【精选】高等光学课件第1讲
合集下载
光学基础知识详细版.pptx
2. 物像关系基础公式
• 高斯公式:
p 为物距,q 为像距,f 为焦距
在一般摄影时像距其实与焦距非常接近, 但是在微距摄影时,像距则可能大于焦距,此 时放大率会超过 1。利用高斯公式其实也可以 导出放大率公式:
放大率 M﹦p/q
2. 色差
• 透镜最主要像差一般为色差,大家都知道三棱 镜会将白光分散为光谱,透镜的侧面看来其实 也像棱镜,所以会有色差,红光波长较长,结 果红光焦点就比蓝光焦点长,因此焦点不在同 一平面上,所以目镜看红光影像清晰,蓝光影 像就不清晰,反之亦然,用没有消色差的透镜 当物镜就会看到物体镶了红边或蓝边,不够清 晰。
称轴线 今后我们主要研究的是共轴球面系统和平面镜、
二、成像基本概念 1、透镜类型 正透镜:凸透镜,中心厚,边缘薄,使光线会聚,也叫会聚透镜
会聚:出射光线相对于入射光线向光轴方向折转
负透镜:凹透镜,中心薄,边缘厚,使光线发散,也叫发散透镜
发散:出射光线相对于入射光线向远离光轴方向折转
2、透镜作用---成像
1. 焦距
在单透镜而言,如果窗外景物够远,那么透镜到倒立影像之距离 可视为焦距。如要更确实的量测,可以对着太阳在地面呈像,再 量测透镜到影像的距离。
• 要知道真正的焦距,还有一个方法,就是用物距与像距来计算, 因为物距与像距的比与物高与像高的比值是一样的,物高可以找 一个已知高度的物体,像高可以量测,物距可以量测,像距就可 以计算出来,而物距超过焦距五十倍以上时,算出来的像距已经 极接近焦距的数值。
第五节 光学系统类别和成像的概念
各种各样的光学仪器 显微镜:观察细小的物体 望远镜:观察远距离的物体
各种光学零件——反射镜、透镜和棱镜
光学系统:把各种光学零件按一定方式组合起来,满足一定的要求
《光学教程第一章》课件
《光学教程第一章》PPT 课件
光学教程第一章PPT课件
章节概述
光学基础知识
从光学的起源和发展,介绍光学的基本概念 和原理。
光的本质和特性
探索光的波粒二象性,频率和波长,速度以 及偏振。
光的传播和衍射
解读光的传播方式,直线传播,散射和吸收, 以及衍射现象。
光的折射和反射
揭示光的折射规律,全反射,反射规律,并 介绍实验。
3
光的速度
探索光在不同介质中传播时的速度变化。
4
光的偏振
讲解光的偏振现象及其在实际应用的意义。
光的传播和衍射
光的传播方式
详细介绍光是如何在空间中传播的。
光的散射和吸收
探讨光在遇到粗糙和杂乱表面时的散射和吸 收现象。
光的直线传播
解析光在均匀介质中直线传播的规律。
光的衍射现象
阐述光通过孔隙或障碍物时发生的衍射现象。
光的折射和反射
光的折射规律 光的全反射
光的反射规律 光的反射实验
介绍光在两个介质交界面发生折射时的规律。 探索光从光密介质射向光疏介质时发生的全反 射。 解析光在平面镜和曲面镜上的反射规律。 介绍一些简单的光的反射实验,如镜子实验。
光的干涉和衍射
光的干涉现象
阐述不同光波相互作用导致的干涉现象。
干涉的类型
光学基础知识
光的定义
详细讲解光的定义和相关概念。
光的属性
解析光的属性,如波动性和微粒性。
光的来源和产生
探索光的来源和产生,如自然光和人工光源。
光学实验
介绍一些基本的光学实验,如折射、反射和干涉。
光的本质和特性
1
光的波粒二象性
阐述光的波动性和微粒性的双重特性。
光学教程第一章PPT课件
章节概述
光学基础知识
从光学的起源和发展,介绍光学的基本概念 和原理。
光的本质和特性
探索光的波粒二象性,频率和波长,速度以 及偏振。
光的传播和衍射
解读光的传播方式,直线传播,散射和吸收, 以及衍射现象。
光的折射和反射
揭示光的折射规律,全反射,反射规律,并 介绍实验。
3
光的速度
探索光在不同介质中传播时的速度变化。
4
光的偏振
讲解光的偏振现象及其在实际应用的意义。
光的传播和衍射
光的传播方式
详细介绍光是如何在空间中传播的。
光的散射和吸收
探讨光在遇到粗糙和杂乱表面时的散射和吸 收现象。
光的直线传播
解析光在均匀介质中直线传播的规律。
光的衍射现象
阐述光通过孔隙或障碍物时发生的衍射现象。
光的折射和反射
光的折射规律 光的全反射
光的反射规律 光的反射实验
介绍光在两个介质交界面发生折射时的规律。 探索光从光密介质射向光疏介质时发生的全反 射。 解析光在平面镜和曲面镜上的反射规律。 介绍一些简单的光的反射实验,如镜子实验。
光的干涉和衍射
光的干涉现象
阐述不同光波相互作用导致的干涉现象。
干涉的类型
光学基础知识
光的定义
详细讲解光的定义和相关概念。
光的属性
解析光的属性,如波动性和微粒性。
光的来源和产生
探索光的来源和产生,如自然光和人工光源。
光学实验
介绍一些基本的光学实验,如折射、反射和干涉。
光的本质和特性
1
光的波粒二象性
阐述光的波动性和微粒性的双重特性。
高等光学课件 chap1
即
J
0 t
(电流连续性方程)
•
麦氏方程的限定形式和非限定形式 用E、D、B、H四个场量写出的方程称为麦氏方程的非限定形式。 对于线性各向同性媒质,有本构关系
D E 0 r E B H 0 r H J E
用E、H二个场量写出的方程称为麦氏方程的限定形式。 微分形式
H E
积分形式
E t
E
H t
E ) dS s c t H E d l c s t dS H dl ( E
H 0
E
s
s
H dS 0
E dS q
麦克斯韦方程组是描述宏观电磁现象的总规律。
时变电磁场的边界条件
一、H的边界条件 将积分形式麦氏第一方程用于边界面上的闭 合回路,并考虑高阶小量 h 。
n
H 1t
1
2
s
l
H1
h
H dl J dS
c s
D dS t s
H2 H 2t
Js
与恒定磁场相比较
H dl J dS
B A
由麦氏第二方程
于是 即
B A t t A E 0 t E
与恒定磁场相同
与静电场相同
B1n B2n 0
表示为矢量形式
D1n D2n
表示为矢量形式
n B1 B2 0
分界面上磁感应强 度的法向分量连续
n D1 D2
两种特殊情况 • 两种无耗媒质的分界面 ( J s 0
0 )
H1t H2t 0
高等光学课件第讲群速度PPT课件
反一常、色 一散般:介谐群质速中波度电:大磁任于场相满意速足一度的空,方超程间过点光,速?场的大小随时间变量按余弦形式周期变化;
二、均匀各任向同意性一介时质中刻,场的分布随空间变量不一定按余弦形式周期变化,即空间不
光腰附近光束波阵面为平面波,z足够大时光束波阵面趋于球面波。
群速度与相一速度定的表关现系:出周期性(且称为空间非谐波☺)。
上式对任意r均成立,r的不同幂的系数必须为0,因此有:
d d1p z d d q(jzq z )0 0 d dd dp zq z q(1jz) pqjlzn1(q0qz0)
11
j
设:
q(z) R(z)W2(z)
R(z)、W(z)均为实函数,特 与性 光参 束数 的有关
令q: (z0)q0jW 02n, n为均匀介质 此的 R 时 (z)折 射 )率(
在取一展个 开波式长的一 范前围两内项般 ,,场得中:两A 情 (点r 对) 应c 的况 o、.表 n下 随s 空间t示 坐标的变的 化 g(r 等 )c幅 o.表 n面 st示 与 的等相面不
思考:按以上方法,如何由波动方程求柱面波解?
W(z)——光此 斑半径波 : 称为非均匀波。
反常色散:群速度大于相速度,超过光速?
场的大小随z轴的变化缓慢,即场大小关于z的二阶导数近乎为0,因此上式简化为:
222jk 0
2x 2y
z
构造一试探解,形式为:
(x,y,z)ejp(z)2qk(z)r2
其中 r x2y2, p(z)、q(z)均为复函,数 代入至以上方程得: 2k d d p zq(jz) q2 k(2z)q2 k(2z)d d q zr20
g(r)
,r0为dr方向上的单位矢量
大学光学经典课件L1_绪论精品文档48页
在不同I 媒2 c n 质0 T 中0 T 有E 0 2 ( :1 II12c o s( nn2 21( EE002212t)))d t 2 c n0E 0 2
在相同介质中有:I nE02
4)相对光强:
I E02
注意:
光强是一个平均值
I
S
n
2c0
E02
5)光强定义为一个平均值的原因
响应时间:能够被感知或被记录所需的最短时间 人眼的响应时间:t0.1s 最好的仪器的响应时间大约: 109s 光波的振动周期:T1015s
学好光学课的重要意义
当今科研前沿的热门学科 光学课程是众多光学方面课程的基础启蒙课程
如:激光原理与技术,量子光学,信息学光纤 光学,集成光学,光谱学,光子开关术全息光 存储技术,光纤通信技术原理,非线性光学, 晶体光学,原子光学,光电信号检测技术等
光学课的特点
内容新:中学学得不多,光学发展很快,新 内容不断涌现
nc/
故
S 0 nE2 n E2
0
c0
真空中电磁波的波动方程: EE0cos(t)
可得:E 2 E 0 2 c o s 2 (t) 1 2 E 0 2 ( 1 c o s (2 (t)))
I S T 10 T c n 0E 2 d t T 10 T c n 0E 0 2c o s 2 (t)d t
tT
人眼和接收器只能感知光波的平均能流密度 有实际意义的是光波的平均能流
三、光 谱
1)单色光:仅有单一波长的光叫单色光,否则 是非单色光。
2)谱密度: d I~d i() dI
d
3)光谱:谱密度随波长变化的分布曲线
I
d
I
i()d
0
在相同介质中有:I nE02
4)相对光强:
I E02
注意:
光强是一个平均值
I
S
n
2c0
E02
5)光强定义为一个平均值的原因
响应时间:能够被感知或被记录所需的最短时间 人眼的响应时间:t0.1s 最好的仪器的响应时间大约: 109s 光波的振动周期:T1015s
学好光学课的重要意义
当今科研前沿的热门学科 光学课程是众多光学方面课程的基础启蒙课程
如:激光原理与技术,量子光学,信息学光纤 光学,集成光学,光谱学,光子开关术全息光 存储技术,光纤通信技术原理,非线性光学, 晶体光学,原子光学,光电信号检测技术等
光学课的特点
内容新:中学学得不多,光学发展很快,新 内容不断涌现
nc/
故
S 0 nE2 n E2
0
c0
真空中电磁波的波动方程: EE0cos(t)
可得:E 2 E 0 2 c o s 2 (t) 1 2 E 0 2 ( 1 c o s (2 (t)))
I S T 10 T c n 0E 2 d t T 10 T c n 0E 0 2c o s 2 (t)d t
tT
人眼和接收器只能感知光波的平均能流密度 有实际意义的是光波的平均能流
三、光 谱
1)单色光:仅有单一波长的光叫单色光,否则 是非单色光。
2)谱密度: d I~d i() dI
d
3)光谱:谱密度随波长变化的分布曲线
I
d
I
i()d
0
第一讲光学PPT课件
着天文学、力学和光学的出现,物理学在 十八世纪开始成为科学. ❖ 牛顿则持光的微粒说,他认为波动说的最 大障碍是不能解释光的直线进行。他提出 发光物体发射出以直线运动的微粒子、微 粒子流冲击视网膜就引起视觉。它也能解 释光的折射与反射,甚至经过修改也能解 释F.M.格里马尔迪发现的“衍射”现象。 7
10
二、自然界中的光学现象
英国史前巨石阵上空出现日食
11
乌拉圭首都蒙得维的亚的
海洋博物馆上空出现的月蚀
12
日本富士山(2002年11月19日狮子座流星雨)
13
各天文台观察星辰
14
雨后的彩虹
唐初孔颖达(574-648) “若云薄漏日,日照雨滴则虹生。”
15
唐初孔颖达(574-648) “若云薄漏日,日照雨滴则虹生。”
璃 ❖ 8、各种颜色是怎么出现的,它是由同一种光传递的
吗?
2
1、光本性学说的发展史
牛顿
微粒说
惠更斯 波动说
光的电磁说
波粒二象说
3
光学历史: 几何光学
❖ 墨子对光学很有研究,对于光的直线传播、光的反射和若 干物影成像,进行了精彩的描述。
❖ 有一次,墨子进行光学实验,他在堂屋朝阳的地方,让一 个人对着小孔站在屋外,在阳光的照射下,屋内相对的墙 上出现倒立人像。墨子通过小孔成像的光学实验,阐述了 光的直线传播原理,成为后代摄影技术的先声。
❖ 法国 笛卡儿 1638年,提出一种无所不在的 “以太”假说,拒绝接受超距作用的解释, 坚持认为力只能通过物质粒子和与之紧邻 的粒子相接触来传播,把热和光看成是以 太中瞬时传播的压力。《屈光学》中提出 光的粒子假说,并用以推出光的折射定律。
❖ 斯涅耳(W. Snell, 约1580-1626)、 ❖ 费马(P.Fermat, 1601-1665) ❖ 英国 牛顿,1704年,《光学》一书出版。随
10
二、自然界中的光学现象
英国史前巨石阵上空出现日食
11
乌拉圭首都蒙得维的亚的
海洋博物馆上空出现的月蚀
12
日本富士山(2002年11月19日狮子座流星雨)
13
各天文台观察星辰
14
雨后的彩虹
唐初孔颖达(574-648) “若云薄漏日,日照雨滴则虹生。”
15
唐初孔颖达(574-648) “若云薄漏日,日照雨滴则虹生。”
璃 ❖ 8、各种颜色是怎么出现的,它是由同一种光传递的
吗?
2
1、光本性学说的发展史
牛顿
微粒说
惠更斯 波动说
光的电磁说
波粒二象说
3
光学历史: 几何光学
❖ 墨子对光学很有研究,对于光的直线传播、光的反射和若 干物影成像,进行了精彩的描述。
❖ 有一次,墨子进行光学实验,他在堂屋朝阳的地方,让一 个人对着小孔站在屋外,在阳光的照射下,屋内相对的墙 上出现倒立人像。墨子通过小孔成像的光学实验,阐述了 光的直线传播原理,成为后代摄影技术的先声。
❖ 法国 笛卡儿 1638年,提出一种无所不在的 “以太”假说,拒绝接受超距作用的解释, 坚持认为力只能通过物质粒子和与之紧邻 的粒子相接触来传播,把热和光看成是以 太中瞬时传播的压力。《屈光学》中提出 光的粒子假说,并用以推出光的折射定律。
❖ 斯涅耳(W. Snell, 约1580-1626)、 ❖ 费马(P.Fermat, 1601-1665) ❖ 英国 牛顿,1704年,《光学》一书出版。随
光学基本知识讲座PPT课件
的距离
物方焦距:物方主点到物方焦点
的距离
.
17
3.物像位置、放大率
物像位置:可相对于焦
点或主点来定义
如图所示,
以焦点来定义的物
像公式是:
xx’=ff’
以主点来定义的物
像公式是:
1/l’-1/l=1/f’
.
18
物像位置、放大率
根据上面的成像关系式,可以导出物像 之间放大倍率的计算公式
.
8
三.物像的基本概念
1.光学仪器和激光头 的光学系统都由一系 列折射面和反射面组 成
2.光轴:各个表面的 曲率中心均在同一直 线上的光学系统称为 共轴光学系统,这条 直线称为光轴
.
TOP 66A光 学 系 统 示 意 图 9
物像的基本概念
3.成像:以A为顶点的入 射光束经光学系统一系 列表面折射和反射后, 变为以A’点为顶点的出 射光束,称A为物点,A’ 为像点,A’为物点A的像; 物所在的空间称为物空 间 像所在的空间称为像空 间
反射光线与入射光线 和法线在同一平面内, 入射光线与反射光线 分别位于法线的两侧, 与法线夹角相同
I”=-I
.
7
光的全反射
当光线由光密介质向 光疏介质传播时,根 据折射定律可知,因 n’<n 则 I’>I,当 SinIm=n’/n时,这些 光线不再折射到另一 介质,而按反射定律 在界面上被全部反射
的共轭点必位于该直线的共轭线上。
此假设1841年由高斯建立,故称为高斯光学。
.
14
2.理想光学系统的基点、焦距
平行于光轴的入射光线AE,经 系统后,沿G’F’方向射出, 交于像方F’点,沿光轴入射的 光线经系统后仍沿光轴出射。 由于像方的出射光线G’F’和 OkF’分别与物方的入射光线 AE1和FO1共轭,故像方F’点 在物方的共轭点必是光线AE1、 和FO1的交点,它位于左方无 穷的光轴上,故F’即为无穷远 轴上点的像,称为光学系统 的像方焦点。
最新光学课件第一章.教学讲义ppt
10
1.1.4 干涉现象是波动的特征
在对光的研究和观察中,人们发现了在 光传播过程中,光具有携带能量传播的本领。 波动在传递能量时,能量以振动的形式在物 质中依次转移,物质本身并不随波动而移动; 微粒要传递能量就必须移动微粒本身,也就 是微粒和能量一起移动。波动和微粒传递能 量的主要区别在于:波动是物质不动,微粒 则物质必须移动,但是仅从能量的传递还不 能确定光时波动还是微粒的,还必须寻找更 多的证据来说明光的波动性或微粒性。
强度相加而成,其实不是。从推导过程看,
最后的合振动都是从振幅平方的瞬时相加,
最后求平均而成的。这两者是完全不同的,
应加以注意。
19
(3)结论 1)相干
当相位差仅随空间各点位置变化时, 合振动的强度就会随空间各点作周期变化, 使得有些点加强,有些点减弱。这样,空 间就显示出干涉花样,发生了干涉现象。
14
2、合振动的强度
IA210A2d t10
A2A22AAcosd
1
2
12
2
1
A12A222A1A210cos21dt
(1):
= 常数,则:
2
1
10 co 2s1d tco 2s1
I
A2
A2 1
A2 2
2A1 A2cos
2
1
15
1) 相位相同
2
1
2
j
,
j 0, 1, 2, 3,
cos2
1
1
I
A2 1
A2 2
2 A1 A2
A1 A2
2
— —干涉相长
或加强
2) 相位相反
2j1, j0,1,2,3 , co s1
21
1.1.4 干涉现象是波动的特征
在对光的研究和观察中,人们发现了在 光传播过程中,光具有携带能量传播的本领。 波动在传递能量时,能量以振动的形式在物 质中依次转移,物质本身并不随波动而移动; 微粒要传递能量就必须移动微粒本身,也就 是微粒和能量一起移动。波动和微粒传递能 量的主要区别在于:波动是物质不动,微粒 则物质必须移动,但是仅从能量的传递还不 能确定光时波动还是微粒的,还必须寻找更 多的证据来说明光的波动性或微粒性。
强度相加而成,其实不是。从推导过程看,
最后的合振动都是从振幅平方的瞬时相加,
最后求平均而成的。这两者是完全不同的,
应加以注意。
19
(3)结论 1)相干
当相位差仅随空间各点位置变化时, 合振动的强度就会随空间各点作周期变化, 使得有些点加强,有些点减弱。这样,空 间就显示出干涉花样,发生了干涉现象。
14
2、合振动的强度
IA210A2d t10
A2A22AAcosd
1
2
12
2
1
A12A222A1A210cos21dt
(1):
= 常数,则:
2
1
10 co 2s1d tco 2s1
I
A2
A2 1
A2 2
2A1 A2cos
2
1
15
1) 相位相同
2
1
2
j
,
j 0, 1, 2, 3,
cos2
1
1
I
A2 1
A2 2
2 A1 A2
A1 A2
2
— —干涉相长
或加强
2) 相位相反
2j1, j0,1,2,3 , co s1
21
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E2
dl
d dt
B t
d
E E1 E2
E dl
B d
t
(2)
(2)式意义:电场强度沿任意闭合曲线的线积分为回路中磁通量随时间变化率的负值。
传导电流所激发的磁场( 涡旋场): 变化的电场产生磁场( 涡旋场):
光的电磁理论的建立推动了光学及整个物理学的发展,尽管在 理论上有其局限性,但它仍是阐明众多光学现象的经典理论。
一、积分形式的麦克斯韦方程组
1、静电场和稳恒电流磁场的基本规律
静电场高斯定理: 通过任意闭合曲面的电位移通量(有源无旋场)
静电场环路定律: 电场强度沿任意闭合曲线的线积分(保守场)
静磁场高斯定理: 通过任意闭合曲面的磁通量(无源有旋场)
无论从理论上或应用技术角度出发,从事物理学或光学技 术的人员都应对光学基本理论有较深的了解。
一、光学的基本理论
光的两种属性:波动性和粒子性
相应的光学两种基本理论
① 波动理论(电磁波) 经典光学理论(麦克斯韦电磁场理论为基础)→研究传统光学→解决光 传输、成像问题 →主要应用于宏观体系;由于光波是一种频率非常高的 电磁波,人眼及光学仪器测量的信息是光强,光学的研究内容与普通电 磁波有区别;同时考虑到应用上的要求与特点,在一定近似情况下,有 相应部分应用技术内容(几何光学)。
五、课程内容
光的基本电磁理论、干涉的理论基础、光学薄膜、光的偏振、 晶体光学基本知识、光波的调制
六 、主要参考书
M.Born & E.wolf,光学原理,北京:电子工业出版社,2005 羊国光,宋菲君,高等物理光学,合肥:中国科技大学出版社,
2008 廖延彪,光学原理与应用,北京:电子工业出版社,2006 陈军,光学电磁理论,北京:科学出版社,2006
光学工程硕士研究生课程
高等光学
第一讲
2013.09.10
前言
光学是物理学的基本内容,物理学的发展每一个阶段与光学 密切相关。在传统物理学中,光的传播理论和波动理论与经 典力学、电磁学构成物理学的主体。现代物理学中,光的粒 子性在量子理论和相对论对人们研究微观物质和宏观世界发 挥着重要作用。
光学技术在各个重大科技发展阶段均发挥重要的推动作用。 (目前最活跃的学科与技术是电子、材料、生命和光学)
D d
t
H
dl
I
D t
d
(4)
(4)式意义:在传导电流和位移电流共同激发的磁场中,总磁场强度的环流 为传导电流和电位移通量随时间的变化率之和。
二、微分形式的麦克斯韦方程组
积分形式描述的是场在某一面积元或者体积元的平均性质,为方便地求解
三、研究方法
普通光学:由实验现象入手,应用高等数学知识,得出基本规律或 定律,建立相应的理论关系。内容具体,容易理解。彼此之间相对 独立,缺少系统性,完整性。
高等光学:从光的最基本性质出发(光的两种属性之一 ——波动性 为基础),利用数学推导的方法 ,建立理论体系,解释各种自然光 学现象和规律。
静磁场环路定律: 磁场强度沿任意闭合曲线的线积分(安培环路定律)
D d Q
E dl 0
B d 0
H 规律
麦克斯韦假定:在交变电场和交变磁场中,高斯定理依然成立。变化的磁场会产生涡
旋电场,将静电场的环路定律代之以涡旋电场场强的环流表达式;对静磁场的环路定
七、考核方式
平时(10%) & 期末考试(限时开卷,60%) && 期末小论文(30%)
=本课程成绩
第 一 章 光的基本电磁理论
§1-1 麦克斯韦方程组
1864年, Maxwell在总结安培、法拉第等人关于电场、磁场研究 工作的基础上,归纳得出描述统一的电磁场规律的麦克斯韦方程 组( Maxwell Equations),建立了完整的电磁场理论。 1865年Maxwell进一步提出了光是一种电磁波的设想 1888年赫兹实验,结果显示:电磁波的传播速度=光的传播速度 →结论:光是一种电磁波; 光的电磁理论由此得以确立。
B1 d 0
B2 d 0
B d 0 (3)
(3)式意义:任何磁场中通过任意闭合曲面的磁通量为零。
传导电流所激发的磁场( 涡旋场): 位移电流产生磁场( 涡旋场):
D :位移电流密度。 t
H1dl I
H 2 dl
光谱学:利用色散(波)技术,研究物质结构、成份。 信息光学:利用波的特征,研究信息传输、存储与处理。 特殊波段光学:红外光谱(光学)、X射线理论及应用。 晶体光学:特殊物质(特是各向异性物质)中光波的传播特性。 光电子学:光学与电子学交叉学科。
其中包括激光原理,强光源器件理论(半经典理论),传播部分 为波动,发射与吸收部分为光量子理论 。 色度学:光谱亮度分布应用理论,颜色理论。
律则引入位移电流的概念后进行修改,得出适用于交变电磁场的麦克斯韦方程组。
电荷激发电场(保守场):
D d Q
D d Q
D d 0
(1)
(1)式意义:任何电场中通过任意闭合曲面的电位移通量为闭合曲面内自由电荷和。
变化的磁场激发电场(涡旋场):
E1 dl 0
② 粒子理论(光子) 量子光学理论(场的量子化理论为基础)→研究光子的特性及规律—— 光子产生淹没过程(物质的光吸收与发射)→解决光与物质相互作用问 题(能量转移过程,包括非线形光学即强光光学)→主要应用于微观光 与物质相互作用。
二、从基础光学出发的相关内容
——与光学交叉学科及应用方面的相关光学理论
四、本课程的基本要求
高等光学是一门理论课,应养成从理论上对客观现象基本规律进行 描述的习惯,要求学生具有较好数学基础及清晰的物理图像。
学习时应注意:由于受理论推导关系的限制,许多问题的求解需要 在近似条件下进行,因此,需要掌握处理问题的近似尺度、前提条 件或应用条件,近似的结果应在绝大多数光学传播问题的应用中能 完全满足/符合客观情况和客观要求。