中考试题的压轴倒数第二题
【精品】人教版九年级数学中考压轴试题(含答案解析)
【精品】人教版九年级数学中考压轴试题(含答案)1.(8分)如图,已知Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上的一点(不与A、B重合).过点B作BE⊥CD,垂足为E.将线段CE绕点C顺时针旋转90°,得到线段CF,连结EF.设∠BCE度数为α.(1)①补全图形.②试用含α的代数式表示∠CDA.(2)若=,求α的大小.(3)直接写出线段AB、BE、CF之间的数量关系.【分析】(1)①根据要求画出图形即可;②利用三角形的外角的性质计算即可;(2)只要证明△FCE∽△ACB,可得==,Rt△CFA中,∠CFA=90°,cos∠FCA=,推出∠FCA=30°,即α=30°.(3)在Rt△ABC,和Rt△CBE中,利用勾股定理即可解决问题;【解答】解:(1)①补全的图形如图所示:②∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∴∠CDA=∠DBC+∠BCD=45°+α.(2)在△FCE和△ACB中,∠CFE=∠CAB=45°,∠FCE=∠ACB=90°,∴△FCE∽△ACB,∴=∵=∴=连结FA,∵∠FCA=90°﹣∠ACE,∠ECB=90°﹣∠ACE,∴∠FCA=∠BCE=α,在Rt△CFA中,∠CFA=90°,cos∠FCA=∴∠FCA=30°,即α=30°.(3)结论:AB2=2CF2+2BE2.理由:∵AB2=AC2+BC2=2BC2,BC2=CE2+BE2=CF2+BE2,∴AB2=2CF2+2BE2.【点评】本题考查相似三角形综合题、相似三角形的判定和性质、等腰直角三角形的性质、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.2.(8分)已知在平面直角坐标系xOy中的点P和图形G,给出如下的定义:若在图形G上存在一点Q,使得P、Q之间的距离等于1,则称P为图形G的关联点.(1)当⊙O的半径为1时,①点P1(,0),P2(1,),P3(0,3)中,⊙O的关联点有P1,P2.②直线经过(0,1)点,且与y轴垂直,点P在直线上.若P是⊙O的关联点,求点P的横坐标x的取值范围.(2)已知正方形ABCD的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r的取值范围.【分析】(1)①利用两圆的位置关系即可判断;②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,设P(x,﹣x),根据两点间的距离公式即可得到结论;(2)根据关联点的定义求出圆的半径r的最大值与最小值即可解决问题;【解答】解:(1)①∵点P1(,0),P2(1,),P3(0,3)∴OP1=,OP2=2,OP3=3,∴半径为1的⊙P1与⊙O相交,半径为1的⊙P2与⊙O相交,半径为1的⊙P3与⊙O相离1,∴⊙O的关联点是P1,P2;故答案为:P1,P2;②如图,以O为圆心,2为半径的圆与直线y=1交于 P1,P2两点.线段P1,P2上的动点P(含端点)都是以O为圆心,1为半径的圆的关联点.故此﹣≤x≤.(2)由已知,若P为图形G的关联点,图形G必与以P为圆心1为半径的圆有交点.∵正方形ABCD边界上的点都是某圆的关联点,∴该圆与以正方形边界上的各点为圆心1为半径的圆都有交点故此,符合题意的半径最大的圆是以O为圆心,3为半径的圆;符合题意的半径最小的圆是以O为圆心,2﹣1 为半径的圆.综上所述,2﹣1≤r≤3.【点评】本题考查一次函数综合题、圆、正方形的有关性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,学会用分类讨论的思想思考问题,属于中考压轴题.3.(5分)如图,Rt△ABC中,∠C=90°,AC=BC,AB=4cm.动点D沿着A→C→B的方向从A点运动到B点.DE⊥AB,垂足为E.设AE长为xcm,BD长为ycm(当D与A重合时,y=4;当D与B重合时y=0).小云根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0 0.5 1 1.5 2 2.5 3 3.5 4y/cm 4 3.5 3.2 2.8 2.1 1.4 0.7 0补全上面表格,要求结果保留一位小数.则t≈ 2.9 .(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为2.3 cm.【分析】(1)按题意,认真测量即可;(2)利用数据描点、连线;(3)当DB=AE时,y=x,画图形测量交点横坐标即可.【解答】解:(1)根据题意量取数据为2.9故答案为:2.9(2)根据已知数据描点连线得:(3)当DB=AE时,y与x满足y=x,在(2)图中,画y=x图象,测量交点横坐标为2.3.故答案为:2.3【点评】本题以考查画函数图象为背景,应用了数形结合思想和转化的数学思想.4.(7分)已知抛物线:y=mx2﹣2mx+m+1(m≠0).(1)求抛物线的顶点坐标.(2)若直线l1经过(2,0)点且与x轴垂直,直线l2经过抛物线的顶点与坐标原点,且l1与l2的交点P在抛物线上.求抛物线的表达式.(3)已知点A(0,2),点A关于x轴的对称点为点B.抛物线与线段AB恰有一个公共点,结合函数图象写出m的取值范围.【分析】(1)利用配方法把解析式配成顶点式即可得到抛物线的顶点坐标;(2)先确定P点坐标,然后把P点坐标代入y=mx2﹣2mx+m+1求出m 即可;(3)分别把A、B点的坐标代入y=mx2﹣2mx+m+1求出对应的m的值,然后根据二次函数的性质确定满足条件的m的范围.【解答】(1)解:∵y=mx2﹣2mx+m+1=m(x﹣1)2+1,∴抛物线的顶点坐标为(1,1);(2)易得直线l2的表达式为y=x,当x=2时,y=x=2,则P(2,2),把P(2,2)代入y=mx2﹣2mx+m+1得4m﹣4m+m+1=2,解得m=1,∴抛物线解析式为y=x2﹣2x+2;(3)点A(0,2)关于x轴的对称点B的坐标为(0,﹣2),当抛物线过A(0,2)时,把A(0,2)代入y=mx2﹣2mx+m+1得m+1=2,解得m=1,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,0<m≤1;当抛物线过B(0,﹣2)时,把B(0,﹣2)代入y=mx2﹣2mx+m+1得m+1=﹣2,解得m=﹣3,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,﹣3≤m<0;综上所述,m的取值范围是 0<m≤1或﹣3≤m<0.【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.5.(5分)如图,AB是⊙O的直径,C、D是⊙O上两点, =.过点B作⊙O的切线,连接AC并延长交于点E,连接AD并延长交于点F.(1)求证:AC=CE.(2)若AE=8,sin∠BAF=求DF长.【分析】(1)连接BC,想办法证明AC=BC,EC=BC即可解决问题;(2)首先证明∠DBF=∠BAF,可得sin∠BAF=sin∠DBF==,由此即可解决问题;【解答】(1)证明:连结BC.∵AB是的直径,C在⊙O上∴∠ACB=90°,∵=,∴AC=BC∴∠CAB=45°.∵AB是⊙O的直径,EF切⊙O于点B,∴∠ABE=90°,∴∠AEB=45°,∴AB=BE,∴AC=CE.(2)在Rt△ABE中,∠ABE=90°,AE=8,AE=BE ∴AB=8,在Rt△ABF中,AB=8,sin∠BAF=,解得:BF=6,连结BD,则∠ADB=∠FDB=90°,∵∠BAF+∠ABD=90°,∠ABD+∠DBF=90°,∴∠DBF=∠BAF,∵sin∠BAF=,∴sin∠DBF=,∴=,∴DF=.【点评】本题考查切线的性质、圆周角定理、解直角三角形、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.(5分)在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A(2,0),与反比例函数y=的图象交于点B(3,n).(1)求一次函数与反比例函数的表达式;(2)若点P为x轴上的点,且△PAB的面积是2,则点P的坐标是(﹣2,0)或(6,0).【分析】(1)利用待定系数法即可解决问题;(2)利用三角形的面积公式求出PA的长即可解决问题;【解答】解:(1)∵一次函数y=x+b的图象与x轴交于点A(2,0),∴2+b=0,∴b=﹣2,∴y=x﹣2,当x=3时,y=1,∴B(3,1),代入y=中,得到k=3,∴反比例函数的解析式为y=.(2)∵△PAB的面积是2,∴PA=4,∴P(﹣2,0)或(6,0).【点评】本题考查一次函数的性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.(5分)如图,小明想测量山的高度.他在点B处仰望山顶A,测得仰角∠ABN=30°,再向山的方向(水平方向)行进100m至索道口点C处,在点C处仰望山顶A,测得仰角∠ACN=45°.求这座山的高度.(结果精确到0.1m,小明的身高忽略不计)(参考数据:≈1.41,≈1.73)【分析】作AH⊥BN于H,设AH=xm,根据正切的概念表示出CH、BH,根据题意列出方程,解方程即可.【解答】解:如图,作AH⊥BN于H,设AH=xm,∵∠ACN=45°,∵tanB=,∴BH=x,则BH﹣CH=BC,即x﹣x=100,解得x=50(+1).答:这座山的高度为50(+1)m;【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,正确作出辅助线、熟记锐角三角函数的概念是解题的关键.8.(5分)如图,四边形ABCD是平行四边形,CE⊥AD于点E,DF⊥BA交BA的延长线于点F.(1)求证:△ADF∽△DCE;(2)当AF=2,AD=6,且点E恰为AD中点时,求AB的长.【分析】(1)由平行四边形的性质知CD∥AB,即∠DAF=∠CDE,再由CE⊥AD、DF⊥BA知∠AFD=∠DEC=90°,据此可得;(2)根据△ADF∽△DCE知=,据此求得DC=9,再根据平行四边形的性质可得答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴CD∥AB,∴∠DAF=∠CDE,又∵CE⊥AD、DF⊥BA,∴∠AFD=∠DEC=90°,∴△ADF∽△DCE;(2)∵AD=6、且E为AD的中点,∴DE=3,∵△ADF∽△DCE,∴=,即=,解得:DC=9,∵四边形ABCD是平行四边形,∴AB=CD=9.【点评】本题主要考查相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的判定和性质及平行四边形的性质.9.(5分)二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).(1)求二次函数图象的对称轴;(2)当﹣4≤x≤1时,求y的取值范围.【分析】(1)根据抛物线的对称性和待定系数法求解即可;(2)根据二次函数的性质可得.【解答】解:(1)把点(1,﹣2)代入y=x2﹣2mx+5m中,可得:1﹣2m+5m=﹣2,解得:m=﹣1,所以二次函数y=x2﹣2mx+5m的对称轴是x=﹣,(2)∵y=x2+2x﹣5=(x+1)2﹣6,∴当x=﹣1时,y取得最小值﹣6,由表可知当x=﹣4时y=3,当x=﹣1时y=﹣6,∴当﹣4≤x≤1时,﹣6≤y≤3.【点评】本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.10.(6分)如图,AC是⊙O的直径,点D是⊙O 上一点,⊙O的切线CB与AD的延长线交于点B,点F是直径AC上一点,连接DF并延长交⊙O于点E,连接AE.(1)求证:∠ABC=∠AED;(2)连接BF,若AD=,AF=6,tan∠AED=,求BF的长.【分析】(1)直接利用圆周角定理以及切线的性质定理得出∠ACD=∠ABC,进而得出答案;(2)首先得出DC的长,即可得出FC的长,再利用已知得出BC的长,结合勾股定理求出答案.【解答】(1)证明:连接DC,∵AC是⊙O的直径,∴∠BDC=90°,∴∠ABC+∠BCD=90°,∵⊙O的切线CB与AD的延长线交于点B,∴∠BCA=90°,∴∠ACD+∠BCD=90°,∴∠ACD=∠ABC,∴∠ABC=∠AED;(2)解:连接BF,∵在Rt△ADC中,AD=,tan∠AED=,∴tan∠ACD==,∴DC=AD=,∴AC==8,∵AF=6,∴CF=AC﹣AF=8﹣6=2,∵∠ABC=∠AED,∴tan∠ABC==,∴=,解得:BD=,故BC=6,则BF==2.【点评】此题主要考查了切线的性质与判定以及勾股定理等知识,正确得出∠ACD=∠ABC是解题关键.11.(7分)在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n经过点A (﹣1,0)和B(0,3).(1)求抛物线的表达式;(2)抛物线与x轴的正半轴交于点C,连接BC.设抛物线的顶点P 关于直线y=t的对称点为点Q,若点Q落在△OBC的内部,求t的取值范围.【分析】(1)利用待定系数法即可解决问题;(2)分别求出点Q落在直线BC和x轴上时的t的值即可判断;【解答】解:(1)∵抛物线y=﹣x2+mx+n经过点A(﹣1,0)和B(0,3),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)如图,易知抛物线的顶点坐标为(1,4).观察图象可知当点P关于直线y=t的对称点为点Q中直线BC上时,t=3,当点P关于直线y=t的对称点为点Q在x轴上时,t=2,∴满足条件的t的值为2<t<3.【点评】本题考查二次函数的性质、待定系数法、轴对称等知识,解题的关键是熟练掌握基本知识,学会寻找特殊点解决问题,属于中考常考题型.。
广东历年中考数学倒数第二题
(19年).如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是△ACD 的内心,BC ·BE=25,求BG 的长.(18年)24.如图,四边形ABCD 中,AB AD CD ==,以AB 为直径的O e 经过点C ,连接,AC OD 交于点E .(1)证明://OD BC ;(2)若tan 2ABC ∠=,证明:DA 与O e 相切;(3)在(2)条件下,连接BD 交于O e 于点F ,连接EF ,若1BC =,求EF 的长.(17年)24.如题24图,AB 是⊙O 的直径,AB =4√3,点E 为线段OB 上一点(不与O 、B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连结CB.(1)求证:CB 是∠ECP 的平分线;(2)求证:CF=CE;(3)当CF CP =34时,求劣弧 的长度(结果保留π).(16年)过点B 作⊙O 的切线BD ,与CA 的延长线交于点D ,与半径AO 的延长线交于点E ,过点A 作⊙O 的切线AF ,与直径BC 的延长线交于点F .(1)求证:△ACF ∽△DAE ;(2)若S △AOC =,求DE 的长; (3)连接EF ,求证:EF 是⊙O 的切线.(15年)24. ⊙O 是△ABC 的外接圆,AB 是直径,过»BC的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG , CP ,P B.(1) 如题24﹣1图;若D 是线段OP 的中点,求∠BAC 的度数;(2) 如题24﹣2图,在DG 上取一点k ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形;»BC(3) 如题24﹣3图;取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥A B.(14年)24.如图,☉O是△ABC的外接圆,AC是直径.过点O作线段OD⊥AB于点D,延长DO交☉O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于点F,连结PF.⏜的长(结果保留π);(1)若∠POC=60°,AC=12,求劣弧PC(2)求证:OD=OE;(3)求证:PF是☉O的切线.(13年)24.如图,☉O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC 交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是☉O的切线.。
中考倒数第二题考相似证全等和折叠
中考倒数第二题考相似证全等和折叠在中考数学试题中,倒数第二题往往涉及到几何知识,其中相似证全等和折叠是历年中考的热点。
为了帮助同学们更好地应对这一题型,本文将从以下几个方面进行讲解:相似证全等和折叠的重要性、解题策略与技巧、实战演练以及总结与建议。
一、中考倒数第二题概述中考数学倒数第二题主要考察考生对几何图形的理解和运用能力,尤其是在相似、全等、折叠等方面的综合运用。
题目通常以图文结合的方式出现,要求考生根据已知条件,运用相关几何知识进行论证或求解。
在这类题目中,相似证全等和折叠是关键知识点。
二、相似证全等和折叠的重要性1.相似:相似三角形或图形在形状上具有相似性,但其大小不一定相同。
掌握相似三角形的判定条件和性质,能帮助我们快速找到解题思路。
2.全等:全等三角形或图形的形状和大小都相同。
在解题过程中,若能证明两个三角形或图形全等,将为后续的求解奠定基础。
3.折叠:折叠题要求考生根据折叠过程中的变化,分析图形间的相似性和全等性。
掌握折叠图形的性质和折叠过程中的变化,有助于提高解题效率。
三、解题策略与技巧1.观察图形,提炼已知条件和所求问题。
2.运用相似、全等、折叠等相关几何知识,寻找解题思路。
3.熟练掌握相似三角形的判定条件和性质,如AA相似、SSS相似等。
4.灵活运用全等三角形的判定和性质,如SAS、ASA、AAS等。
5.注意图形的折叠过程,分析折叠前后的相似性和全等性。
6.善用辅助线,如添加平行线、作垂线等,为证明相似或全等创造条件。
四、实战演练与例题解析例题:如图,△ABC与△DEF相似,且AB=DE,BC=EF。
求证:AC=DF。
解析:1.根据题意,已知△ABC∽△DEF,AB=DE,BC=EF。
2.求出相似比:BC/DE=AC/DF。
3.由BC=EF,得EF/DE=AC/DF。
4.结合1、3式,得BC/DE=EF/DE,即BC=EF。
5.故AC=DF,得证。
五、总结与建议1.熟练掌握相似、全等、折叠等相关几何知识,提高解题能力。
第十八章全国通用版中考数学:《平行四边形》与坐标系结合压轴题(二)—解析版
第十八章专题:《平行四边形》与坐标系结合压轴题(二)1.如图,在平面直角坐标系中,AB //OC, A (0, 12), B (a, c) , C (b, 0),并且a, b满足b= 府市 /口' + 16. 一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点 B 运动;动点Q 从点。
出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P 运动到点B时,点Q随之停止运动.设运动时间为t (秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,APQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.(1) •, b= ^a-21 J^T^+16,••.a=21, b=16,故B (21, 12) C (16, 0); (2)由题意得:AP=2t, QO=t,贝U: PB=21-2t , QC=16-t,•••当PB=QC时,四边形PQCB是平行四边形,.•.21-2t=16-t,解得:t=5,,P (10, 12) Q (5, 0);(3)当PQ=CQ 时,过Q 作QN^AB,由题意得:122+t2=(16-t) 2, 解得:t=3.5,故P (7, 12), Q (3.5, 0),当PQ=PC时,过P作PM ±x轴,由题意得:QM=t , CM=16-2t ,则t=16-2t,解得:t=16, 2t=32, 3 3故P( 32,12), Q(16,3 30).2.如图1,在平面直角坐标系中, AB ,y 轴于点A, BC ,x 轴于点B,点D 为线段BC 的中点,若AB=a , CD=b ,且J 2 a 8 v 5 +/4我 a +2屈=b .连接AD ,在线段OC 上取一点E,使/ EAD= / DAB .(1)贝U a=, b=(2)求证:AE=OE+CD ;【解答】(1) a =4 v15 , b =2 后,(2)由(1)可知 AB=4 75, CD=BD=2 V 5 , • . AB=CB ,,.AB ±y 轴于点 A, BC±x 轴于点 B,,乙 BAO= / B= / AOC=90° ,••・四边形ABCO 是矩形,••・AB=CB , ••・四边形ABCO 是正方形,延长 CO 至u M ,使得 OM=BD ,贝u ^ABD AOM , ,/4=/M, Z1 = Z2=Z3,. OA//BC, . ・/4=/2+/5=/5+/3=/EAM , . . / M= / EAM , • . AE=EM=OE+OM=OE+BD ••• BD=CD , .1. AE=OE+CD .(3)如图 2 中,设 AE=EM=x .在 RtAAOE 中,AO 2+OE 2=AE 2, - x 2= (4<5 ) 2+ (x-2 J 5 ) 2, . . x=5石, OE=3 而,•.D (4V 5, 2 45), E (3V5 , 0), •. F (0, -6V5 )风0)3.如图,在平面直角坐标系中,有一矩形ABCD,其中A(0, 0), B (m, 0) , D (0, n), m是最接近质的整数,n是16的算术平方根,若将4ABC沿矩形又•角线AC所在直线翻折,点B落在点E处,AE与边CD相交于点M .(1)求AC的长;(2)求4AMC的面积;(3)求点E的坐标.【解答】(1)•' m是最接近#5的整数,• ' m=8,.「n 是16 的算术平方根,,n=4,,B (8, 0), D (0, 4),.••点C 矩形ABCD 的一个顶点,..C (8, 4),,AB=8, BC=4 ,AC=4 J5 ,(2)由折叠有,CE=AD=BC=4 , AE=AB=8 ,设DM=x 则CM=8-x ,・. /ADM= / CEM , /AMD=/CME, /.A ADM ^ACEM , • .AM=CM=8-x , ME=MD , 在RtAADM 中,AD=4 , DM=x , AM=8-x ,根据勾股定理有:AD2+DM 2=AM 2,即:16+x2= (8-x) 2, •1- x=3 , DM=3 , CM=5 , S AAMC = —Ch/|X AD=)>^M=10,2 2(3)过点E作EFXCD,如图,由(2)有,CM=5 , CE=4, ME=DM=3在Rt^CEM 中,由射影定理得,CE2=CFXCM , 16=CFX5,,CF=3.2,••・Ma CE=CMK EF (直角三角形的面积的两种计算) ,,EF=2.4,• . DF=CD -CF=4.8 , BC+EF=6.4 , . . E (4.8, 6.4)4 .已知正方形OABC 在平面直角坐标系中,点 A, C 分别在x 轴,y 轴的正半轴上,等腰直角三角形OEF 的直角顶点O 在原点,E, F 分别在OA, OC 上,且OA=4 , OE=2 .将AOEF 绕点O 逆 时针旋转,得△OE I F I ,点E, F 旋转后的对应点为Ei, Fi.(I )①如图①,求EiFi 的长;②如图②,连接CFi, AEi,求证△OAEi^^OCFi;「(II)将AOEF 绕点O 逆时针旋转一周,当 OEi//CFi 时,求点Ei 的坐标(直接写出结果即可)姝 姝CB C 石【解答】(I )①解:二.等腰直角三角形 OEF 的直角顶点O 在原点,OE=2, / EOF=90 , OF=OE=2 ,「. EF=2 血,・ ••将AOEF 绕点 O 逆时针旋转,得△OE i F i, ••.E i F i =EF=2 J 2 ; ②证明:四边形OABC 为正方形,OC=OA .・ •・将AOEF 绕点 O 逆时针旋转,得 △OE i F i,AOE i =/COF i, • △OEF 是等腰直角三角形,・•.△OEiFi 是等腰直角三角形, ••OE i =OF i.在 AOAE i 和 ^OCF i 中,OA=OC, /AOEi=/COF i, OEi=OFi% E・•.△OAE 卢^OCF i (SAS);(n)解:••• OEXOF,卜过点F与OE平行的直线有且只有一条,并与OF垂直,当三角板OEF绕。
初2011级初三下总复习 倒数第二题应用题
初三总复习专题倒数第二题,二次函数的应用1:某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不超过45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.(1)若该商场获利为w元,试写出利润w与销售单价x之间的关系式,售价定为多少元时,商场可以获利最大,最大利润为多少元?(2)若该商场获利不低于500元,试确定销售单价x的范围.2:(2010年江苏省泰州市济川实验初中中考模拟题) 某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出yB与x的函数关系式.(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式.(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?3:国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=170-2x,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2与x之间的函数关系式;(2)求月产量x的范围;(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?4:恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?5:某公司有甲、乙两个绿色农场品种植基地,在收获期这两个基地当天收获的某种农场品,一部分存入仓库,另一部分运往外地销售。
中考试题的压轴倒数第二题
中考试题的压轴倒数第二题常常是“二次函数”的考查,一般有两个相关联的变量,只用设一个未知数,另一个用其表示。
最值问题也是该题常考查的,结合实际的取值范围求出数值。
“一元二次不等式、数据的分析,处理”有时也会出现,但因为较简单,所以出现的概率低23(本题12分)下图是B、C两市到A市的公路示意图,小明和小王提供如下信息:小明:普通公路EA与高速公路DA的路程相等;小王:A、B两市的路程(B--D--A)为240千米,A、c两市的路程(C--E--A)为290千米,小明汽车在普通公路BD上行驶的平均速度是30千米/时,在高速公路DA上行驶的平均速度是90千米/时;小王汽车在高速公路CE上行驶的平均速度是lOO千米/时,在普通公路EA上行驶的平均速度是40千米/时;小明汽车从B市到A市不超过5时;小王:汽车扶C市到A市也不超过5时.若设高速公路AD的路程为x千米.(1)根据以上信息填表:(2)试确定高速公路AD的路程范围.23.(本题l2分)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,设做竖式纸盒x个.①根据题意,完成以下表格:②按两种纸盒的生产个数来分,有哪几种生产方案(2)若有正方形纸板162张,长方形纸板口张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.则n的值是.(写出一个即可)23.(12分)某小区现有的停车位173个,该小区计划恰好投资24万元再建造若干个停车位.据测算,再建造费用分别为室内停车位0.6万元/个,露天停车位0.3万元/个.设再建造室内停车位a个,露天停车位b 个.(1)若再建造63个停车位,求a,b的值;第23题1 2 3 4 5 6 7 8 9 10 11 12 月份(2)考虑到实际因素,计划再建造室内停车位的数量与现有的停车位的数量和不少于总停车位(包括现有的停车位和计划再建造停车位)80%,求该小区最多可再建露天停车位的个数.23.(本题12分)在日常生活中,我们经常有目的地收集数据,分析数据,作出预测.(1)下面是小芳家2009年全年月用电量的条形统计图.① 2009最大的是第② 求2009(2根据2009量将达到240千瓦时.假设今年5月至6月用电量月增长率是6月至7月用电量月增长率的1.5倍,小芳家今年6月份的用电量是多少千瓦时?23、某饮料批发商销售某种品牌的饮料,进价4元/瓶,售价8元/瓶.为了促销,商家规定凡是一次性购买400瓶以上的,每多买1瓶,售价就降低0.0025元(例如:某人买500瓶饮料,于是每瓶降价0.0025×(500﹣400)=0.25元,就可以按7.75元/瓶的价格购买,总价为500×7.75=3875元),但是最低价为5元/瓶.(1)求顾客一次至少买多少瓶,才能以最低价购买?(2)写出当一次购买400瓶以上(包括400瓶),总利润y 元与购买量x 瓶之间的函数关系式.(3)有一天,一位顾客买了1100瓶,另一位顾客买了1200瓶,商家发现卖了1100瓶反而比卖1200瓶赚的钱少,为了使每次卖的多赚钱也多,最低价5元/瓶,至少要提高到多少?为什么?23、(本题12分)2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况。
陕西2023中考数学最后一道压轴题的典型例题讲解
陕西2023中考数学最后一道压轴题的典型例题讲解1. 引言陕西2023年中考数学考试备受关注,其中最后一道压轴题更是备受瞩目。
本文将对这一典型例题进行全面讲解,以帮助同学们更好地理解题目背后的数学原理。
2. 题目描述题目如下:已知一元二次方程\(3x^2+4x-5=0\)的一个根是\(\alpha\),求\(\alpha\)的一个确定值。
3. 排除法解题这道题的解法可以有多种,其中一种比较简单的方法是使用排除法。
通过对一元二次方程的解的性质进行分析,我们可以排除一些不符合条件的根的取值,从而得到\(\alpha\)的确定值。
一元二次方程\(ax^2+bx+c=0\)的根可以通过求根公式得到:\[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]由于给定的一元二次方程为\(3x^2+4x-5=0\),所以\(a=3, b=4, c=-5\)。
根据求根公式,我们可以得到两个根:\[x=\frac{-4\pm\sqrt{4^2-4*3*(-5)}}{2*3}=\frac{-4\pm\sqrt{16+60}}{6}=\frac{-4\pm\sqrt{76}}{6}\]显然,给定的一元二次方程的根不满足问题中给定的条件,所以我们可以排除掉这组根。
进过排除法,我们知道\(\alpha\)的确定值不在\(\frac{-4\pm\sqrt{76}}{6}\)中。
4. 求和乘积解题除了排除法外,我们还可以利用一元二次方程根的特性进行解题。
根据一元二次方程的根与系数的关系,我们可以得到一元二次方程的两个根的和和积分别为:\(x_1+x_2=\frac{-b}{a}, x_1x_2=\frac{c}{a}\)将给定的一元二次方程\(3x^2+4x-5=0\)的系数代入上面的公式,可以得到:\(x_1+x_2=\frac{-4}{3}, x_1x_2=-\frac{5}{3}\)根据题目要求,已知一元二次方程\(3x^2+4x-5=0\)的一个根是\(\alpha\),所以另一个根可以表示为\(\frac{-4}{3}-\alpha\)根据这两根的特性,我们可以得到以下的等式:\(\alpha+\frac{-4}{3}-\alpha=\frac{-4}{3}\)\(\alpha*\frac{-4}{3}=-\frac{5}{3}\)通过解以上方程组,可以得到\(\alpha=-\frac{1}{3}\)5. 总结与回顾通过以上的讲解,我们可以得出一元二次方程的根的确定值为\(\alpha=-\frac{1}{3}\)。
中考数学考前倒数第二题(图形旋转动点专题)强化练习.doc
中考数学考前倒数第二题(图形旋转动点专题)强化练习中考数学考前倒数第二题(图形旋转、动点专题)强化练习1. 在△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A 1B 1C . (1)如图1,当AB ∥CB 1时,设A 1B 1与BC 相交于点D .证明:△A 1CD 是等边三角形;(2)如图2,连接AA 1、BB 1,设△ACA 1和△BCB 1的面积分别为S 1、S 2.求证:S 1∶S 2=1∶3;(3)如图3,设AC 的中点为E ,A 1B 1的中点为P ,AC =a ,连接EP .当θ= °时,EP 的长度最大,最大值为 .2.如图,已知直线PA 交⊙0于A 、B 两点,AE 是⊙0的直径.点C 为⊙0上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D 。
A 1 A C C A 1 A 1A DB 1BBB 1E P图1 图2 图3 θ θ θ(1)求证:CD 为⊙0的切线; (2)若DC+DA=6,⊙0的直径为l0,求AB 的长度.3. 在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F 。
(1)在图1中证明CE CF =;(2)若90ABC ∠=︒,G 是EF 的中点(如图2),直接写出∠BDG 的度数;(3)若120ABC ∠=︒,FG ∥CE ,FG CE =,分别连结DB 、DG (如图3),求∠BDG 的度数。
E AC B4. 已知:如图,四边形ABCD 是等腰梯形,其中AD ∥BC ,AD =2,BC =4,AB =DC =2,点M 从点B 开始,以每秒1个单位的速度向点C 运动;点N 从点D 开始,沿D —A —B 方向,以每秒1个单位的速度向点B 运动.若点M 、N 同时开始运动,其中一点到达终点,另一点也停止运动,运动时间为t (t >0).过点N 作NP ⊥BC 于P ,交BD 于点Q .(1)点D 到BC 的距离为 ; (2)求出t 为何值时,QM ∥AB ; (3)设△BMQ 的面积为S ,求S 与t 的函数关系式; (4)求出t 为何值时,△BMQ 为直角三角形.5. 如图,已知抛物线249y x bx c=-++与x 轴相交于A 、B 两点,其对称轴为直线2x =,且与x 轴交于点D ,AO=1.A B D M N P Q(1) 填空:b=_______。
中考数学:以三角形为载体的几何压轴问题真题+模拟(原卷版北京专用)
中考数学以三角形为载体的几何压轴问题【方法归纳】北京市中考的倒数第二道大题多数是已三角形为载体的几何综合问题,主要涉及特殊的三角形及相似三角形,这类问题的解决要熟知知各种图形的性质与判定,并且这类题目的解决有时还需要全等三角形和相似三角形、勾股定理、方程思想与分类讨论的相关知识,因此能熟练应用各种知识是解决此类问题的关键.常用到的三角形的知识有:(1)涉及全等问题解题要领:①探求两个三角形全等的条件:SSS,SAS,ASA,AAS及HL,注意挖掘问题中的隐含等量关系,防止误用“SSA”;②掌握并记忆一些基本构成图形中的等量关系;③把握问题中的关键,通过关键条件,发现并添加辅助线.(2)涉及到计算边的关系解题要领:①线段的垂直平分线常常用于构造等腰三角形;②在直角三角形中求边的长度,常常要用到勾股定理;③根据三角形的三边长度,利用勾股定理的逆定理可判断其为直角三角形;④已知直角三角形斜边的中点,考虑运用直角三角形斜边上中线的性质;⑤直角三角形斜边上中线的性质存在逆定理.(3)涉及角平分线问题的解题要领:①已知角的平分线及角平分线上的点到角一边的垂线段,考虑用角平分线的性质;②角平分线的性质常常与三角形的面积相结合.解题要领:(4)涉及到直角三角形方面的解题要领:①已知直角三角形及其锐角求线段长度时,运用锐角三角函数是最常用的方法;②通过等腰三角形的性质,特殊平行四边形的性质及圆的性质构建直角三角形,再运用锐角三角函数求解;③熟记特殊直角三角形的三边关系:30°角的直角三角形的三边的比为1∶∶2,等腰直角三角形的三边关系为1∶1∶;④锐角三角函数也常常作为相似三角形中,求对应边的比值的补充.【典例剖析】【例1】(2021·北京·中考真题)如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC上,以点A为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.6.(2022·北京·中考真题)在△ABC中,∠ACB=90∘,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF,若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2,若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【真题再现】1.(2013·北京·中考真题)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.2.(2017·北京·中考真题)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.3.(2019·北京·中考真题)已知∠AOB=30°,H为射线OA上一定点,OH=√3+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.4.(2020·北京·中考真题)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线上一动点,连接DE,过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明.【模拟精练】一、解答题1.(2022·北京市广渠门中学模拟预测)如图,等腰Rt△ABC中,∠BAC=90°,AB=AC,点P为射线BC上一动点(不与点B、C重合),以点P为中心,将线段PC逆时针旋转α角,得到线段PQ,连接AP、BQ、M为线段BQ的中点.(1)若点P在线段BC上,且M恰好也为AP的中点,的值;①依题意在图1中补全图形:②求出此时α的值和BPPC(2)写出一个α的值,使得对于任意线段BC延长线上的点P,总有AP的值为定值,并证明;PM2.(2022·北京房山·二模)如图1,在四边形ABCD中,∠ABC=∠BCD,过点A作AE∥DC交BC边于点E,过点E作EF∥AB交CD边于点F,连接AF,过点C作CH∥AF交AE于点H,连接BH.(1)求证:△ABH≌△EAF;(2)如图2,若BH的延长线经过AF的中点M,求BE的值.EC3.(2022·北京东城·二模)如图,在△ABC中,AB=AC,∠CAB=2α,在△ABC的外侧作直线AP(90°−a<∠PAC<180°−2a),作点C关于直线AP的对称点D,连接AD,BD,BD交直线AP于点E.(1)依题意补全图形;(2)连接CE,求证:∠ACE=∠ABE;(3)过点A作AF⊥CE于点F,用等式表示线段BE,2EF,DE之间的数量关系,并证明.4.(2022·北京·二模)在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连接CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°①如图1,DE与BE之间的数量关系是______②如图2,点P在线段CB上,连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论.(2)如图3,若点P在线段CB的延长线上,且∠A=α(0°<α<90°),连接DP,将线段DP 绕点逆时针旋转2α得到线段DF,连接BF,请直接写出DE、BF、BP三者的数量关系(不需证明).5.(2022·北京密云·二模)如图,在等边△ABC中,点D在BA的延长线上,点P是BC边上的一个动点(点P不与点B重合),将线段PD绕点P逆时针旋转60°得到线段PE,连接BE和DE.(1)依据题意,补全图形;(2)比较∠BDE与∠BPE的大小,并证明;(3)用等式表示线段BE、BP与BD之间的数量关系,并证明.6.(2022·北京西城·二模)在△ABC中,AB=AC,过点C作射线CB′,使∠ACB′=∠ACB(点B′与点B在直线AC的异侧)点D是射线CB′上一动点(不与点C重合),点E在线段BC上,且∠DAE+∠ACD=90°.(1)如图1,当点E与点C重合时,AD 与CB′的位置关系是______,若BC=a,则CD的长为______;(用含a的式子表示)(2)如图2,当点E与点C不重合时,连接DE.①用等式表示∠BAC与∠DAE之间的数量关系,并证明;②用等式表示线段BE,CD,DE之间的数量关系,并证明.7.(2022·北京门头沟·二模)如图,在△ABC中,∠ACB = 90°,D是BC的中点,过点C作CE⊥AD,交AD于点E,交AB于点F,作点E关于直线AC的对称点G,连接AG和GC,过点B作BM⊥GC交GC的延长线于点M.(1)①根据题意,补全图形;②比较∠BCF与∠BCM的大小,并证明.(2)过点B作BN⊥CF交CF的延长线于点N,用等式表示线段AG,EN与BM的数量关系,并证明.8.(2022·北京顺义·二模)如图,在△ABC中,∠ACB=90°,AC=BC,P,D为射线AB上两点(点D在点P的左侧),且PD=BC,连接CP.以P为中心,将线段PD逆时针旋转n°(0<n<180)得线段PE.(1)如图1,当四边形ACPE是平行四边形时,画出图形,并直接写出n的值;(2)当n=135°时,M为线段AE的中点,连接PM.①在图2中依题意补全图形;②用等式表示线段CP与PM之间的数量关系,并证明.9.(2022·北京北京·二模)在△ABC中,∠ACB=90°,CA=CB,D是AB的中点,E为边AC上一动点(不与点A,C重合),连接DE,将线段BA绕点B逆时针旋转90°得到线段BF,过点F作FH⊥DE于点H,交射线BC于点G.(1)如图1,当AE<EC时,比较∠ADE与∠BFG的大小;用等式表示线段BG与AE的数量关系,并证明;(2)如图2,当AE>EC时,依题意补全图2,用等式表示线段DE,CG,AC之间的数量关系.10.(2022·北京四中模拟预测)已知,点B是射线AP上一动点,以AB为边作△ABC,∠BCA= 90°,∠A=60°,将射线BC绕点B顺时针旋转120°,得到射线BD,点E在射线BD上,BE+BC= m.(1)如图1,若BE=BC,求CE的长(用含m的式子表示);(2)如图2,点F在线段AB上,连接CF、EF.添加一个条件:AF、BC、BE满足的等量关系为______,使得EF=CF成立,补全图形并证明.11.(2022·北京昌平·二模)如图,已知∠MON=α(0°<α<90°),OP是∠MON的平分线,点A是射线OM上一点,点A关于OP对称点B在射线ON上,连接AB交OP于点C,过点A作ON 的垂线,分别交OP,ON于点D,E,作∠OAE的平分线AQ,射线AQ与OP,ON分别交于点F,G.(1)①依题意补全图形;②求∠BAE度数;(用含α的式子表示)(2)写出一个α的值,使得对于射线OM上任意的点A总有OD=√2AF(点A不与点O重合),并证明.12.(2022·北京海淀·二模)已知AB = BC,∠ABC = 90°,直线l是过点B的一条动直线(不与直线AB,BC重合),分别过点A,C作直线l的垂线,垂足为D,E.(1)如图1,当45°<∠ABD<90°时,①求证:CE +DE =AD;②连接AE,过点D作DH⊥AE于H,过点A作AF∥BC交DH的延长线于点F.依题意补全图形,用等式表示线段DF,BE,DE的数量关系,并证明;(2)在直线l运动的过程中,若DE的最大值为3,直接写出AB的长.13.(2022·北京市十一学校二模)如图,已知∠AOB=60°,点P为射线OA上的一个动点,过点P作PE⊥OB,交OB于点E,点D在∠AOB内,且满足∠DP A=∠OPE,DP+PE=5.(1)当DP=PE时,求DE的长;(2)在点P的运动过程中,请判断射线OA上是否存在一个定点M,使得DM的值不变?并证ME明你的判断.14.(2022·北京平谷·一模)如图,在△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点(不与点A,B重合),作射线CD,过点A作AE⊥CD于E,在线段AE上截取EF=EC,连接BF交CD于G.(1)依题意补全图形;(2)求证:∠CAE=∠BCD;(3)判断线段BG与GF之间的数量关系,并证明.15.(2022·北京房山·一模)已知:等边△ABC,过点B作AC的平行线l.点P为射线AB上一个动点(不与点A,B重合),将射线PC绕点P顺时针旋转60°交直线l于点D.(1)如图1,点P在线段AB上时,依题意补全图形;①求证:∠BDP=∠PCB;②用等式表示线段BC,BD,BP之间的数里关系,并证明;(2)点P在线段AB的延长线上,直接写出线段BC,BD,BP之间的数量关系.16.(2022·北京市第一六一中学分校一模)已知点P为线段AB上一点,将线段AP绕点A 逆时针旋转60°,得到线段AC;再将线段BP绕点B逆时针旋转120°,得到线段BD;连接AD,取AD中点M,连接BM,CM.(1)如图1,当点P在线段CM上时,求证:PM//BD;(2)如图2,当点P不在线段CM上,写出线段BM与CM的数量关系与位置关系,并证明.17.(2022·北京·二模)如图,在等边ΔABC中,点D是边BC的中点,点E是直线BC上一动点,将线段AE绕点E逆时针旋转60°,得到线段EG,连接AG,BG.(1)如图1,当点E与点D重合时.①依题意补全图形;②判断AB与EG的位置关系;(2)如图2,取EG的中点F,写出直线DF与AB夹角的度数以及FD与EC的数量关系,并证明.18.(2022·北京朝阳·一模)在△ABC中,D是BC的中点,且∠BAD≠90°,将线段AB沿AD所在直线翻折,得到线段AB′,作CE∥AB交直线AB′于点E.(1)如图,若AB>AC,①依题意补全图形;②用等式表示线段AB,AE,CE之间的数量关系,并证明;(2)若AB<AC,上述结论是否仍然成立?若成立,简述理由:若不成立,直接用等式表示线段AB,AE,CE之间新的数量关系(不需证明).19.(2022·北京·中国人民大学附属中学分校一模)如图,正方形ABCD中,P为BD上一动点,过点P作PQ⊥AP交CD边于点Q.(1)求证:PA=PQ;(2)用等式表示PB、PD、AQ之间的数量关系,并证明;(3)点P从点B出发,沿BD方向移动,若移动的路径长为4,则AQ的中点M移动的路径长为(直接写出答案).20.(2022·北京·东直门中学模拟预测)在Rt△ABC中,∠ABC=90°,∠BAC=30°.D为边BC上一动点,点E在边AC上,CE=CD.点D关于点B的对称点为点F,连接AD,P 为AD的中点,连接PE,PF,EF.(1)如图1,当点D与点B重合时,写出线段PE与PF之间的位置关系与数量关系;(2)如图2,当点D与点B,C不重合时,判断(1)中所得的关系是否仍然成立?若成立,请给出证明,若不成立,请举出反例.21.(2022·北京西城·一模)已知正方形ABCD,将线段BA绕点B旋转α(0°<α<90°),得到线段BE,连接EA,EC.(1)如图1,当点E在正方形ABCD的内部时,若BE平分∠ABC,AB=4,则∠AEC=______°,四边形ABCE的面积为______;(2)当点E在正方形ABCD的外部时,①在图2中依题意补全图形,并求∠AEC的度数;②作∠EBC的平分线BF交EC于点G,交EA的延长线于点F,连接CF.用等式表示线段AE,FB,FC之间的数量关系,并证明.22.(2022·北京市三帆中学模拟预测)已知:如图所示△ABC绕点A逆时针旋转α得到△ADE (其中点B与点D对应).(1)如图1,点B关于直线AC的对称点为B′,求线段B′E与CD的数量关系;(2)当α=32°时,射线CB与射线ED交于点F,补全图2并求∠AFD.23.(2022·北京市第五中学分校模拟预测)如图,在△ABC中,AB=AC,∠BAC=40°,作射线CM,∠ACM=80°.D上,连接AD,E是AD的中点,C关于点E的对称点为F,连接DF.(1)依题意补全图形;(2)判断AB与DF的数量关系并证明;(3)平面内一点G,使得DG=DC,FG=FB,求∠CDG的值.24.(2022·北京朝阳·模拟预测)如图①,Rt△ABC和Rt△BDE重叠放置在一起,∠ABC=∠DBE=90°,且AB=2BC,BD=2BE.(1)观察猜想:图①中线段AD与CE的数量关系是,位置关系是;(2)探究证明:把△BDE绕点B顺时针旋转到图②的位置,连接AD,CE,判断线段AD与CE的数量关系和位置关系如何,并说明理由;(3)拓展延伸:若BC=√5,BE=1,当旋转角α=∠ACB时,请直接写出线段AD的长度.25.(2022·北京市师达中学模拟预测)四边形ABCD是正方形,将线段CD绕点C逆时针旋转2α(0°<α<45°),得到线段CE,连接DE,过点B作BF⊥DE交DE的延长线于F,连接BE.(1)依题意补全图1;(2)直接写出∠FBE的度数;(3)连接AF,用等式表示线段AF与DE的数量关系,并证明.26.(2012·北京顺义·中考模拟)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立?并说明理由;(2)如图4,如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.27.(2015·北京·模拟预测)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=√2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.28.(2021·北京·二模)在等腰三角形ABC中,AB=AC,∠BAC=α (0°<α<60°).点P是△ABC内一动点,连接AP,BP,将△APB绕点A逆时针旋转α,使AB边与AC重合,得到△ADC,射线BP与CD或CD延长线交于点M(点M与点D不重合).(1)依题意补全图1和图2;由作图知,∠BAP与∠CAD的数量关系为;(2)探究∠ADM与∠APM的数量关系为;(3)如图1,若DP平分∠ADC,用等式表示线段BM,AP,CD之间的数量关系,并证明.。
中考数学 倒数第二题解答题(按字母顺序排列) 人教新课标版
;
(2)求出 t 为何值时,QM∥AB; (3)设△BMQ 的面积为 S,求 S 与 t 的函数关系式;
A
ND
(4)求出 t 为何值时,△BMQ 为直角三角形. Q
4 / 111
B
MP
C
【备战 2012】中考数学 倒数第二题解答题(按字母顺序排列) 人教新课标版 21.(满分 14 分)
该配件的原材料价格一路攀升,每件配件的原材料价格 y1(元)与月份 x(1≤x≤9,且 x 取整数)之间的函数 关系如下表:
月份 x
1
2
3
4
5
6
7
8
9
价格 y1(元/件) 56
4
20
随着国家调控措施的出台,原材料价格的涨势趋缓,10 至 12 月每件配件的原材料价格 y(2 元)与月份 x(10≤x≤12,
2 / 111
【备战 2012】中考数学 倒数第二题解答题(按字母顺序排列) 人教新课标版 (3)根据 1 至 5 月的总利润 1700 万元得到关系式求值即可. 解答:解:(1)设 y1=kx+b,
则
,解得
,
∴y1=20x+540(1≤x≤9,且 x 取整数);
设 y2=ax+b,则
,解得
,
∴y2=10x+630(10≤x≤12,且 x 取整数);
设直线cd的解析式为ykxb直线cd的解析式为yx1又15bcmdcobmcdocbmdobcdcbmme轴上且bpbm此时满足条件的点p有两个它们是p1025p202作mey轴于点ebmc90则bmebcmbmbc又bmbppebe此时满足条件的点p有一个它是p3以bm为底时作bm的垂直平分线分别交y轴bm由2得bmc90pfcm是bm的中点bp此时满足条件的点p有一个它是p4综上符合条件的点p有四个
中考数学倒数第二题解题技巧
中考数学倒数第二题解题技巧
中考数学是小学生做最头疼的科目之一,也是学习最复杂的科目之一。
在此,我们讨论中考数学倒数第二题解题技巧。
首先,要解决倒数第二题的问题,必须先充分理解题目的意思。
在理解题目的时候,应该注意以下几点:
1、精确定义题目:中考数学倒数第二题是什么样的?要把具体
的题目精确描述出来,更加清楚地了解题目;
2、确定题目中的变量:解题过程中,要加以细致的推理,确定
变量中使用的具体数值;
3、把问题分解成有限个步骤:将复杂的题目分解成若干个基本
步骤,以便更容易地解决。
接下来,我们就来介绍一些解决中考数学倒数第二题的基本技巧: 1、要做好题目的前期准备工作:在开始解题之前,要认真阅读
题目,弄清具体题目中各参数之间的关系,及要求你解决的问题;
2、要完善题目的基本公式:掌握和使用题目中的一些基本公式,以便帮助自己更加有效地解决问题;
3、要进行清晰的步骤计算:在解决问题的过程中,要做好清晰
的步骤计算,以便更加准确地把握准确的答案;
4、要多加练习:解决中考数学倒数第二题的技巧,要多加练习,以此提高自己的解题能力。
上述是解决中考数学倒数第二题的一些基本技巧,让学生们可以在考试中取得满意的成绩。
但是,学生们不应该仅仅停留在这些技巧
上,应该更加努力,学习更多关于数学的知识和技能。
数学是一门很有趣的学科,学习数学可以让学生更加深入地探索世界,也能更有效地掌握它,巩固数学知识,不断提升自己的数学水平。
以上就是有关中考数学倒数第二题解题技巧的介绍,希望能帮助到大家,让同学们在解决这道题的时候更加轻松,取得优异的成绩。
23年广州中考倒数第二压轴题解题方法
23年广州中考倒数第二压轴题是一道较为复杂的数学题,考查了学生对于概率问题的理解和运用能力。
通过分析题目,我们可以得出以下解题步骤:1. 题目分析题目要求求解在一个编号为1到40的数球中,取出8个数球,其中有编号为1到32的数球各取一个的概率。
我们要明确题目中的条件:共有40个编号为1到40的数球,要取出8个数球,其中包括编号为1到32的数球各取一个。
整个题目要求计算这个事件发生的概率。
2. 列举基本情况我们可以列举一些基本情况,比如总的抽样方法数和符合条件的抽样方法数。
总的抽样方法数C(40,8),符合条件的抽样方法数为C(32,8)。
根据组合数的计算公式,我们可以得到上述两个组合数的具体值。
3. 计算概率根据概率的定义,事件A发生的概率P(A)等于A发生的次数除以总的可能性次数。
题目要求的概率即为符合条件的抽样方法数除以总的抽样方法数。
将符合条件的抽样方法数和总的抽样方法数代入计算,即可得到最终的概率值。
4. 结论经过计算,可以得出题目要求的概率值为C(32,8)/C(40,8)。
通过组合数的计算,可以精确求解这个概率值,进而得出题目的答案。
通过以上步骤,我们可以清晰地解析了23年广州中考倒数第二压轴题的解题方法。
这道题目考查了学生对于概率问题的理解和计算能力,通过理清题目要求、列举基本情况、计算概率和得出结论的步骤,我们可以高效地解决这类概率问题。
希望同学们在备战中考时,能够灵活运用所学的数学知识,轻松应对各种复杂的数学题目。
根据上述解题步骤,我们不仅可以解答这道23年广州中考倒数第二压轴题,还能够在解题过程中深入理解概率问题的本质和运用方法。
概率作为数学中的一个重要分支,涉及到对事件发生可能性的量化分析,通过对概率问题的深入学习和实际应用,我们可以提高自己的数学思维和解决问题的能力。
接下来,我们将从概率的定义、概率的计算方法以及概率在实际生活中的应用等方面展开讨论。
让我们来回顾一下概率的定义。
北京市近五年中考数学倒数第二题几何综合题分析
北京市近五年中考数学倒数第二题几何综合题分析先贴上近五年的真题,最好还是先让孩子试着做一做,再看后边的分析。
在上一篇中,我们重点强调了变中抓不变的思想,因为它是我们发现事物规律,提炼出一般性结论和方法的基础。
相信大部分同学做完这五道题都已经发现,每年的题虽然在变,但考察的主要知识点不变,都是围绕全等三角形展开。
而在全等三角形中,考察的知识点有两个:一个是性质;一个是判定。
由于这是压轴题,所以通常两个点都需要涉及,那么命题思路就比较固定了,一般分为三步。
第一步:找出一组简单全等第二步:全等性质的应用第三步:证一组复杂全等(设置简单全等,是为了考察全等性质的应用,通常从简单全等中推出的边角对应相等,会是证明复杂全等的关键。
)当然,无论是全等三角形的性质还是判定,都是围绕边、角对应相等展开的,所以实质上角度关系、边长关系的分析与转化,才是解决问题的关键点。
在我们正式分析每一道题目之前,照例还是先简单梳理一下知识点。
知识点一:全等三角形的性质全等三角形的性质非常简单,课本上就一句话:“全等三角形对应边相等,全等三角形对应角相等”。
不过,我们已经发现,性质应用处在第二步这个纽带环节,所以必须要引起足够的重视。
三角形有三条边三个角,共6组对应,证明全等需要三组对应,那么证明出全等后还可以推出另外三组对应。
建议思路不太清晰的同学一定要将推出的三组对应写出来,再分别看看是否可以跟其它条件结合推出其它边角相等,为第三部证复杂全等做好充足的准备。
知识点二:全等三角形的判定全等三角形的判定,学校讲了五种方法:SSS、SAS、HL、ASA、AAS。
可以再简单归纳一下:一定要找到三组对应;三组对应中至少有一组边对应;如果是两组边对应一组角对应时,角必须是夹角或直角。
相信绝大部分同学对这五种判定方法都非常熟悉,但光熟悉判定方法是远远不够的,因为对于全等三角形判定的考察,难点通常是在添加辅助线构造全等上。
因此,我们对常见辅助线的添法进行了归纳,如倍长中线、截长补短等。
2020年九年级中考数学压轴试题(附答案)
那么∠BAF 的大小为( )
A.40°
B.45°
C.50°
D.10°
第 4 题图
第 5 题图
第 6 题图
5.如图,在△ ABC 中,AB=AC,∠A=30°,AB 的垂直平分线 l 交 AC 于点 D,则∠CBD 的
度数为( )
A.30°
B.45°
C.50°
D.75°
6.甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路
九年级数学中考压轴试题第 7 页
∴FC=4cos30°=2 3(cm).
故答案为:2 3. 14.解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a), ∴当 y=0 时,x1=1a,x2=﹣a, ∴抛物线与 x 轴的交点为(1a,0)和(﹣a,0). ∵抛物线与 x 轴的一个交点的坐标为(m,0)且 2<m<3, ∴当 a>0 时,2<1a<3,解得:13<a<12; 当 a<0 时,2<﹣a<3,解得﹣3<a<﹣2. 故答案为:13<a<12或﹣3<a<﹣2.【少填给 1 分,填错或不填不给分】
程后,乙开始出发,当乙超出甲 150 米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速
度跑向体育馆.如图是甲、乙两人在跑步的全过程中经过的路程 y(米)与甲出发的时间 x(秒)
的函数图象,则乙在途中等候甲用了( )秒
A.200
B.150
C.100
D.80
二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)
21.(8 分)AB 为⊙O 直径,BC 为⊙O 切线,切点为 B,CO 平行于弦 AD,作直线 DC. (1)求证:DC 为⊙O 切线; (2)若 AD•OC=8,求⊙O 半径 r.
【精品】北京市初三数学中考压轴题
OA 1 OP
CB 于点 P、Q,∠ MON 绕点 O 任意旋转. 当
时,
的值为
OB 2 OQ
值为
.(
用含 n 的式子表示 )
OA
;当
OB
A
1 OP
时,
的
n OQ
O
P M
23.已知:关于 x 的方程
2
(a 1)x (a 1)x 2
0.
C
Q
B
N
( 1)当 a 取何值时,方程 (a 1)x2 ( a 1)x 2 0 有两个不相等的实数根;
参考以上解题思路解决以下问题:
已知 a, b,c 都是非负数, a< 5,且 a2 a 2b 2c 0 , a 2b 2c 3 0 .
( 1)分别用含 a 的代数式表示 4b, 4c; ( 2)说明 a, b,c 之间的大小关系.
23.已知抛物线 y kx2 (k 2) x 2 (其中 k 0 ). ( 1)求该抛物线与 x 轴的交点坐标及顶点坐标 (可以用含 k 的代数式表示 ); (2)若记该抛物线的顶点坐标为 P(m, n) ,直接写出 n 的最小值;
形是菱形,求点 Q 的坐标.
2012 西城南区一统 24.已知:⊙ O 是△ ABC 的外接圆,点 M 为⊙ O 上一点 . ( 1)如图,若△ ABC 为等边三角形, BM=1, CM =2,求 AM 的长;
( 2)若△ ABC 为等腰直角三角形,∠ BAC= 90 , BM a , CM
有 a, b 的代数式表示 ).
( 1)结合以上信息及图 2 填空:图 2 中的 m=
;
( 2)求 B, C 两点的坐标及图 2 中 OF 的长;
学习必备
欢迎下载
中考数学压轴题解题技巧
关于中考数学压轴题的思考2013、5、18思考一:中考数学压轴题如何攻克对中考数学卷,压轴题是考生最怕的,以为它一定很难,不敢碰它;其实,对历年中考的压轴题作一番分析,就会发现,其实也不是很难;这样,就能减轻做“压轴题”的心理压力,从中找到应对的办法;压轴题难度有约定:历年中考,压轴题一般都由3个小题组成;第1题容易上手,得分率在以上;第2题稍难,一般还是属于常规题型,得分率在与之间,第3题较难,能力要求较高,但得分率也大多在与之间;近十年来,最后小题的得分率在以下的情况,只是偶尔发生,但一旦发生,就会引起各方关注;控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为各地区数学试卷设计的一大特色,以往茂名卷的压轴题大多不偏不怪,得分率稳定在与之间,即考生的平均得分在7分或8分;由此可见,压轴题也并不可怕;压轴题一般都是代数与几何的综合题,很多年来都是以函数和几何图形的综合作为主要方式,用到三角形、四边形、相似形和圆的有关知识;如果以为这是构造压轴题的唯一方式那就错了;方程与图形的综合的几何问题也是常见的综合方式,就是根据已知的几何条件列出代数方程而得解的,这类问题在外省市近年的中考试卷中也不乏其例;动态几何问题中有一种新题型,如北京市去年的压轴题,在图形的变换过程中,探究图形中某些不变的因素,它把操作、观察、探求、计算和证明融合在一起;在这类动态几何问题中,锐角三角比作为几何计算的一种工具,它的重要作用有可能在压轴题中初露头角;总之,压轴题有多种综合的方式,不要老是盯着某种方式,应对压轴题,决不能靠猜题、押题;分析结构理清关系:解压轴题,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的,还是“递进”的,这一点非常重要;如果1、2、3三个小题是平列关系,它们分别以大题的已知为条件进行解题,1的结论与2的解题无关,2的结论与3的解题无关,整个大题由这三个小题“拼装”而成;如果1、2两个小题是“递进关系”,1的结论由大题的已知条件证得,除已知外,1的结论又是解2所必要的条件之一;思考二:中考数学压轴题解题技巧之分类讨论题分类讨论在数学题中经常以最后压轴题的方式出现,是满分率比较低的一种题,这一类题的特点就是小题较多,且容易失分,常常会被同学们忽略,经常忘记分类讨论,而大题却经常是讨论不全,讨论全了结果还不一定对;而且,这类题往往陷阱比较多,一个不注意就会掉进出题陷阱中;因此我们在考试当中一定要养成以下几个好习惯;以下几点是需要大家注意分类讨论的1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决;在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合;2、讨论点的位置,一定要看清点所在的范围,是在直线上,还是在射线或者线段上;3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论;4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍;5、考查点的取值情况或范围;这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围;6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点;7、由动点问题引出的函数关系,当运动方式改变后比如从一条线段移动到另一条线段时,所写的函数应该进行分段讨论;值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的;最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留;思考三:破解中考数学压轴题四个秘诀切入点一:做不出、找相似,有相似、用相似;压轴题牵涉到的知识点较多,知识转化的难度较高;学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形;切入点二:构造定理所需的图形或基本图形即作辅助线;在解决问题的过程中,有时添加辅助线是必不可少的;对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题;中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形;切入点三:紧扣不变量,并善于使用前题所采用的方法或结论;在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变;切入点四:在题目中寻找多解的信息分类思考; 图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题;思考四:压轴题的做题技巧1、对自身数学学习状况做一个完整的全面的认识,根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”;所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍;2、解数学压轴题做一问是一问;第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问;过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质;例解压轴题解题:如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B4,0、C8,0、D8,8.抛物线y=ax2+bx过A、C两点.1直接写出点A的坐标,并求出抛物线的解析式;2动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形请直接写出相应的t值.解:1点A的坐标为4,8将A 4,8、C8,0两点坐标分别代入y=ax2+bx8=16a+4b得0=64a+8ba=-12,b=4∴抛物线的解析式为:y=-12x2+4x …………………3分2①在Rt △APE 和Rt △ABC 中,tan ∠PAE=PE AP =BC AB ,即PE AP =48∴PE=12AP=12t .PB=8-t .∴点E的坐标为4+12t,8-t. ∴点G 的纵坐标为:-124+12t 2+44+12t=-18t 2+8. …………………5分∴EG=-18t 2+8-8-t =-18t 2+t.∵-18<0,∴当t=4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. …………………11分压轴题解题技巧练习一、 对称翻折平移旋转1.2010年南宁如图12,把抛物线2y x =-虚线部分向右平移1个单位长度,再向上平移1个单位长度,得到抛物线1l ,抛物线2l 与抛物线1l 关于y 轴对称.点A 、O 、B 分别是抛物线1l 、2l 与x 轴的交点,D 、C 分别是抛物线1l 、2l 的顶点,线段CD 交y 轴于点E .1分别写出抛物线1l 与2l 的解析式;2设P 是抛物线1l 上与D 、O 两点不重合的任意一点,Q 点是P 点关于y 轴的对称点,试判断以P 、Q 、C 、D 为顶点的四边形是什么特殊的四边形说明你的理由.3在抛物线1l 上是否存在点M ,使得ABMAOED S S ∆∆=四边形,如果存在,求出M 点的坐标,如果不存在,请说明理由.2.福建2009年宁德市如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点点A 在点B 的左边,点B 的横坐标是1.1求P 点坐标及a 的值;4分2如图1,抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;4分3如图2,点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点点E 在点F 的左边,当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.5分二、 动态:动点、动线3.2010年辽宁省锦州如图,抛物线与x 轴交于Ax 1,0、Bx 2,0两点,且x 1>x 2,与y 轴交于点C 0,4,其中x 1、x 2是方程x 2-2x -8=0的两个根. 1求这条抛物线的解析式;2点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE的面积最大时,求点P 的坐标;3探究:若点Q 是抛物线对称轴上的点,是否存在这样的点Q ,使△QBC 成为等腰三角形若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.4.2008年山东省青岛市已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC =3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为ts0<t<2,解答下列问题:1当t为何值时,PQ∥BC2设△AQP的面积为y2cm,求y与t之间的函数关系式;3是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分若存在,求出此时t的值;若不存在,说明理由;4如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形若存在,求出此时菱形的边长;若不存在,说明理由.5.09年吉林省如图所示,菱形ABCD的边长为6厘米,∠B=60°.从初始时刻开始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A→C→B的方向运动,点Q以2厘米/秒的速度沿A→B→C→D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动.设P、Q运动的时间为x秒时,△APQ与△ABC重.叠部分...的面积为y平方厘米这里规定:点和线段是面积为0的三角形,解答下列问题:1点P、Q从出发到相遇所用时间是__________秒;2点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时x的值是__________秒;3求y与x之间的函数关系式.6.2009年浙江省嘉兴市如图,已知A、B是线段MN上的两点,4=MN,1=MB.以A为中心顺时针旋转点M,以B为中心逆时MA,1>针旋转点N,使M、N两点重合成一点1求x的取值范围;2若△ABC为直角三角形,求x的值;3探究:△ABC的最大面积三、圆7.2010青海如图10,已知点A3,0,以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.1以直线l为对称轴的抛物线过点A及点C0,9,求此抛物线的解析式;2抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求此切线长;3点F是切线DE上的一个动点,当△BFD与EAD△相似时,求出BF的长.8.2009年中考天水如图1,在平面直角坐标系xOy,二次函数y=ax2+bx+ca >0的图象顶点为D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为3,0,OB=OC,tan∠ACO=错误!. 1求这个二次函数的解析式;2若平行于x轴的直线与该抛物线交于点M、N,且以MN为直径的圆与x 轴相切,求该圆的半径长度;3如图2,若点G2,y是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大求此时点P 的坐标和△AGP 的最大面积.9.09年湖南省张家界市在平面直角坐标系中,已知A -4,0,B 1,0,且以AB 为直径的圆交y 轴的正半轴于点C ,过点C 作圆的切线交x 轴于点D . 1求点C 的坐标和过A ,B ,C 三点的抛物线的解析式;2求点D 的坐标;3设平行于x 轴的直线交抛物线于E ,F 两点,问:是否存在以线段EF 为直径的圆,恰好与x 轴相切若存在,求出该圆的半径,若不存在,请说明理由.角坐标O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C .1求抛物线的解析式;2抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长.3过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.四、比例比值取值范围11.2010年怀化图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M1,-4.1求出图象与x 轴的交点A,B 的坐标;2在二次函数的图象上是否存在点P,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;3将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.12. 湖南省长沙市2010年如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,82OA = cm, OC=8cm,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OA 方向以每秒2 cm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒.1用t 的式子表示△OPQ 的面积S ;2求证:四边形OPBQ 的面积是一个定值,并求出这个定值;3当△OPQ 与△PAB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.13.成都市2010年在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于A B 、两点点A 在点B 的左侧,与y 轴交于点C ,点A 的坐标为(30)-,,若将经过A C 、两点的直线y kx b =+沿y 轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线2x =-.1求直线AC 及抛物线的函数表达式;2如果P 是线段AC 上一点,设ABP ∆、BPC ∆的面积分别为ABP S ∆、BPC S ∆,且:2:3ABP BPC S S ∆∆=,求点P 的坐标;3设Q 的半径为l,圆心Q 在抛物线上运动,则在运动过程中是否存在Q 与坐标轴相切的情况若存在,求出圆心Q 的坐标;若不存在,请说明理由.并探究:若设⊙Q 的半径为r ,圆心Q 在抛物线上运动,则当r 取何值时,⊙Q 与两坐轴同时相切五、探究型14.内江市2010如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点.1请求出抛物线顶点M 的坐标用含m 的代数式表示,A B 、两点的坐标; 2经探究可知,BCM △与ABC △的面积比不变,试求出这个比值; 3是否存在使BCM △为直角三角形的抛物线若存在,请求出;如果不存在,请说明理由.15.重庆市潼南县2010年如图, 已知抛物线c bx x y ++=221与y 轴相交于C,与x 轴相交于A 、B,点A 的坐标为2,0,点C 的坐标为0,-1.1求抛物线的解析式;2点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D,连结DC,当△DCE 的面积最大时,求点D的坐标;3在直线BC上是否存在一点P,使△ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由.16.2008年福建龙岩如图,抛物线254y ax ax=-+经过ABC△的三个顶点,已知BC x∥轴,点A在x轴上,点C在y轴上,且AC BC=.1求抛物线的对称轴;2写出A B C,,三点的坐标并求抛物线的解析式;3探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在PAB△是等腰三角形.若存在,求出所有符合条件的点P坐标;不存在,请说明理由.17.09年广西钦州26.本题满分10分如图,已知抛物线y=34x2+bx+c与坐标轴交于A、B、C三点, A点的坐标为-1,0,过点C的直线y=34t x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.1填空:点C的坐标是_▲_,b=_▲_,c=_▲_;2求线段QH的长用含t的式子表示;3依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ 相似若存在,求出所有t的值;若不存在,说明理由.18.09年重庆市已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.1求过点E、D、C的抛物线的解析式;2将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与1中的抛物线交于另一点M,6,那么EF=2GO是否成立若成立,请给予证明;若不点M的横坐标为5成立,请说明理由;3对于2中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形若存在,请求出点Q的坐标;若不存在,请说明理由.B19.09年湖南省长沙市如图,抛物线y3,0、B两点,与y轴相交于点C0,3.当x2+bx +ca≠0的函数值y相等,连结AC、1求实数a,b,c的值;2若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;3在2的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似若存在,请求出点Q的坐标;若不存在,请说明理由.20.08江苏徐州如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF =90°,∠EDF=30°操作将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板....DEF..,并使边DE与边AB交于点P,边EF与边BC于点Q ..E.旋转...绕点探究一在旋转过程中,(1) 如图2,当CE 1EA=时,EP 与EQ 满足怎样的数量关系并给出证明. (2) 如图3,当CE 2EA=时EP 与EQ 满足怎样的数量关系,并说明理由. (3) 根据你对1、2的探究结果,试写出当CE EA=m 时,EP 与EQ 满足的数量关系式 为_________,其中m 的取值范围是_______直接写出结论,不必证明 探究二若,AC =30cm,连续PQ,设△EPQ 的面积为Scm 2,在旋转过程中:(1) S 是否存在最大值或最小值若存在,求出最大值或最小值,若不存在,说明理由.(2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化不出相应S 值的取值范围.六、最值类22.2010年恩施 如图11,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为3,0,与y 轴交于C 0,-3点,点P 是直线BC 下方的抛物线上一动点.1求这个二次函数的表达式.2连结PO、PC,并把△POC沿CO翻折,得到四边形POP/C, 那么是否存在点P,使四边形POP/C为菱形若存在,请求出此时点P的坐标;若不存在请说明理由.3当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.。
2025中考数学二次函数压轴题专题练习23 将军饮马模型(学生版+解析版)
专题23将军饮马模型一、知识导航通过全国中考试题分析来看,将军饮马的才莫型多出现在中考二次函数压轴题笫二问中出现,难度不大,但需要,主意对称点的选择,动点通常在对称轴上,而且已知定点中往往有一个与x轴的交点.考法主要有以下几种:1.求取最小值时动点坐标2.求最小值.3.求三角形或四边形周长最小值.模型一:两定点一动点!如图,A,B力定点,P为[上动点,求AP+BP最小值:8解析.作点A关于直线的对称点A',连接PA',则PA'=PA,所以PA+PB=PA'+PB二1,“8p,,当A'、P、B三点共线的时候,PA'+PB=A'B,此时为最小值(两点之间线段最短),,.BA端点,',、,,/,、、,,、,、,l,ll ,',p折点;;'模型二:如图,P为定点,M、N分别为O A和OB上的动点,求6.P MN周长最小值A A。
声N8。
,,P`、/\\PB解析:分别作点P关于OA、OB的对称点,则t::.PM N的周长为PM+MN+NP=P'M+M N+NP",当P'、M、N、P“共线时,t:i.P MN周长最小模型三:两定点两动点如图,P、Q为两定点,M、N分别为OA、OB上的动点,求四边形PQ M N的最小值A A。
声B。
NQp\“出飞`\8解析:. P Q是条定线段,只需考虑PM+MN+NQ最小值即可,分别作点P、Q关于OA、OB对称,PM+MN+NQ=P'M+MN+NQ',当P'、M、N、Q'共线时,四边形PMNQ的周长最小。
如图,P为定点,M、N分别为OA、OB上的动点,求PM+MN最小值。
AA。
渗NBp .、一p ·伈1:、}NB解析:作点P关于OA对称的点P',PM+MN=P'M+MN,过点P'作OB垂线分别交OA、OB于点M、N,得PM+MN 赦小值(点到直线的连线中,垂线段最短)模型五:将军饮马有距离例一、如图,A、D 为定点,B、C为直线l上两动点,BC为定值,求AB+BC+CD最小值?• D.ABc解析.BC力定值,只需求AB+CD枭小即可,平移AB至CE ,则变成求CE+CD的最小值,基本将军饮马的模型例二、如图,A、D 为定点,B、C 力直线l i 、h 上两动点,BC ..L h ,求AB +BC+CD 最小值?.Al1c/2• D解析.B C力定值,只需求AB+CD赦小即可,平移CD至BE,则变成求AB+BE枭小,基本将军饮马.-例一:如图l (注:与图2完全相同),在直角坐标系中,抛物线经过点A(l ,O)、8(5,0)、C(0,4)三点.x图1(I)求抛物线的解析式和对称轴,图2(2)p是抛物线对称轴上的一点,求满足PA+PC的值为最小的点P坐标(请在图1中探索);【分析)(1)将点A 、B 的坐标代入二次函数表达式得:y =a(儿-1)(x -5)=a(x 2-6x +5),即可求解;(2)连接B 、C 交对称轴千点P ,此时PA+PC 的值为最小,即可求解;【解答】解:(1)将点A 、B 的坐标代入二次函数表达式得:y = a (x-l)(x-5) = a (.:r2 -6x+ 5), 则5a =4,解得:a ==,4抛物线的表达式为:4勹(4 24y =�(x 2 -6x+5) =�x 2-—x +4,函数的对称轴为:x =3,顶点坐标为(3,_竺);5 5 5(2)连接B 、C 交对称轴千点P ,此时PA +PC 的值为最小,将点B 、C 的坐标代入一次函数表达式I y =kx +b 得I{0 = S k +b b=4y解得Ilk =-5,4b=4-O直线BC 的表达式为: 4y =--:-x +4,5::::::,','亡,'.:·-::::宁,.1.、.图当x =3时,.8-5=y8故点P(3,一);5例二:如图,直线y =-.,\,+3与x 轴、x 轴另一交点为A,顶点为D.y 轴分别交于B 、C 两点,抛物线y=-x 2+bx+c 经过点B 、C ,与(I)求抛物线的解析式;(2)在入轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;yx备用图【分析】(1)直线y =-x +3与x 轴、y 轴分别交千B 、将点B 、C 的坐标代入二次函数表达式,即可求解;C 两点,则点B 、C 的坐标分别为(3,0)、(0,3),(2)如图1,作点C 关于x 轴的对称点C',连接C D'交x 轴千点E ,则此时EC +ED 为最小,即可求解1【解答】解:(1)直线y =-x +3与x 轴、y 轴分别交于B 、C 两点,则点B 、C 的坐标分别为(3,0)、(0,3),将点B 、C 的坐标代入二次函数表达式得:{-9+3b+c=O,解得:b=2c = 3 {c=3'故函数的表达式为:y=-x 2+2x +3,令y =O ,则x =-l 或3,故点A(-1,0)1(2)如图1,作点C 关于x 轴的对称点C',连接CI Y 交x 轴于点E ,则此时E C +E D 为最小,函数顶点D 坐标为(1,4),点C'(0,-3),将C'、D 的坐标代入一次函数表达式并解得:直线CD 的表达式为:y =?x -3, 当y =O 时,, 3一7= x 3故点E(-,0),7;.::月y、3.• 「E,','则EC +ED 的最小值为DC'=[可工言了=5丘;图1I三、中考真题演练I.(2023宁夏中考真题)如图,抛物线y=ax 2 +bx+3(G 汪0)与X 轴交千A,知点A的坐标是(-1,0),抛物线的对称轴是直线x=I.yB两点,与Y轴交千点C.已X X备用胆(I)直接写出点B 的坐标;(2)在对称轴上找一点P,使PA+PC的值最小.求点P的坐标和PA+PC的最小值;(3)第一象限内的抛物线上有一动点M,过点M作MN乒轴,垂足为N,连接BC交MN千点Q 依题意补全图形,当MQ +石CQ 的值最大时,求点M 的坐标2.(2023黑龙江齐齐哈尔中考真题)综合与探究如图,抛物线y=-x 2+bx+c 上的点A,C 坐标分别为(0,2),(4,0),抛物线与x 轴负半轴交千点B,点M 为y 轴负半轴上一点,且OM=2,连接AC,CM.yyx x(l)求点M的坐标及抛物线的解析式;(4)将抛物线沿x轴的负方向平移得到新抛物线,点A的对应点为点A',点C的对应点为点C',在抛物线平移过程中,当MA'+M C的值最小时,新抛物线的顶点坐标为,MA '+M C 的最小值为3.(2023湖南张家界中考真题)如图,在平面直角坐标系中,已知二次函数y=ax 2+bx+c 的图象与过由交千点A(-2,0)和点B(6,0)两点,与y 轴交千点C(0,6)点D 为线段BC 上的一动点.y yXX图1(I)求二次函数的表达式;(2)如图l ,求t::.AOD周长的最小值;图24.(2023山东枣庄中考真题)如图,抛物线y= -x2 +bx+c经过A(一1,0),C(0,3)两点,并交x轴千另一点B,点M是抛物线的顶点,直线AM与轴交千点D.x x备用图(J)求该抛物线的表达式:(2)若点H是.x轴上一动点,分别连接MH,DH,求1\1H+DH的最小值;5.如图,已知抛物线y=ax2+bx-6与x轴的交点A(-3, 0), B (I., 0),与y轴的交点是点C.yxA(I)求抛物线的解析式:(2)点P是抛物线对称轴上一点,当PB+PC的值最小时,求点P的坐标:(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M,N,使得LCMN=90且以点C,M, N为顶点的三角形与.OAC相似?若存在,求出点M和点N的坐标:若不存在,说明理由.6.如图,在平面直角坐标系中,抛物线y=--产+bx+c经过点A(4,0)、B(0,4)、 C.其对称轴l交x 轴千点D,交直线AB千点F,交抛物线千点E.(I)求抛物线的解析式;(2)点P为直线l上的动点,求ti.PBC周长的最小值;(3)点N为四线AB上的一点(点N不与点F重合),在抛物线上是否存在一点M,使以点E、F、N、M为顶点的四边形为平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.7 已知,抛物线y=x2+2x-3,与x轴交千A B两点(点A在点B的左侧),交y轴于点C,抛物线的顶点为点D.(I)求AB的长度和点D的坐标;(2)在该抛物线的对称轴上找一点P,求出PB+PC的值最小时P点的坐标;(3)点M是第三象限抛物线上一点,当s MAC.最大时,求点M的坐标,并求出s MAC的最大值.专题23将军饮马模型、知识导航通过全国中考试题分析来看,将军饮马的枝型多出现在中考二次函数压轴题笫二问中出现,难度不大,但需要注意对称点的选择,动点通常在对称轴上,而且已知定点中往往有一个与x轴的交点.考法主要有以下几种:l.求取最小值时动点坐标2.求最小值.3.求三角形或四边形周长最小值模型一:两定点一动点如图,A,B为定点,P为l上动点,求AP+BP最小值二B解析·作点A关于直线的对称点A',连接PA',则PA'=PA,所以PA+PB=PA'+P B/lll¥ABpII当A'、P、B三点共线的时候,PA'+PB=A'B,此时为最小值(两点之间线段最短)/重BA端点平了模型二:如图,P为定点,M、N分别为OA和OB上的动点,求6.PMN周长最小值A A。
2020年沈阳中考题倒数第二题的几种做法
2020年沈阳中考题倒数第二题的几种做法哎呀,说到2020年沈阳中考的倒数第二题,那可真是让人头疼的一道题。
不过别担心,我这就给你细细道来几种解题方法,保证让你豁然开朗。
首先,咱们得先看看题目是啥。
这题是关于二次函数的,题目大概是这样的:给定一个二次函数y=ax^2+bx+c,然后给出了几个条件,要求你求解a、b、c的值。
方法一:直接代入法这个最简单,也是最直接的方法。
题目不是给了你几个条件吗?你就把这几个条件代入到二次函数的公式里,然后解方程组。
比如,如果题目告诉你这个函数经过点(1,2)和(2,3),那你就可以把这两个点的坐标代入到函数里,得到两个方程,然后解这个方程组,就可以求出a、b、c的值了。
方法二:配方法这个方法稍微复杂一点,但是也挺有意思的。
你先把二次函数的公式改写成顶点式,就是y=a(x-h)^2+k的形式。
然后,你再根据题目给出的条件,求出h和k的值。
最后,你再把h和k的值代入到顶点式里,就可以求出a、b、c的值了。
方法三:画图法这个方法最直观,但是也最费时间。
你可以根据题目给出的条件,画出二次函数的图像。
然后,你再根据图像,求出a、b、c的值。
这个方法虽然费时间,但是可以让你更直观地理解二次函数的性质。
方法四:待定系数法这个方法最灵活,也最考验你的数学功底。
你可以根据题目给出的条件,设出a、b、c的值,然后代入到二次函数的公式里,得到一个关于a、b、c的方程组。
然后,你再解这个方程组,就可以求出a、b、c的值了。
哎呀,说了这么多,你是不是已经头昏眼花了?别急,我再给你举个例子,让你更清楚地理解这几种方法。
比如说,题目告诉你这个二次函数经过点(1,2)和(2,3),那你就可以用直接代入法,把这两个点的坐标代入到函数里,得到两个方程:a+b+c=2和4a+2b+c=3。
然后,你再解这个方程组,就可以求出a、b、c的值了。
你看,其实这道题也没那么难,只要你掌握了这几种方法,就可以轻松应对了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考试题的压轴倒数第二题常常是“二次函数”的考查,一般有两个相关联的变量,只用设一个未知数,另一个用其表示。
最值问题也是该题常考查的, 结合实际的取值范围求出数值。
“一元二次不等式、数据的分析,处理”有时也会出现,但因为较简单,所以出现的概率低
23(本题12分)下图是B、C两市到A市的公路示意图,小明和小王提供如下信息:小明:普通公路EA与高速公路DA的路程相等;
小王:A B两市的路程(B--D--A)为240千米,A、c两市的路程(C--E--A)为290千米,小明汽车在普通公路BD上行驶的平均速度是30千米/时,在高速公路DA上行驶的平均速度是90千米/时;
小王汽车在高速公路CE上行驶的平均速度是100千米/时,在普通公路EA上行驶的平均速度是40千米/时;
小明汽车从B市到A市不超过5时;小王:汽车扶C市到A市也不超过5时.
若设高速公路AD的路程为x千米.
(1)根据以上信息填表
(2)试确定高速公路AD的路程范围
23.(本题12分)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.
(1)现有正方形纸板162张,长方形纸板340张•若要做两种纸盒共100个,设做竖式纸盒
x
竖式纸盒(个)横式纸盒(个)
x
正方形纸板(张)2(100-x)
长方形纸板(张)4x
②按两种纸盒的生产个数来分,有哪几种生产方案?
(2)若有正方形纸板162张,长方形纸板口张,做成上述两种纸盒,纸板恰好用完•已知
290<a<306.则n的值是 .(写出一个即可)
23. (12分)某小区现有的停车位173个,该小区计划恰好投资24万元再建造若干个停车位.据测算,再建造费用分别为室内停车位0.6万元/个,露天停车位0.3万元/个.设再建造室内停车位a个,露天停车位b个. (1 )若再建造63个停车位,求a, b的值;
(2 )考虑到实际因素,计划再建造室内停车位的数量与现有的停车位的数量和不少于总停车位(包括现有的停车位和计划再建造停车位)80%,求该小区最多可再建露天停车位的个
数.
23.(本题12分)在日常生活中,我们经常有目的地收集数据,分析数据,作出预测.
(1)下面是小芳家2009年全年月用电量的条形统计图.
①2009年小芳家月用电量最小的是_______________ 月,四个季度中用电量最大的是第
__________ 季度;
②求2009年5月至6月用电量的月增长率;
(2)今年小芳家添置了新电器.已知今年5月份的用电量是120千瓦时,根据2009年5
月至7月用电量的增长趋势,预计今年7月份的用电量将达到240千瓦时•假设今年
5月至6月用电量月增长率是6月至7月用电量月增长率的1.5倍,小芳家今年6月份的用电量是多少千瓦时?
23、某饮料批发商销售某种品牌的饮料,进价4元/瓶,售价8元/瓶•为了促销,商家规
定凡是一次性购买400瓶以上的,每多买1瓶,售价就降低0.0025元(例如:某人买500 瓶饮料,于是每瓶降价0.0025 X( 500 - 400) =0.25元,就可以按7.75元/瓶的价格购买,总价为500X7.75=3875元),但是最低价为5元/瓶.
(1)求顾客一次至少买多少瓶,才能以最低价购买?
(2)写出当一次购买400瓶以上(包括400瓶),总利润y元与购买量x瓶之间的函数关系式.
(3)有一天,一位顾客买了1100瓶,另一位顾客买了1200瓶,商家发现卖了1100瓶反而比卖1200瓶赚的钱少,为了使每次卖的多赚钱也多,最低价5元/瓶,至少要提高到多少?
为什么?
23、(本题12分)2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天 开展活动,调查快餐营养情况。
他们从食品安全监督部门获取了一份快餐的信息 (如图)。
根据信息,解答下列问题。
o
————■
— '1 1 — — —
■
-
— —■
-W
IB
信息 ;
1•快噸的底分;蔗眼脂舫」 矿物质%碳水优舎增;
2•快荽总屢董为400克; 汛脂肪康
占海百分比为5%; |
4•所香餐白屬■威童是矿物质戚 量的4倍-
23. (12分)(2012?温州)温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将
n 件产品运往A , B, C 三地销售,要求运往 C 地的件数是运往 A 地件数的2倍,各地的运费 如图所示.设安排 x 件产品运往A 地.
(1 )当n=200时,①根据信息填表:
A 地
B 地
C 地 合计 产品件数(件) x 2x
200
运费(元)
30x
②若运往B 地的件数不多于运往 C 地的件数,总运费不超过4000元,则有哪几种运输方案? (2)若总运费为5800元,求n 的最小值.
(1 )求这份快餐中所含脂肪质量;
(2 )若碳水化合物占快餐总质量的 40%求这份快餐所含蛋白 质的质量;
(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于 85%求其中所含碳水化合物质量的最大值。
23.(本题10分)某校举办八年级数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、
数学应用、魔方复原,每个项目得分都按一定百分比折算后计入总分。
下表为甲、乙、丙三位同学的得分情况(单位:分)
(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算计入总分,根据猜测,求出甲的总分;
(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖。
现获悉乙、丙的总分分别是70分,80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问:甲能否获得这次比赛的一等奖?。