【精选】苏科版八年级上册数学 三角形解答题易错题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【精选】苏科版八年级上册数学 三角形解答题易错题(Word 版 含答案)
一、八年级数学三角形解答题压轴题(难)
1.如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,1∠与2∠互补.
(1)试判断直线AB 与直线CD 的位置关系,并说明理由.
(2)如图2,BEF ∠与EFD ∠的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH EG ⊥,求证://PF GH .
(3)如图3,在(2)的条件下,连接PH ,K 是GH 上一点使PHK HPK ∠=∠,作PQ 平分EPK ∠,求HPQ ∠的度数.
【答案】(1)AB//CD ,理由见解析;(2)证明见解析;(3)45HPQ ∠=.
【解析】
【分析】
(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF 、∠CFE 互补,即可证明; (2)利用(1)中平行线的性质、角平分线的性质、三角形内角和定理可得∠EPF=90°,即EG ⊥PF ,再结合GH ⊥EG ,即可证明;
(3)利用三角形外角定理、三角形内角和定理求得∠A=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=-
12
∠EPK=45°+∠2,最后根据角与角间的和差关系即可求解.
【详解】
(1)//AB CD ,
理由如下:如图1, 图1
∵1∠与2∠互补,
∴12180∠+∠=︒,
又∵1AEF ∠=∠,2CFE ∠=∠,
∴180AEF CFE ∠+∠=︒,
∴//AB CD ;
(2)如图2,由(1)知,//AB CD ,
图2
∴180BEF EFD ∠+∠=︒.
又∵BEF ∠与EFD ∠的角平分线交于点P ,
∴1(2
)90FEP EFP BEF EFD ∠+∠=∠+∠=︒, ∴90EPF ∠=︒,即EG PF ⊥.
∵GH EG ⊥,
∴//PF GH ;
(3)如图3,
∵PHK HPK ∠=∠,
2PKG HPK ∴∠=∠.
又∵GH EG ⊥,
∴90902KPG PKG HPK ∠=-∠=-∠.
∴180902EPK KPG HPK ∠=-∠=+∠.
∵PQ 平分EPK ∠,
∴1452
QPK EPK HPK ∠=∠=+∠. ∴45HPQ QPK HPK ∠=∠-∠=.
【点睛】
本题主要考查了平行线的判定与性质、角平分线的性质、三角形内角和定理等知识.解题过程关注中“数形结合”思想是解答本题的关键.
2.探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,
(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点
B、C,∠A=40°,则∠ABX+∠ACX等于多少度;
②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;
③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,
∠BG1C=70°,求∠A的度数.
【答案】(1)详见解析;(2)①50°;②85°;③63°.
【解析】
【分析】
(1)连接AD并延长至点F,根据外角的性质即可得到∠BDF=∠BAD+∠B,
∠CDF=∠C+∠CAD,即可得出∠BDC=∠A+∠B+∠C;
(2)①根据(1)得出∠ABX+∠ACX+∠A=∠BXC,再根据∠A=40°,∠BXC=90°,即可求出∠ABX+∠ACX的度数;
②先根据(1)得出∠ADB+∠AEB=90°,再利用DC平分∠ADB,EC平分∠AEB,即可求出∠DCE的度数;
③由②得∠BG1C=
1
10
(∠ABD+∠ACD)+∠A,设∠A为x°,即可列得
1
10
(133-x)+x=70,
求出x的值即可.
【详解】
(1)如图(1),连接AD并延长至点F,
根据外角的性质,可得
∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,
又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;
(2)①由(1),可得
∠ABX+∠ACX+∠A=∠BXC,
∵∠A=40°,∠BXC=90°,
∴∠ABX+∠ACX=90°-40°=50°;
②由(1),可得
∠DBE=∠DAE+∠ADB+∠AEB,
∴∠ADB+∠AEB=∠DBE-∠DAE=130°-40°=90°,
∴1
2
(∠ADB+∠AEB)=90°÷2=45°,
∵DC平分∠ADB,EC平分∠AEB,
∴
1
2
ADC ADB
∠=∠,
1
2
AEC AEB
∠=∠,
∴∠DCE=∠ADC+∠AEC+∠DAE,
=1
2
(∠ADB+∠AEB)+∠DAE,
=45°+40°, =85°;
③由②得∠BG1C=
1
10
(∠ABD+∠ACD)+∠A,
∵∠BG1C=70°,
∴设∠A为x°,
∵∠ABD+∠ACD=133°-x°
∴
1
10
(133-x)+x=70,
∴13.3-
1
10
x+x=70,
解得x=63,
即∠A的度数为63°.
【点睛】
此题考查三角形外角的性质定理,三角形的外角等于与它不相邻的内角的和,,根据此定理得到角度的规律,由此解决问题,此题中得到平分角的变化规律是解题的难点.
3.如图①,在△ABC中,CD、CE分别是△ABC的高和角平分线,∠BAC=α,∠B=β(α>β).