一个焦点,考虑使用定义解题.2.要熟悉焦点三角形的性质及研究方法()22121121123A 7B 5C 4D 3x y F F P PF y PF PF +=椭圆的焦点为,,在椭圆上,如果线段的中点在轴上,则是的.倍 【变式训练1】.倍.倍 .倍2221122227b PF x PF PF a PF PF ⊥=====解析:由题意,轴,则可计算出,因此是的倍.答案为A2.椭圆方程()()()221122122211(0)1,01.12()..2y x C a b A C a bC P C y x h h R C P C M N AP MN h +==+∈已知椭圆:>>的右顶点为,过的焦点且垂直长轴的弦长为求椭圆的方程;设点在抛物线:上,在点处的切线与交于点、当线段的中点与的中点的横坐标相等时,】求【的最小值例()22212 . .114112b a x b b ay +=⎧=⎧⎪⎨⎨=⋅⎪==⎩⎩由题意解析:椭圆方程为,得,从而因此,所求的()211222212222222214221()()()|22.4(2)40.4(1)4()()40.16[2(2)4]0.2x t M x y N x y P t t h C P y t MN y tx t h C x tx t h t x t t h x t h MN C t h t h =+'==-++-+-=+--+--=∆=-++-+设,,,,,,则抛物线在点处的切线斜率为,直线的方程为:将上式代入椭圆的方程中,得即①因为直线与椭圆有两个不同的交点,所以①式中的>②设212332().22(1)x x t t h MN x x t +-==+线段的中点的横坐标是,则244342221.(1)10.2(1)401 3.320,401.1111.1t PA x x x x t h t h h h h h h h t h t h h +==+++=∆=+-≥≥≤-≤-+-≥==-==-设线段的中点的横坐标是,则由题意,得,即③由③式中的,得,或当时,<<,则不等式②不成立,所以当时,代入方程③得,将,代入不等式②的,检验成最小立以,值为.所()()()221222112210,0,02()0x y a b e F c a bF c Q x FQ a P x y QF T F Q PT TF T +=>>-==已知椭圆的离心率为,左右焦点分别为,,是椭圆外且不在轴上的动点,满足,点,是线段与椭圆的交点,点是【变式训练2线段上的点,且满足,求点】的轨迹.()()()1122121112222222121211()(),022,2.24x y 24y 44.T x y Q x y F c PT TF FQ a T F Q x c x y y FQ a x c y x a a a c c ==+==++=-++==+不妨设,,,,如图所示,.且,得为的中点.因此有,则可得,因此有,化简因为又因为得解析:【例3】如图,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当P A 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率.()()()22121212211222.1,2221 2.22(1)(1)111.()()4 1.2PA PB PA PB PA PB y px P p p y y PA k PB k k x k x x x PA PB k k A x y B x y y x x ==⨯=--=≠=≠--==-=-由已知条件,可设抛物线的方程为因为点在抛物线上,所以,解得故所求设直线的斜率为,直线的抛物线的方程是,其准线方程是斜率为,则,.因为与的斜率存在且倾斜角互补,所以由,,,均解析:在抛物线22112244y x y x ==上,得, ① , ②12121122122121221222241(2) 4.111()144AB y y y y k x x x x y y y y y y y AB y --=-+=-++=--===-≠-+---所以,所以,所以由①②得,直线的斜率为.2y x O A B OA OB AOB =⊥抛物线上异于坐标原点的两个相异的动点,满足,问:的面积是否存在最小值?若存在,求出最小值;若不存在,【变式训练3】请说明理由.()12112212121222222222211221122121212121212()()111.124(x y )(x y )(y )(y )[y y ]2241y y A x y B x y OA OB x x y y x x AOB S S OA OB S y y y y y y y y y y S y y ⊥=-=-====++=++=+++=++≥+=≥=解析:设,,,.因为,则有,所以,不妨设的面积为,则因此有,因此,当且仅当()()min 11,11,11.A B S =-=时取到最小值.即此时,,小结:抛物线焦点弦的性质:直线l 过抛物线y 2=2px (p >0)的焦点F ,交抛物线于A 、B 两点,则有: (1)通径的长为2p ; (2)焦点弦公式:|AB |=x 1+x 2+p ;(3)x 1x 2=p 2/4,y 1y 2=-p 2. (4)以焦点弦为直径的圆与抛物线的准线相切.第二课时一.知识体系小结 ()()()()()()122212222211221212121(0)||[]||[]||||[].123456tan ()21F PFx y F F a b P B a bO OP b a PF a c a c PF PF b a F PF F BF S b F PF θθ+=>>∈∈-+⋅∈∠≤∠==∠椭圆中的最值,为椭圆的左、右焦点,为椭圆上的任意一点,为短轴的一个端点,为坐标原点,则有:,. ,. ,.. 焦点弦以通.径为最短.()()()12221222211221(00)12||.||.()ta 23nF PF x y F F a b P a bb O OP a PFc a S F PF θθ∆-=>>≥≥-==∠.双曲线中的最值,为双曲线,的左、右焦点,为双曲线上的任一点,为坐标原点,则有:.()()()()()22(0)||.234||2.()12|2|31pP y px p F PF AB AB p A m n PA PF b aa b=>≥≥+抛物线中的最值点为抛物线上的任一点,为焦点,则有:焦点弦以通径为最值,即,为一定点,则有最小值.双曲线的渐近线求法:令双曲线标准方程的左边为零,分解因式可得.用法:①可得或的值;②利用渐近线方程设所求双曲线..的方程.()()()3512直线与圆锥曲线的位置关系相离;相切;相交.特别地,①当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个公共点.②当直线与抛物线的对称轴平行或重合时,直线与抛物线相交且只有.一个公共点.【注】:设直线l :Ax +By +C =0,圆锥曲线:f (x ,y )=0,由⎩⎪⎨⎪⎧Ax +By +C =0f (x ,y )=0消元(x 或y ),若消去y 得a 1x 2+b 1x+c 1=0.(1)若a 1=0,此时圆锥曲线不是椭圆.当圆锥曲线为双曲线时,直线l 与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行或重合. (2)若a 1≠0,Δ=b -4a 1c 1,则 ①Δ>0时,直线与圆锥曲线,有 交点; ②Δ=0时,直线与圆锥曲线 ,有 的公共点; ③Δ<0时,直线与圆锥曲线,没有.二.例题剖析1.定值问题()()22 1421()12x y M M A B M AB AMB +=已知椭圆方程为,点,,过作倾斜角互补的两条直线,分别与椭圆交于、两点异于.求证直线的斜率为定值;求面积的【例】最大值.解析:定点、定值、最值问题是圆锥曲线的综合问题,它涉及到直线,圆锥曲线的定义、方程及位置关系,同时又与三角、函数、不等式、方程、平面向量、导数等代数知识紧密联系.解这类问题时,需要有较强的代数运算能力和识图能力,要能准确地进行数与形的语言转换和运算、推理转换,并在运算过程中注意思维的严密性,以保证结果的完整.()22 (0)((14111.2A B A B AB A BA B MA MA MB MA k k MA y k x x MB y k x y y y x x k x x AB >-=-=-+=-====-=证明:由题可知直线的斜率存在,且与的斜率互为相反数,不妨设直线的斜率为,则直线的方程为:,直线的方程为,代入可分别求得,即直线的斜率为定值.2()2222221(0)124222000 2.22 2.||2A B A BxAB y x m m yx mx m m x x m x x m AB=+≠+=++-=∆><<+=-=-==设直线的方程为,代入得,,由,得而,所以222422max1||20241 1.AMBM AB d S AB d m m mm S==⋅=-+<< =±=点到直线的距离为则,又,当时,2.定点问题()()()1517(0).44122322F P F xP P C C y MC A B AMBA B AMB AB yππ∠=∠=已知点,,上半平面内的点到点和轴的距离之和为求动点的轨迹方程;设动点的轨迹方程为,曲线交轴于点,在曲线上是否存在两点,,使?若,是曲线上满足的两点,求【例证:直线与轴】交于一定点.()()()217()0.44(04)0,421(041)P x y y yP x y yp y>==--<≤=<≤解析:设点坐标为,,其中,化简得动点的轨迹方程为.这是一个以为顶点,,开口向下的抛物线的一部分其中.()()()() 2444(04)1,31,32.2MA y x MB y x x y y A BAMBπ-=-=-=--<≤-∠=考虑到抛物线的对称性,不妨设直线:,直线:,分别与联立,可得两个点的坐标为,,此时()()()()()2222214 4.4,444111(4)314()030,3 AM y kx BM y xky kx x kA k kx y y kB AB k ABk k ky k k x k x y AB yk=+=-+=+=-⎧⎧--⎨⎨=-(-)=-⎩⎩----=-+==设直线的方程为,直线的方程为由方程组,解得,即点坐标为.同理可得点坐标为,,则直线的斜率为,所以直线的方程为.令,得,从而直线与轴交于定点.()()221169411822A(0)B(0)C C.4,0D(0)1055x yA FAF B B BC C AC-=设为双曲线右支上一动点,为该双曲线的右焦点,连接交双曲线于,过作直线垂直于双曲线的右准线,垂足为,则直线必过定点.,【变式训练1,】..,:41(01.)0A AB x 解析此题也可采用探索法,考虑特殊情况,即与轴垂直时,便可得出一个定点,故选,3.最值问题()()()2210,14111()()22212||3y x M l A B O P OP OA OB N l M P NP +==+设椭圆方程为,过点的直线交椭圆于、两点,是坐标原点,点满足,点的坐标为,.当绕点旋转时,求【例:动点的轨迹方程;的最大值】与最小值.()()222112221221212221220,1 1.1()()(4)230142144.()()()8222444:1l M k l y kx y kx A x y B x y k x kx y x k x x x x y y k k OP OA OB k k y y k =+=+⎧⎪++-=⎨+=⎪⎩⎧+=-⎪++-⎪+=+==⎨++⎪+=⎪+⎩直线过点,当斜率存在时,设其斜率为,则的方程为记,,,,由,得,所以,,解析则. ()()222222222()40.0,040.111112.||()()1644221713().||6126611||.44P x y k x y y AB P x y y P x x NP x y x x NP x NP +-=+-=≤-≤≤=-+-=-++=-=设点的坐标为,,则,消去得当斜率不存在时,的中点为原点,也满足上述方程.所以点的轨迹方程为由点的轨迹方程知,即所以故当时,当时,取得最小值为 ()()()()20,2(02)2,0||0()120|2|M N Q P m PQ MP NP m R P m MP NP --⋅=∈=+已知定点、,、,动点满足. 求动点的轨迹方程,并说明轨迹的形【变式训练2状;当时,】求的取值范围.()()22222222222()(2)(2)(2)||(2)()4[(2)]4(1)(1)4440.1222,01(1P x y MP x y NP x y PQ x y PQ x y MP NP x y m x y x y m x m y mx m m x y m x =-=+=--=-+-⋅=+--+=+--+--++===≠-设,,则,,,,,,,所以,整理得,当时,方程为,表示过点平行于轴的直线;当时,方程化为解析:2222)()1122(0)11m y m m m m m +=----,表示以,为圆心,以为半径的圆.()[]2222042(3,32)|2|94|2|4022|2|824,m x y MP NP x y MP NP x x y MP NP y MP NP =+=+=-+=+=+=≤+-≤当时,方程化为,,所以,所以而的取值范围是所以.第三课时一.知识体系小结()1求轨迹方程的常用方法:轨迹法:①建系设动点.②列几何等式.③坐标代入得方程.④化简方程.⑤除去不合题意的1.点作答.(2)待定系数法:已知曲线的类型,先设方程再求参数.(3)代入法:当所求动点随已知曲线上动点的动而动时用此法,代入法的步骤:①设出两动点坐标(x ,y ),(x 0,y 0).②结合已知找出x ,y 与x 0,y 0的关系,并用x ,y 表示x 0,y 0. ③将x 0,y 0代入它满足的曲线方程,得到x ,y 的关系式即为所求.(4)定义法:结合几种曲线的定义,明确所求曲线的类型,进而求得曲线的方程. 3.有关弦的中点问题 (1)通法. (2)“点差法”.点差法的作用是用弦的中点坐标表示弦所在直线的斜率. 点差法的步骤:①将两交点A(x 1,y 1),B(x 2,y 2)的坐标代入曲线的方程; ②作差消去常数项得到关于x 1+x 2,x 1-x 2,y 1+y 2,y 1-y 2的关系式. ③求出AB 的斜率 4.取值范围问题(1)椭圆上的点到焦点的距离的最大值为a +c ,最小值为a -c ; (2)双曲线上的点到左焦点的最小距离为c -a ; (3)抛物线上的点到焦点的距离的最小值为p /2 .二.例题剖析1.参数范围问题()()()(01)0,1||()12||1G ABC A B x M MA MC GM AB R C k l C P Q AP AQ k λλ∆-==∈=已知点是的重心,,,,在轴上有一点,满足,. 求点的轨迹方程;若斜率为的直线与点的轨迹交于【例】不同的两点、,且满足,试求的取值范围.()22222222()()()33(0)||3()(01)()1(0)33131(0)3x yC x y G ABC G GM AB R xGM AB M x C y x x M MA MC x x xx y y x λλ∆=∈=++=-++=+=≠≠设,,为的重心,则,.因为,所以,而点的轨迹方程为点在轴上,则,.由,得,整理.析得以解:所 ()()()22222222220||.013(13)63(1)0*(6)4(13)3(1)0130**2k l C P Q x AP AQ k l y kx m y k x kmx m l km k m k m ==≠=++=+++-=∆=-+⋅->+->①当时,与椭圆有两个不同的交点、,由椭圆的对称性知②当时,可设的方程为,代入,整理得,,因为直线与椭圆交于不同的两点,所以,即, 211221212221200000222263(1)()()13133()21313113||13-13AN km m P x y Q x y x x x x k k x x km mPQ N x y x y kx m k k mk AP AQ AN PQ k k k km k -+=-=+++==-=+=++++=⊥⋅=⋅=-+设,,,,则,,则中点,的坐标为,,又,所以,所以,()()()()2213**11,00,121,1k m k k k +=<∈--得,代入得,所以.综合①②得,的取值范围是.222Rt 103ABC BC BC BC P Q l AP AQ PQ λ=++在中,斜边为,以的中点为圆心,作半径为的圆,分别交于、两点,设,试问是否是定值?如果是定值,请【变式训练1】求出这个值.()()222222222222336241002100366836104.O PQ O PAQ APDQ AP AQPQAD AD AO AP AQAP AQ PQ =+=+==+=+++=+=如图所示,建立直角坐标系.因为圆的半径为,因此,利用圆心,可构造得平行四边形,根据解析平行四边形的边长关系得,,而,因此,所以:2.存在性问题()()(01)220 3.132(0)(0)2||2x B x y k k Q l l M N BM BN l --+=≠=已知椭圆的中心在原点,焦点在轴上,一个顶点为,,且其右焦点到直线的距离为求椭圆的方程;是否存在斜率为【例】,且过定点,的直线,使与椭圆交于不同的两个点、,且?若存在,求出直线的方程;若不存在,说明理由.()()22222222222221122122121(0)1(,0)22323.23151(13)902349(133)()1x y a b b c a b c c a b c x l y kx y k x kx kM x y N x x y y x x MN P k +=>>=+===+==++=+++++=-==+设椭圆方程为,由已知得,设右焦点为,由题意得,解析:得,所以,得设直线的方程为,代入,得,设,,,,则,设的中椭圆方程点为为,22222293()||26263112526093122625663..312332BP k P BM BN B MN k k k k k k k k kk l l y x -=++++=-==∆>>-+>=±=±+则点的坐标为,,因为,所以点在线段的中垂线上,所以,化简得,又由得,,因为,所以故存在直线满足题意,的方程为()()()()()2201()212,00l y px p A B l x OAB O l P a a x x C ABC a =>>设直线与抛物线交于、两点,已知当直线经过抛物线焦点且与轴垂直时,的面积为为坐标【原点.求抛物线的方程;当直线经过点且与轴不垂直时,若在轴上存在点,使得为正三角形,变求的取式训练2】值范围.()()()22112200212022********1112.222()()(),0(0)22022OAB p pAB p O AB S p p p y x A x y B x y AB M x y C t l x my a y y x my a m y my a y m y x x m a ABC MC ==⨯⨯=====+⎧+=+≠--===⎨=⎩=+解析:由条件可得,又点到的距离为,,所以,因此抛物线的方程为设,,,,的中点为,,又设,直线:,由,所以,所以,所以,因为为正三角形,所以003211AB MC AB y MC AB x t m⊥=⊥=--,,由,得,()()222220012122222222222331.22314212113120006261(0)6t m a MC AB x t y x x y y m a t m m m a m m m m a a m m a a =++=(-)+=(-)+(-)(+-)+=(+)⋅(+)+=++=-≠><<所以又,得,化简得,因此可得,所以,因为,所以,所以,所以的取值范围为,.3.综合问题()()()2221211213 41.1(2011)2()C x y C x y M M C P C P C C A B M P AB l =+-=已知抛物线:,圆:的圆心为求点到抛物线的准线的距离;已知点是抛物线上一点异于原点,过点作圆的两条切线,交抛物线于,两点,若过,两点的直线 l 垂直于,求直线浙江卷【例】的方程.()()10,421414.41174M p y M ==-+=解析:因为,且,所以准线方程为,因此点到准线的距离为()()()()()()()2222112212122222222222244()()()41() 1.20,411142412AB PMPM AB m P m mA x xB x x k x x k m m mPM AB k k x x m mP C k P y m k x m k k m m km m k m m -=+==-⊥⨯=-+-=--=-=+=+-+--+设,,,,,,,,因为,则,所以设过点且与圆相切的直线的斜率为,则过的圆的切线方程为,由圆心到切线的距离为,得所以,()()2224140m k m --+-=,()()()()()()222212112222112222121212221222(4)01042()1444232()12(1)()115PM m m k k y m k x m x k x m m m m x k y m k x m x k x m m m x k x x k k m x x m mm k k m m m m m m m m m m k --+=-=----=-+=-=----=+=+=+-+-=--+--=---=-=-==所以,设切线,则,所以,设切线,则,所以,所以,代入,得,所以,所以,234 4.115y x m -==±+()()22122211222212121(0)(,0)(,0)||2.0||0.12x y a b F c F c a bQ FQ a P FQ T F Q PT TF TF T C T C M F MF S b F MF +=>>-=⋅=≠∆=∠已知椭圆的左、右焦点分别是、.是椭圆外的动点,满足点是线段与该椭圆的交点,点在线段上,并且满足,求点的轨迹的方程;试问:在点的轨迹上,是否存在点,使的【变式训练3】面积?若存在,求的正切值;若不存在,说明理由.()222111222121()0||0||2||2||1||||21T x y PT TF TF PT TF FQ PF PQ a PF PF a PQ PF T QF OT OT F F Q OT QF a T ⋅=≠⊥=+=+==∆==设,,因为,,所以,又,而由椭圆定义,所以,则为线段的中点,连结,为的中位线,则,即点的解析:轨迹方程222.x y a +=为 ()2222000002022022100200()||.122|2|()()x y a b M M x y y c S c y bb y a a M S b cb b a M a MFc x y MF c x y c c ⎧+=⎪=⎨=⨯⨯=⎪⎩≤≥=<≥=---=--假设存在点满足题意,设,,则,得而,当时,存在点,使;当时,不存在点.当时,,,,,222222212001212212121212||||cos 1||||sin .tan 2.22.MF MF x c y a c b MF MF F MF b S MF MF F MF b F MF M F MF ⋅=-+=-=∠==∠=∠=∠,即,又所以即存在点满足题意,且的正切值为 第四课时 直线与圆锥曲线的位置关系训练题A 组(基本训练题)一选择题:(每题5分,合计40分)1.抛物线y x 42=的焦点F 作直线交抛物线于()()222111,,,y x P y x P 两点,若621=+y y ,则21P P 的值为 (C ) A .5 B .6 C .8 D .102. 过点(2,4)作直线与抛物线x y 82=有且只有一个公共点,这样的直线有( B ) A.一条 B.两条 C.三条 D.四条3. 平面内有一线段AB,其长为33,动点P满足3=-PB PA ,O为AB的中点,则OP 的最小值为 ( A )A.23B.1 C.2 D.3 4. 过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( B )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在5双曲线22221x ya b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( B )AB .CD .36直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,则m 的取值范围是( A ) A.[)()+∞,55,1 B.(0,5) C.[)+∞,1 D.(1,5)7.过点(1,0)且与双曲线x 2-y 2=1只有一个公共点的直线有 ( C )A .1 条B .2条C .3 条D .4条8.已知动点P (x ,y )满足 5(x-1)2+(y-2)2=|3x+4y-11|,则P 点的轨迹是 ( A ) A 、直线 B 、抛物线 C 、双曲线 D 、椭圆二.填空题:(每题5分,合计30分)9. 一动点到y 轴的距离比到点(2,0)的距离小2,这个动点的轨迹方程是_______. (答案:y 2=8x 或y=0(x<0))10. 经过双曲线1322=-y x 的右焦点F 2作倾斜角为︒30的弦AB ,则AB F 1∆的周长为 .( 答案: 333+ )11. 过椭圆22154x y +=的右焦点作一条斜率为2的直线与椭圆交于A B ,两点,O 为坐标原点,则OAB △的面积为 .(答案:53)12. 直线y=x -3与抛物线y 2=4x 交于A ,B 两点,过A ,B 两点向抛物线的准线作垂线,垂足分别为P ,Q ,则梯形APQB 的面积是 .4813. 过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若=AB 4,则满足条件的直线l 有____条314. 设P 是抛物线y 2=2x 上的点,Q 是圆(x -5)2+y 2=1上的点,则|PQ|的最小值为 2 三.解答题:(每题15分,合计30分) 15. 已知点P 是⊙O :229x y +=上的任意一点,过P 作PD 垂直x 轴于D ,动点Q 满足23DQ DP =. (1)求动点Q 的轨迹方程;(2)已知点(1,1)E ,在动点Q 的轨迹上是否存在两个不重合的两点M 、N ,使1()2OE OM ON =+ (O 是坐标原点),若存在,求出直线MN 的方程,若不存在,请说明理由.解:(1)设()00(,),,P x y Q x y ,依题意,则点D 的坐标为0(,0)D x ∴00(,),(0,)DQ x x y DP y =-=,又 23DQ DP =∴ 000002332x x x x y y y y -==⎧⎧⎪⎪⎨⎨==⎪⎪⎩⎩即 , ∵ P 在⊙O 上,故22009x y +=∴ 22194x y += , ∴ 点Q 的轨迹方程为22194x y +=(2)假设椭圆22194x y +=上存在两个不重合的两点()1122(,),,M x y N x y 满足1()2OE OM ON =+,则(1,1)E 是线段MN 的中点,且有12121212122212x x x x y y y y +⎧=⎪+=⎧⎪⎨⎨++=⎩⎪=⎪⎩即,又 ()1122(,),,M x y N x y 在椭圆22194x y +=上∴ 22112222194194x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减,得 ()()()()12121212094x x x x y y y y -+-++=, ∴ 121249MN y y k x x -==--, ∴ 直线MN 的方程为 49130x y +-=. ∴ 椭圆上存在点M 、N 满足1()2OE OM ON =+,此时直线MN 的方程为 49130x y +-=16. 设1F 、2F 分别是椭圆C :22221(0)x y a b a b +=>>的左右焦点.(1)设椭圆C 上点3(3,)2到两点1F 、2F 距离和等于4,写出椭圆C 的方程和焦点坐标;(2)设K 是(1)中所得椭圆上的动点,求线段1KF 的中点B 的轨迹方程;(3)设点P 是椭圆C 上的任意一点,过原点的直线L 与椭圆相交于M ,N 两点,当直线PM ,PN 的斜率都存在,并记为PM k ,PN k ,试探究PM PN k K ⋅的值是否与点P 及直线L 有关,不必证明你的结论。
第八节直线与圆锥曲线位置关系的综合应用-高考状元之路
第八节 直线与圆锥曲线位置关系的综合应用预习设计 基础备考知识梳理1.直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类: 及有两个(2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断,设直线l 的方程为,0=++c By Ax 圆锥曲线方程为.0),(=y x f 由⎩⎨⎧==++,0),(,0y x f C By Ax 消元.(如消去y)得.02=++c bx ax①若 ,当圆锥曲线是双曲线时,直线l 与双曲线的渐近线平行;当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行(或重合). ②若,0=/a 设.42ac b -=∆a .当 时,直线和圆锥曲线相交于不同两点;b .当 时,直线和圆锥曲线相切于一点;c .当 时,直线和圆锥曲线没有公共点.2.直线与圆锥曲线相交时的弦长公式(1)斜率为k 的直线与圆锥曲线交于两点),,(111γx p ),,(222y x p 则所得弦长:]4)[()1(||21221221x x x x k p p -++=||||121212p p x x k 或-⋅+= ]4))[(11(212212y y y y k-++= =(2)斜率不存在时,可求出交点坐标,直接运算(利用坐标轴上两点间距离公式).3.弦中点问题遇到弦中点问题常用“根与系数的关系”或“点差法”求解.在椭圆12222=+by a x 中,以),(00y x p 为中点的弦所在直线的斜率=k ;在双曲线12222=-by a x 中,以),(00y x P 为中点的弦所在直线的斜率=k 在抛物线)0(22>=P Px y 中,以),(00y x p 为中点的弦所在直线的斜率 在使用根与系数关系时,要注意使用条件是.0≥∆典题热身1.直线1+-=k kx y 与椭圆14922=+y x 的位置关系为 ( ) A .相交 B .相切 C .相离 D .不确定答案:A2.若不论k 为何值,直线b x k y +-=)2(与曲线122=-y x 总有公共点,则k 的取值范围是 ( ))3,3.(-A ]3,3.[-B )2,2.(-c ]2,2.[-D答案:B3.直线1+=x y 截抛物线Px y 22=所得弦长为,62此抛物线方程为( )x y A 22-=⋅ x y B 62=⋅ x y x y c 6222=-=⋅或 D .以上都不对答案:C4.椭圆122=+by ax 与直线x y -=1交于A 、B 两点,若过原点与线段AB 中点的直线的倾斜角为,30 则ba的值为 ( ) 43.A 33.B 23.c 3.D答案:B5.椭圆12422=+y x 中过点P(l ,1)的弦恰好被P 点平分,则此弦所在直线的方程是 答案:032=-+y x课堂设计 方法备考题型一 直线与圆锥曲线的位置关系【例1】在平面直角坐标系xOy 中,经过点)2,0(且斜率为k 的直线l 与椭圆1222=+y x 有两个不同的交点P 和Q .(1)求k 的取值范围.(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A 、B ,是否存在常数k ,使得向量与+ 共线?如果存在,求k 值;如果不存在,请说明理由.题型二 圆锥曲线中的弦长问题【例2】已知△ABC 的顶点A ,B 在椭圆4322=+y x 上,C 在直线2:+=x y l 上,且.//l AB(1)当AB 边透过坐标原点O 时,求AB 的长及△ABC 的面积; (2)当,90=∠ABC 且斜边AC 的长最大时,求AB 所在直线的方程.题型三 圆锥曲线的弦中点问题【例3】已知椭圆1222=+y x 的左焦点为F ,0为坐标原点. (1)求过点O 、F ,并且与直线2:-=x l 相切的圆的方程;(2)设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围,题型四 圆锥曲线中的定点、定值、最值问题【例4】已知椭圆12422=+y x 上的两个动点P ,Q 及定点F M ),26,1(是椭圆的左焦点,且|||,||,|QF MF PF 成等差数列.(1)求证:线段PQ 的垂直平分线经过一个定点A ;(2)设点A 关于原点O 的对称点是B ,求︱PB ︱的最小值及相应的P 点坐标,技法巧点(1)解决直线与椭圆的位置关系问题,如果直线与椭圆有两个不同交点,①若根据已知条件能求出两交点的坐标,这不失为一种彻底有效的方法;②若两交点的坐标不好表示,可将直线方程c kx y +=代人椭圆方程12222=+by a x 整理出关于x(或y)的一元二次方程,0.,022>-=∆=++C B C Bx Ax可利用根与系数之间的关系求弦长(弦长为⋅∆+)||12A k(2)弦的中点问题,以及交点与原点连线的垂直等问题,①求弦长可注意弦是否过椭圆焦点;②弦的中点问题还可利用“点差法”和“对称法”;③解决,BO AO ⊥可以利用向量BO AO ⊥均充要条件即.0=⋅失误防范1.在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情况.2.一元二次方程根与系数的关系的应用是建立在直线与圆锥曲线有两个交点的前提之下的,即二次项系数不为O 及△≥O,忽视这一前提,往往导致解题失误,随堂反馈1.过椭圆15622=+y x 内的一点)1,2(-p 的弦,恰好被P 点平分,则这条弦所在的直线方程是 ( ) 01335.=--y x A 01335.=-+y x B 01335.=+-y x C 01335.=++y x D答案;A2.(2010.全国新课标)已知双曲线E 的中心为原点,F(3,O)是E 的焦点,过F 的直线l 与E 相交于A 、B两点,且AB 的中点为N(-12,-15),则E 的方程为 ( )163.22=-y x A 154.22=-y x B 136.22=-y x c 145.22=-y x D答案:B3.已知过抛物线x y 62=焦点的弦长为12,则此弦所在直线的倾斜角是( )656ππ或⋅A 434ππ或⋅B 323ππ或⋅c 2π⋅D 答案:B4.(2011.南通模拟)若抛物线),0(22>=P Px y 过其焦点F 倾斜角为60的直线l 交抛物线于A 、B 两点,且.4||=AB 则此抛物线的方程为 答案:x y 32=5.(2010.湖北高考)已知椭圆12:22=+y x C 的两焦点为,1F ,2F 点),(00y x P 满足,1202020<+<y x 则 ||||21PF PF +的取值范围为 ,直线1200=+y y xx 与椭圆C 的公共点个数为 答案:0)22,2[高效作业 技能备考一、选择题1.(2010.山东郓城实验中学期末)已知对,R k ∈直线-y 01=-kx 与椭圆1522=+m y x 恒有公共点,则实数m 的取值范围是( ))1,0.(A )5,0.(B ),5()5,1.[∝+ c )5,1.[D答案:C2.(2010.全国新课标)已知抛物线x y C 4:2=的焦点为F ,直线42-=x y 与C 交于A ,B 两点,则=∠AFB cos ( ) 54.A 53.B 53.-c 54.-D 答案:D3.(2011.温州模拟)已知A 、B 、P 是双曲线,0(12222>=-a by a x )0>b 上不同的三个点,且A 、B 连线经过坐标原点,若直线PA 、PB 的斜率乘积,32=PB PA k k 则双曲线的离心率为( )25.A 26.B 2.c 315.D答案:D4.(2010.湖南常德期末)设直线022:=-+y x l 与椭圆+2x 142=y 的交点为A 、B ,点P 是椭圆上的动点,则使△PAB 面积为31的点P 的个数为( )1.A2.B3.C4.D答案:D5.(2011.大连二十四中模拟)已知双曲线,0(12222>=-a by a x )0>b 的右焦点为F ,若过点F 且倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ))2,1.(A )2,1.(-B ),2.(+∞c ),2.[+∞D答案:D6.(2011.杭州学军中学月考)直线3:+=x y l 与曲线-92y 14||=⋅x x 交点的个数为( ) 0.A 1.B 2.c 3.D答案:D二、填空题7.过椭圆)0(12222>>=+b a by a x 的左顶点A 作斜率为l 的直线,与椭圆的另一个交点为M ,与y 轴的交点为B.若=AM ,MB 则该椭圆的离心率为 答案:368.(2010.湖南长沙一中期末)已知F 是抛物线x y C 4:2=的焦点,过F 且斜率为3的直线交C 于A ,B 两点.设>||FA |,|FB 则||FA 与||FB 的比值等于 答案:39.直线1:+=kx y l 与双曲线1:22=-y x C 有且仅有一个公共点,则=k答案:21±±或三、解答题10.(2010.天津高考)已知椭圆)0(12222>>=+b a b y a x 的离心率,23=e 连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A ,B ,已知点A 的坐标为),0(),0,(0y Q a 点-在线段AB 的垂直平分线上,且0,4y QB OA 求=⋅的值.11.(2011.山东日照质检)已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为,21直线6+=x y 与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)若直线)0(:=/+=k m kx y l 与椭圆C 交于不同的两点M 、N ,且线段MN 的垂直平分线过定点),0,81(G 求实数k 的取值范围.12.(2010.安徽高考)如图,已知椭圆E 经过点A(2,3),对称轴为坐标轴,焦点21,F F 在x 轴上,离心率⋅=21e (1)求椭圆E 的方程;(2)求21AF F ∠的平分线所在直线l 的方程;(3)在椭圆E 上是否存在关于直线l 对称的相异两点?若存在,请找出;若不存在,说明理由.。
直线与圆锥曲线综合问题
直线与圆锥曲线的的综合问题(1)题型一。
直线与圆锥曲线的位置关系例1.直线l :3x +y -6=0与圆C :x 2+y 2-2y -4=0位置关系为_______.例2.直线y=x+m 和椭圆4x 2+y 2=1,当直线与椭圆有公共点时,求实数m 的取值范围。
例3.已知直线1:-=kx y L 与双曲线22:y x C -=4。
若直线L 与双曲线C 有一个公共点,求k 的范围;例4.过点(0,2)的直线l 与抛物线y 2=4x 仅有一个公共点,求直线l 的方程。
题型二。
直线与圆锥曲线的相交的弦长问题例5.直线l :3x +y -6=0被圆C :x 2+y 2-2y -4=0截得的弦长为_______.例6.直线x -y +1=0被椭圆11222=+y x 截得的弦长为.例7.过双曲线16322=-y x 的右焦点2F ,倾斜角为030的直线交双曲线于A 、B 两点,求AB 。
例8.直线l斜率为1且与抛物线y2=4x相交于A,B两点。
(1)直线l经过抛物线的焦点F,求AB。
(2)直线l经过点M(2,0),求AB。
题型三。
直线与圆锥曲线的相交的弦中点问题例9.已知P(-1,2)为圆x2+y2=8内一定点.直线l过点P且被圆所截得的弦中点P,求直线l方程_________________.例10.已知一直线与椭圆369422=+yx相交于A、B两点,弦AB的中点坐标为M(1,1),求直线AB的直线方程例11.过点M(2,1)是否存在直线l交双曲线1222=-yx于P、Q两点,且M是线段PQ的中点。
例12.已知抛物线C:y2=4x,设直线与抛物线两交点为A、B,且线段AB中点为M(2,1),则直线l 的方程为________________________.直线与圆锥曲线的的综合问题(2)题型四。
最值问题例1、已知椭圆192522=+y x 和直线:45400l x y -+=,试推断椭圆上是否存在一点,它到直线l 的距离最小?最小距离是多少?例2.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(.(1)求双曲线C 的方程; (2)若直线l :2+=kx y 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点),求k 的取值范围.例3.(1)点A (2,3),F 为抛物线y 2=6x 焦点,P 为抛物线上动点,则|PF|+|PA|的最小值为()A.5B.4.5C.3.5D.不能确定变式:A (2,5)题型五.垂直问题例4.求m 为何值时,直线y =mx +2与圆x 2+y 2=2相交于P 、Q 两点,且满足OP ⊥OQ ?(O 为坐标原点)例5.直线y =x +b 与抛物线y 2=4x 相交于P 、Q 两点,且满足OP ⊥OQ ?(O 为坐标原点),求b.6.已知椭圆2222b y ax +=1(a >b >0)的离心率e=36,过点A (0,-b )和B (a ,0)的直线与坐标原点距离为23.(1)求椭圆的方程;(2)已知定点E (-1,0),若直线y=kx+2(k ≠0)与椭圆相交于C 、D 两点,试判断是否存在k 值,使以CD 为直径的圆过定点E ?若存在求出这个k 值,若不存在说明理由.题型六.综合问题1.一动圆过定点)0,2(-A ,且与定圆12)2(22=+-y x 相切。
20-21版:§2.8 第2课时 直线与圆锥曲线位置关系的综合问题(步步高)
第2课时 直线与圆锥曲线位置关系的综合问题一、中点弦问题例1 已知椭圆x 216+y 24=1的弦AB 的中点M 的坐标为(2,1),求直线AB 的方程.解 方法一 根与系数的关系、中点坐标公式法 由椭圆的对称性,知直线AB 的斜率存在, 设直线AB 的方程为y -1=k (x -2). 将其代入椭圆方程并整理,得(4k 2+1)x 2-8(2k 2-k )x +4(2k -1)2-16=0.设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两根, 于是x 1+x 2=8(2k 2-k )4k 2+1.又M 为线段AB 的中点,∴x 1+x 22=4(2k 2-k )4k 2+1=2,解得k =-12.故所求直线的方程为x +2y -4=0. 方法二 点差法设A (x 1,y 1),B (x 2,y 2),x 1≠x 2. ∵M (2,1)为线段AB 的中点, ∴x 1+x 2=4,y 1+y 2=2. 又A ,B 两点在椭圆上,则x 21+4y 21=16,x 22+4y 22=16, 两式相减,得(x 21-x 22)+4(y 21-y 22)=0,于是(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0. ∴y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2)=-44×2=-12,即k AB =-12.故所求直线的方程为x +2y -4=0. 方法三 对称点法(或共线法)设所求直线与椭圆的一个交点为A (x ,y ), 由于点M (2,1)为线段AB 的中点,则另一个交点为B (4-x ,2-y ). ∵A ,B 两点都在椭圆上,∴⎩⎪⎨⎪⎧x 2+4y 2=16,①(4-x )2+4(2-y )2=16. ② ①-②,得x +2y -4=0.即点A 的坐标满足这个方程,根据对称性,点B 的坐标也满足这个方程,而过A ,B 两点的直线只有一条,故所求直线的方程为x +2y -4=0. 反思感悟 解决圆锥曲线中点弦问题的两种方法(1)根与系数的关系法:联立直线方程和圆锥曲线方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决.(2)点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入圆锥曲线方程,然后作差,构造出中点坐标和斜率的关系,具体如下:已知A (x 1,y 1),B (x 2,y 2)是椭圆x 2a 2+y 2b2=1(a >b >0)上的两个不同的点,M (x 0,y 0)是线段AB 的中点,则⎩⎨⎧x 21a 2+y 21b2=1,①x 22a 2+y22b 2=1, ②由①-②,得1a 2(x 21-x 22)+1b 2(y 21-y 22)=0,变形得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·x 0y 0,即k AB =-b 2x 0a 2y 0.同理可得双曲线x 2a 2-y 2b 2=1中k AB =b 2a 2x 0y 0,抛物线y 2=2px (p >0)中k AB =py 0.跟踪训练1 (1)直线l 的斜率为4,过点M (4,1)且与抛物线y 2=2px (p >0)交于A ,B 两点,若点M 恰好为AB 的中点,则抛物线方程为________________. 答案 y 2=8x解析 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8,y 1+y 2=2,由⎩⎪⎨⎪⎧y 21=2px 1,y 22=2px 2,相减得 y 21-y 22=2p (x 1-x 2),整理有y 1-y 2x 1-x 2=2p y 1+y 2,即k AB =2py 1+y 2,∴2p2=4,∴p =4,∴y 2=8x .(2)已知双曲线的方程为x 2-y 22=1,是否存在被点B (1,1)平分的弦?如果存在,求出弦所在的直线方程;若不存在,请说明理由.解 方法一 由题意知直线的斜率存在,设被点B (1,1)平分的弦所在的直线方程为y =k (x -1)+1,代入双曲线方程x 2-y 22=1,得(k 2-2)x 2-2k (k -1)x +k 2-2k +3=0, ∴Δ=[-2k (k -1)]2-4(k 2-2)(k 2-2k +3)>0, 解得k <32且k ≠±2,x 1+x 2=2k (k -1)k 2-2.∵B (1,1)是弦的中点,∴k (k -1)k 2-2=1,解得k =2>32,故不存在被点B (1,1)平分的弦.方法二 设弦的两端点为A (x 1,y 1),C (x 2,y 2), ∴B (1,1)为AC 的中点,∴⎩⎨⎧x 21-y 212=1,x 22-y222=1两式相减有x 21-x 22=y 21-y 222,即y 1-y 2x 1-x 2=2·x 1+x 2y 1+y 2=2×22=2, 即k AC =2,∴直线AC 的方程为y -1=2(x -1), 即y =2x -1, 联立⎩⎪⎨⎪⎧y =2x -1,x 2-y 22=1,整理有2x 2-4x +3=0, Δ=16-4×2×3=-8<0, 故y =2x -1与双曲线无交点, ∴不存在被点B (1,1)平分的弦. 二、平面向量在圆锥曲线中的应用例2 (1)直线l 过抛物线y 2=4x 的焦点F ,与抛物线交于A ,B 两点,若AF →=2FB →,则直线l 的方程为________________.答案 x +24y -1=0或x -24y -1=0 解析 如图所示,设A (x 1,y 1),B (x 2,y 2),F (1,0), ∵AF →=2FB →,∴(1-x 1,-y 1)=2(x 2-1,y 2),∴⎩⎪⎨⎪⎧1-x 1=2(x 2-1),-y 1=2y 2, ∴y 1=-2y 2,① 设AB 方程为x =ty +1,联立⎩⎪⎨⎪⎧x =ty +1,y 2=4x ,整理得y 2-4ty -4=0,∵y 1+y 2=4t ,② y 1y 2=-4,③由①②③,解得t 2=18,t =±24,∴直线l 的方程为x +24y -1=0或x -24y -1=0. (2)椭圆C :x 2a 2+y 2b 2=1(a >b >0),离心率e =32,直线l 经过点(0,2)且斜率为2,直线l 与椭圆交于A ,B 两点,且OA ⊥OB ,求椭圆C 的方程. 解 ∵e =c a =32,∴c 2=34a 2,∴b 2=a 2-c 2=14a 2,即a 2=4b 2,∴椭圆C 为x 24b 2+y 2b 2=1,设A (x 1,y 1),B (x 2,y 2), 直线l 的方程为y -2=2(x -0), 即2x -y +2=0.由⎩⎪⎨⎪⎧2x -y +2=0,x 24b 2+y 2b 2=1消去y ,得x 2+4(2x +2)2-4b 2=0, 即17x 2+32x +16-4b 2=0.Δ=322+16×17(b 2-4)>0,解得b >21717.x 1+x 2=-3217,x 1x 2=16-4b 217.∵OA ⊥OB ,∴OA →·OB →=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0, 5x 1x 2+4(x 1+x 2)+4=0. 从而5(16-4b 2)17-12817+4=0,解得b =1,满足b >21717.∴椭圆C 的方程为x 24+y 2=1.反思感悟 平面向量在高中数学中应用广泛,主要可以用来判断平行、垂直,求长度、夹角等问题.在圆锥曲线中,主要有以下几种用途 (1)AB ⊥AC ⇔AB →·AC →=0. (2)∠AOB 为锐角⇒OA →·OB →>0. (3)AF →=λFB →⇒A 与B 的坐标关系.跟踪训练2 已知中心在坐标原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.解 (1)设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),由已知得a =3,c =2,所以b =1. 故所求双曲线方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,可得(1-3k 2)x 2-62kx -9=0, 由直线l 与双曲线交于不同的两点得⎩⎨⎧1-3k 2≠0,Δ=(-62k )2+36(1-3k 2)=36(1-k 2)>0,故k 2≠13且k 2<1.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=62k1-3k 2,x 1x 2=-91-3k 2,则OA →·OB →>2得x 1x 2+y 1y 2>2.又因为y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+2 =-9k 21-3k 2+12k 21-3k 2+2 =3k 21-3k 2+2. 所以-91-3k 2+3k 21-3k 2+2>2.所以3k 2-91-3k 2>0.又因为k 2≠13且k 2<1,所以13<k 2<1.所以k 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫k ⎪⎪-1<k <-33或33<k <1.1.直线y =x +1被椭圆x 24+y 22=1所截得的弦的中点坐标是( )A.⎝⎛⎭⎫23,53B.⎝⎛⎭⎫43,73 C.⎝⎛⎭⎫-23,13 D.⎝⎛⎭⎫-132,-172 答案 C解析 联立⎩⎪⎨⎪⎧y =x +1,x 24+y 22=1,消去y ,得3x 2+4x -2=0,Δ>0恒成立,设直线与椭圆交于点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-43,故AB 的中点横坐标x 0=x 1+x 22=-23.纵坐标y 0=x 0+1=-23+1=13.2.已知双曲线x 2-y 23=1,过点P (2,1)作一直线交双曲线于A ,B 两点,并使点P 为AB 的中点,则直线AB 的斜率为( ) A .3 B .4 C .5 D .6 答案 D解析 设A (x 1,y 1),B (x 2,y 2),则由x 21-y 213=1与x 22-y 223=1得k AB =y 1-y 2x 1-x 2=3(x 1+x 2)y 1+y 2=6.故所求直线AB 的方程为y -1=6(x -2), 即6x -y -11=0与x 2-y 23=1 联立得33x 2-132x +124=0, 显然,Δ>0,故直线AB 的斜率为6.3.经过椭圆x 22+y 2=1的一个焦点作倾斜角为45°的直线l ,交椭圆于A ,B 两点.设O 为坐标原点,则OA →·OB →等于( ) A .-3 B .-13C .-13或-3D .±13答案 B解析 由x 22+y 2=1,得a 2=2,b 2=1,c 2=a 2-b 2=1,焦点为(±1,0).不妨设直线l 过右焦点,倾斜角为45°,直线l 的方程为y =x -1. 代入x 22+y 2=1得x 2+2(x -1)2-2=0,即3x 2-4x =0.设A (x 1,y 1),B (x 2,y 2),则x 1·x 2=0,x 1+x 2=43,y 1y 2=(x 1-1)(x 2-1)=x 1x 2-(x 1+x 2)+1=1-43=-13,所以OA →·OB →=x 1x 2+y 1y 2=0-13=-13.4.设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN→等于( )A .5B .6C .7D .8 答案 D解析 由题意知直线MN 的方程为y =23(x +2),F (1,0).设M (x 1,y 1),N (x 2,y 2),与抛物线方程联立有 ⎩⎪⎨⎪⎧y =23(x +2),y 2=4x ,可得⎩⎪⎨⎪⎧ x 1=1,y 1=2或⎩⎪⎨⎪⎧x 2=4,y 2=4,所以FM →=(0,2),FN →=(3,4), 所以FM →·FN →=0×3+2×4=8.5.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点是M (-4,1),则椭圆的离心率是________. 答案32解析 设直线x -y +5=0与椭圆相交于 A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8,y 1+y 2=2,直线AB 的斜率k =y 1-y 2x 1-x 2=1.由⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y 22b 2=1两式相减得∴y 1-y 2x 1-x 2=-b 2a 2×x 1+x 2y 1+y 2=1,∴b 2a 2=14,故椭圆的离心率e =ca=1-b 2a 2=32.1.知识清单:(1)圆锥曲线解决中点弦问题. (2)平面向量在圆锥曲线中的应用. 2.方法归纳:数形结合、转化法.3.常见误区:在双曲线中,用点差法求直线方程时需检验直线的存在性.。
例析直线与圆锥曲线的综合应用
龙源期刊网
例析直线与圆锥曲线的综合应用
作者:管永建
来源:《高考进行时·高三数学》2013年第02期
直线与圆锥曲线的知识在直线与圆关系的基础上展开,是高考中的重点,也是学习中的难点。
这部分内容既有几何关系的表述,又有代数关系的转化,推理运算的要求较高,需从解析几何基本思想的高度去透彻理解概念以灵活运用其中蕴藏的各类知识,提高综合解决问题的能力。
例题在平面直角坐标系xOy中,椭圆C的中心是坐标原点O,以直线l:x=-4为准线,离心率为22.
(1)求椭圆C的标准方程;
(2)若M是直线l上任意一点,以OM为直径的圆D与圆O:x2+y2=8相交于A、B两点,求证:直线AB必过定点E,并求出点E的坐标;
(3)若点M的纵坐标大于0,直线AB与椭圆C交于P、Q两点,点P在x轴上方,且EP=3QE,求此时弦AB的长.
分析直线和曲线相交将几何关系转化为二次方程来讨论,这是解析几何的基本思想。
由
于定点是椭圆的焦点,故可联系椭圆的定义及三角形相似等知识,数形结合是灵活解决问题的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程组是解决这类问题的通法,而相关的最
值的讨论求解往往需要建立目标函数,进一
步转化为函数法或不等式法来求解.
变式训练2 已知椭圆C:ax22+by22=1 (a>b>0)的
离心率为
6 3
,短轴的一个端点到右焦点的
距离为 3.
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A、B两点,坐标原
≤3+2×132+6=4,
当且仅当9k2=k12,即k=± 33时等号成立. 综上所述,|AB|max=2. ∴当|AB|最大时,△AOB面积取最大值
Smax=12×|AB|max×
23=
3 2.
题型三 圆锥曲线中的弦中点问题
例3 已知中心在原点,焦点在x轴上的一椭圆
与圆x2+y2-4x-2y+
5 2
解之得 b2=3,a2=12. 所求椭圆方程为1x22 +y32=1.
探究提高 凡涉及到弦中点问题常用“点差法”, 也可以将直线方程代入曲线方程,得到一个一元 二次方程,利用根与系数关系求解.
变式训练3 已知椭圆的两个焦点分别为F1(0,
-2
2),F2(0,2
2),离心率为e=2
2 3.
(1)求椭圆方程;
基础自测 1.已知椭圆x42+y2=1 的两个焦点为 F1、F2,
过 F1 作垂直于 x 轴的直线与椭圆相交,一 7
个交点为 P,则|PF2|=__2____.
解析
将x=-
3
代入椭圆方程得yp=
1 2
,由
|PF1|+|PF2|=4⇒|PF2| =4-|PF1|=4-12=72.
2.设抛物线 y2=8x 的准线与 x 轴交于点 Q, 若过点 Q 的直线 l 与抛物线有公共点,则 直线 l 的斜率的取值范围是_-__1_≤__k_≤__1___.
=2px (p>0)中,以 P(x0,y0)为中点的弦所在 直线的斜率 k=yp0.
[难点正本 疑点清源] 1.直线与圆锥曲线的位置关系
直线与圆锥曲线的位置关系,从几何角度 可分为三类:无公共点,仅有一个公共点 及有两个相异公共点. 还可通过代数方法即解方程组的办法来研 究.因为直线与圆锥曲线有无公共点或有 几个公共点的问题,实际上是研究它们的 方程组成的方程是否有实数解或实数解的 个数问题,此时要注意用好分类讨论和数 形结合的思想方法.
②若 a≠0,设 Δ=b2-4ac.
a.Δ > 0 时,直线和圆锥曲线相交于不同两点; b.Δ = 0 时,直线和圆锥曲线相切于一点; c.Δ < 0 时,直线和圆锥曲线没有公共点.
2.直线与圆锥曲线相交时的弦长问题 (1)斜率为 k 的直线与圆锥曲线交于两点 P1(x1,y1), P2(x2,y2),则所得弦长|P1P2|= 1+k2|x1-x2 |或|P1P2|
= 1+k12|y1-y2| . (2)当斜率 k 不存在时,可求出交点坐标,直接运算(利 用轴上两点间距离公式). (3)求经过圆锥曲线的焦点的弦的长度,应用圆锥曲 线的定义,转化为两个焦半径之和,往往比用弦长 公式简捷.
3.圆锥曲线的中点弦问题
遇到中点弦问题常用“韦达定理”或“点 差法”求解.在椭圆ax22+by22=1 中,以 P(x0, y0)为中点的弦所在直线的斜率 k=-ba22xy00; 在双曲线ax22-by22=1 中,以 P(x0,y0)为中点 的弦所在直线的斜率 k=ba22xy00;在抛物线 y2
简得
x2-6kx-9=0,
设 A(x1,y1),B(x2,y2),则 x1+x2=6k,x1x2=-9, ∴|AB|= x1-x22+y1-y22 = 1+k2[x1+x22-4x1x2]=6(k2+1).
同理可得|CD|=6k12+1, ∴四边形 ACBD 的面积 S=12|AB|·|CD| =18(k2+1)k12+1=18k2+k12+2≥72. 当且仅当 k2=k12,即 k=±1 时,Smin=72, 故四边形 ACBD 面积的最小值是 72.
①当
a+1 a
=0,即a=-1时,方程变为一元一次方
程-y-1=0,方程恰有一组解xy==--11 ;
②若a+a 1≠0,即 a≠-1 时,令 Δ=0,得 1+ 4aa+1=0,解得 a=-45,此时直线与曲线相 切,有且只有一个公共点. 综上所述,当 a=0,a=-1 或 a=-45时,直线与曲线 y2=ax 恰有一个公共 点.
5.(2010·辽宁)设抛物线 y2=8x 的焦点为 F, 准线为 l,P 为抛物线上一点,PA⊥l,A 为 垂足,如果直线 AF 的斜率为- 3,那么|PF| 等于( B ) A.4 3 B.8 C.8 3 D.16
解析 如图所示,直线AF的方程为 y=- 3(x-2),与准线方程x=-2联立得 A(-2,4 3). 设P(x0,4 3),代入抛物线 y2=8x,得8x0=48,∴x0= 6, ∴|PF|=x0+2=8.
用判别式Δ的符号判断方程解的个数,从而
说明直线与圆锥曲线的位置关系.
变式训练1 已知直线y=(a+1)x-1与曲线 y2=ax恰有一个公共点,求实数a的值.
解 联立方程yy= 2=aa+ x 1x-1
(1)当a=0时,此方程组恰有一组解xy= =10 ;
(2)当a≠0时,消去x,得
a+a 1y2-y-1=0;
解
(1)过点P作PN垂直于直线y=-
3 2
于点N,
依题意得|PF|=|PN|,所以动点P的轨迹是以
F
0,32
为焦点,直线y=-
3 2
为准线的抛物
线,即曲线W的方程是x2=6y.
(2)如图所示,依题意,直线 l1,l2 的斜率存在 且不为 0,设直线 l1 的方程为 y=kx+32,由 l1⊥l2 得 l2 的方程为 y=-1kx+32. 将 y=kx+32代入 x2=6y,化
2.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、 对称、参数的取值范围、求曲线方程等问题.解题中要 充分重视韦达定理和判别式的应用. 当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达 定理法”设而不求计算弦长(即应用弦长公式);涉及弦 长的中点问题,常用“点差法”设而不求,将弦所在直 线的斜率、弦的中点坐标联系起来,相互转化.同时还 应充分挖掘题目中的隐含条件,寻找量与量间的关系灵 活转化,往往就能事半功倍. 解题的主要规律可以概括为“联立方程求交点,韦达定 理求弦长,根的分布找范围,曲线定义不能忘”.
当1-4k2≠0时,
有Δ=(-16k)2-4(1-4k2)·(-20)=16(5-4k2).
(1)当1-4k2≠0且Δ<0时,即k<-
5 2
或k>
5 2
时,l与C
无公共点.
(2)当1-4k2=0,即k=±12时,显然方程①只有一解.
当Δ=0时,即k=± 25时,方程①只有一解.
故当k=±12或k=± 25时,l与C有唯一公共点.
3.过点P(-1,2)且与曲线y=3x2-4x+2在点 M(1,1)处的切线平行的直线方程是 __2_x_-__y+___4_=__0__.
解析 由y=3x2-4x+2,得y′=6x-4, ∴k=y′|x=1=2,∴所求直线方程为y-2= 2(x+1), 即2x-y+4=0.
4.已知直线y=kx-1与椭圆 x42+ya2=1相切,
§8.4 直线与圆锥曲线的综合应用
基础知识 自主学习
要点梳理 1.直线与圆锥曲线的位置关系
(1)从几何角度看,可分为三类:无公共点,仅 有一个公共点及有两个相异的公共点.
(2)从代数角度看,可通过将表示直线的方程代入 二次曲线的方程消元后所得一元二次方程解的情 况来判断.设直线l的方程为Ax+By+C=0,圆 锥曲线方程f(x,y)=0. 由Afxx+,Byy=+0C=0 ,消元 如消去y后得ax2+bx+c=0. ①若a=0,当圆锥曲线是双曲线时,直线l与双曲 线的渐近线平行或重合;当圆锥曲线是抛物线 时,直线l与抛物线的对称轴平行(或重合).
=0交于A、B两点,
AB恰是该圆的直径,且AB的斜率为-12,求
此椭圆的方程.
思维启迪:可设出A、B两点的坐标,分别代 入椭圆方程,得到的两式相减,得出直线的斜 率,又已知AB是圆的直径求解.
解 圆的方程化为(x-2)2+(y-1)2=52,
其圆心为(2,1),直径|AB|= 10. 设椭圆方程为ax22+by22=1(a>b>0),
点O到直线l的距离为
3 2
,求△AOB面积的
最大值.
解 (1)设椭圆的半焦距为c,
依题意得ac=
6 3
,∴c= 2,b=1.
a= 3
∴所求椭圆方程为x32+y2=1.
(2)设A(x1,y1),B(x2,y2). ①当l⊥x轴或l∥x轴时,|AB|= 3.
②当x+m. 由已知 1|m+| k2= 23,得m2=34(k2+1)
把y=kx+m代入椭圆方程整理得
(3k2+1)x2+6kmx+3m2-3=0,
∴x1+x2=3-k26+km1,x1x2=33mk22+-11.
∴|AB|2=(1+k2)33k62k+2m122-123km2+2-11 =12k2+13k23+k21+21-m2=3k2+3k12+91k22+1 =3+9k4+126kk22+1=3+9k2+12k12+6 (k≠0)
A、B的坐标为(x1,y1),(x2,y2),则
x1+x2=4,y1+y2=2. 又kAB=-12,即yx11--yx22=-12. A、B在椭圆上,有ax212+by212=1,ax222+by222=1, 得x21-a2 x22+y21-b2 y22=0. ba22=-yx11++yx22yx11--yx22=14,
易错分析 (1)很多考生误以为a≠0,忽视对