概率论与数理统计概率历史的介绍.doc
《概率统计》课内容简介与学习方法
《概率统计》课内容简介与学习方法《概率统计》是一门应用数学课程,在统计学和概率论的基础上,研究统计现象中的规律和规则。
这门课程主要包括概率论和数理统计两个方面的内容。
概率论研究随机现象的概率规律,数理统计则从已知的样本数据出发,推断总体的一些特征。
通过学习《概率统计》,学生可以掌握概率统计的基本理论和方法,培养分析和解决实际问题的能力。
1.概率论基础:概率论的基本概念,如样本空间、事件、概率等;概率的计算方法,包括排列组合、条件概率、贝叶斯公式等;随机变量及其分布,包括离散随机变量、连续随机变量等。
2.大数定律:大数定律研究随机事件的频率,通过样本数量的增加,随机事件的频率将收敛于它的概率;大数定律的常见形式有强大数定律和弱大数定律。
3.中心极限定理:中心极限定理研究随机变量和的分布,当样本容量足够大时,随机变量的和可以近似服从正态分布;中心极限定理的常见形式有切比雪夫不等式、林德伯格-莱维中心极限定理等。
4.数理统计基础:数理统计是根据样本数据推断总体特征的一门学科;包括参数估计和假设检验两个核心内容;参数估计研究如何根据样本数据估计总体的未知参数;假设检验研究如何根据样本数据判断总体参数的假设是否成立。
除了以上核心内容外,课程还会介绍一些基本的统计描述方法和统计推断方法,如多元统计分析、回归分析、时间序列分析等。
在学习《概率统计》时,可以采用以下学习方法:1.确定学习目标:明确掌握该课程的基本概念、原理和应用方法为目标,为学习提供方向。
2.认真听讲:课堂听讲是获取知识的重要途径,要认真听讲,理解教授的讲解内容,并及时记下关键点。
3.参考教材:针对每一章节的内容,可参考教材对其中的重点进行深入学习,对于理解困难的部分,可以适当寻求他人帮助。
4.做习题:习题是学习的重要环节,通过做习题可以巩固理论知识,提高解题能力。
建议先做一些基础练习题,再逐步挑战难度较大的题目。
5.制定学习计划:学习《概率统计》需要一定的时间和精力,制定一个合理的学习计划,合理安排时间,有助于提高学习效率。
概率论与数理统计
概率论与数理统计概率论与数理统计是现代数学中非常重要的分支之一,它们在自然科学、社会科学,以及工程技术等领域都有广泛的应用。
在生物学,物理学,化学等领域,常常需要采用概率论和数理统计的方法,来研究和分析现象。
这篇文章将要探讨概率论和数理统计的一些基本概念和方法,并介绍它们在现实生活中的应用。
一、概率论概率论是一门研究随机现象及其规律的数学学科。
它的基本思想是通过建立数学模型,来描述随机事件的概率分布及其规律。
随机事件指某一次试验中可能发生或不发生的事情,例如掷骰子、抛硬币、抽扑克牌等,这些事件的结果是随机的,因此需要采用概率论的方法来研究。
1.概率和概率分布概率是指某一事件发生的可能性,用一个数值来表示。
在概率论中,对于某一特定随机事件,概率的大小常常用P(A)来表示,其中A是这个事件。
例如,抛一枚硬币,正面朝上的概率是0.5,用数学语言可以表示为P(正面)=0.5,反面朝上的概率也是0.5,即P(反面)=0.5。
概率分布是指某个随机事件的各种结果的概率分布情况。
在一次试验中,随机事件可能会有多个结果,即样本空间。
概率分布用来描述每个结果的概率大小。
例如,抛一枚硬币的样本空间是{正面,反面},正面和反面各占1/2的概率。
2.条件概率和独立事件条件概率是指在已知某个事件发生的情况下,某个随机事件会发生的概率。
条件概率的计算方法一般采用贝叶斯公式,例如给定事件A,以及事件B,P(A|B)表示在B发生的情况下,A 发生的概率,则条件概率可以表示为:P(A|B) = P(AB)/P(B)其中AB表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
独立事件是指某个随机事件的发生不会对另一个随机事件的发生产生影响。
如果事件A、B是独立事件,则可以表示为P(A|B) = P(A),P(B|A) = P(B),即A和B的概率相互独立,并不受对方的影响。
3.期望值和方差期望值是统计学中一个非常重要的概念,用来描述一个随机变量的总体平均数。
【2024版】概率论与数理统计(数理统计的基本概念)
X
2 n
)
D(
X
2 1
)
D(
X
2 2
)
D(
X
2 n
)
nD (
X
2 i
)
n{ E (
X
4 i
)
[E(
X
2 i
)]2
}
n
x4
1
2
e
x2 2
dx
12
n3
1
2n
23
若 2 ~ 2(n) 分布函数为F ( x)
,0 1 若F ( x) P{ 2 x}
则其解称为 2 分布 的 分位数(临界值)
0.15 00.1.155
000.1..11
N(0,1)
n=10 n=10 nn==33
n增大
000.0..00555
nnn===111
000
-5--55
-4--44
-3-3
-2-2
-1-1
00
11
22
33
444
555
t 分布的密度曲线关于y轴对称 随着n的增大, t 分布的密度曲线越陡
n 时,t 分布趋于标准正态分布N (0,1)
后,还要对数据进行加工和提炼,将样本的有关 信息,利用数学的工具进行加工.
引入统计量的概念
12
定义 设( X1, X 2 ,, X n )为来自总体X的一个样本,
若n元函数f ( X1, X 2 ,, X n )不含任何未知参数,
则
称f
(
X
1
,
X
2
,,
X
n
)为X
1
,
X
2
概率论发展简史
一、概率论发展简史120世纪以前的概率论概率论起源于博弈问题;15-16世纪,意大利数学家帕乔利L.Pacioli,1445-1517、塔塔利亚N.Tartaglia,1499-1557和卡尔丹G.cardano,1501-1576的着作中都曾讨论过俩人赌博的赌金分配等概率问题;1657年,荷兰数学家惠更斯C.Huygens,1629-1695发表了论赌博中的计算,这是最早的概率论着作;这些数学家的着述中所出现的第一批概率论概念与定理,标志着概率论的诞生;而概率论最为一门独立的数学分支,真正的奠基人是雅格布伯努利Jacob Bernoulli,1654-1705;他在遗着猜度术中首次提出了后来以“伯努利定理”着称的极限定理,在概率论发展史上占有重要地位;伯努利之后,法国数学家棣莫弗A.de Moivre,1667-1754把概率论又作了巨大推进,他提出了概率乘法法则,正态分布和正态分布率的概念,并给出了概率论的一些重要结果;之后法国数学家蒲丰C.de Buffon,1707-1788提出了着名的“普丰问题”,引进了几何概率;另外,拉普拉斯、高斯和泊松等对概率论做出了进一步奠基性工作;特别是拉普拉斯,他是严密的、系统的科学概率论的最卓越的创建者,在1812年出版的概率的分析理论中,拉普拉斯以强有力的分析工具处理了概率论的基本内容,实现了从组合技巧向分析方法的过渡,使以往零散的结果系统化,开辟了概率论发展的新时期;泊松则推广了大数定理,提出了着名的泊松分布;19世纪后期,极限理论的发展称为概率论研究的中心课题,俄国数学家切比雪夫对此做出了重要贡献;他建立了关于独立随机变量序列的大数定律,推广了棣莫弗—拉普拉斯的极限定理;切比雪夫的成果后被其学生马尔可夫发扬光大,影响了20世纪概率论发展的进程;19世纪末,一方面概率论在统计物理等领域的应用提出了对概率论基本概念与原理进行解释的需要,另一方面,科学家们在这一时期发现的一些概率论悖论也揭示出古典概率论中基本概念存在的矛盾与含糊之处;这些问题却强烈要求对概率论的逻辑基础做出更加严格的考察;2概率论的公理化俄国数学家伯恩斯坦和奥地利数学家冯米西斯R.von Mises,1883-1953对概率论的严格化做了最早的尝试;但它们提出的公理理论并不完善;事实上,真正严格的公理化概率论只有在测度论和实变函数理论的基础才可能建立;测度论的奠基人,法国数学家博雷尔E.Borel,1781-1956首先将测度论方法引入概率论重要问题的研究,并且他的工作激起了数学家们沿这一崭新方向的一系列搜索;特别是原苏联数学家科尔莫戈罗夫的工作最为卓着;他在1926年推倒了弱大数定律成立的充分必要条件;后又对博雷尔提出的强大数定律问题给出了最一般的结果,从而解决了概率论的中心课题之一——大数定律,成为以测度论为基础的概率论公理化的前奏;1933年,科尔莫戈罗夫出版了他的着作概率论基础,这是概率论的一部经典性着作;其中,科尔莫戈罗夫给出了公理化概率论的一系列基本概念,提出了六条公理,整个概率论大厦可以从这六条公理出发建筑起来;科尔莫戈罗夫的公理体系逐渐得到数学家们的普遍认可;由于公理化,概率论成为一门严格的演绎科学,并通过集合论与其它数学分支密切地联系者;科尔莫戈罗夫是20世纪最杰出的数学家之一,他不仅仅是公理化概率论的建立者,在数学和力学的众多领域他都做出了开创或奠基性的贡献,同时,他还是出色的教育家;由于概率论等其它许多领域的杰出贡献,科尔莫戈罗夫荣获80年的沃尔夫奖; 3进一步的发展在公理化基础上,现代概率论取得了一系列理论突破;公理化概率论首先使随机过程的研究获得了新的起点;1931年,科尔莫戈罗夫用分析的方法奠定了一类普通的随机过程——马尔可夫过程的理论基础;科尔莫戈罗夫之后,对随机过程的研究做出重大贡献而影响着整个现代概率论的重要代表人物有莱维P.Levy,1886-1971、辛钦、杜布和伊藤清等;1948年莱维出版的着作随机过程与布朗运动提出了独立增量过程的一般理论,并以此为基础极大地推进了作为一类特殊马尔可夫过程的布朗运动的研究;1934年,辛钦提出平稳过程的相关理论;1939年,维尔J.Ville引进“鞅”的概念,1950年起,杜布对鞅概念进行了系统的研究而使鞅论成为一门独立的分支;从1942年开始,日本数学家伊藤清引进了随机积分与随机微分方程,不仅开辟了随机过程研究的新道路,而且为随机分析这门数学新分支的创立和发展奠定了基础;像任何一门公理化的数学分支一样,公理化的概率论的应用范围被大大拓广; 二、数理统一在18、19世纪就出现了统计推断思想的萌芽并有了一定发展,但以概率论的基础,以统计推断为主要内容的现代意义上的数理统计学,则到20世纪才告成熟;1763年,自学成材的英国数学家贝叶斯T.Bayes,1702-1761给出的“贝叶斯定理”贝叶斯公式可以看作是一种最早的统计推断程序,在现代概率论和数理统计中仍有重要作用;拉普拉斯和高斯等人利用贝叶斯公式进行参数估计,高斯由于计算行星轨道的需要而建立了以“最小二乘法”为基础的误差分析;这些都促使统计学摆脱对观测数据的单纯描述而向强调推断的阶段过渡;英国统计学家K皮尔逊对现代数理统计的建立起了重要作用;他在19世纪末、20世纪初发展了他老师高尔顿首先提出的“相关”与“回归”的理论,成功地建立了生物统计学;皮尔逊明确指出统计学不是研究样本本身,而是要根据样本对总体进行推断,并据此提出了“拟合优度检验”;皮尔逊的工作是所谓“大样本统计”的前驱,他的学生戈塞特S.Gosset1908年发表的“学生分布”着述则开创了小样本统计理论,从而使统计学研究对象从群体现象转变为随机现象;现代数理统计学作为一门独立学科的奠基人是英国数学家费希尔;20世纪20和30年代,费希尔提出了许多重要的统计方法,开辟了一系列的统计学的分支领域;他发展了正态总体下的各种统计量的抽样分布,将已有的相关、回归理论建造为系统的相关分析和回归分析;1923年,费希尔提出了方差分析这一重要的数据分析方法;1925年,他与叶茨合作创立了试验设计这一重要的统计分支,他还是假设检验和多元统计分析等重要统计分支的先驱;费希尔做过中学教员,曾长期在农业试验站工作,并致力于数理统计在农业科学和遗传学中的应用;在20世纪20-50年代,费希尔是数理统计学研究的中心人物;1928年,维夏特J.Wishart将费希尔的狭义的多员分析发展为统计学中的一个独立分支;中国数学家许宝禄和美国数学家霍太林H.Hotelling也是多元统计分析的奠基人;1946,瑞典数学家克拉默H.Cramer的着作统计学的数学方法,用测度论系统总结了数理统计的发展,标志着现代数理统计学的成熟;第二次世界大战期间,数理统计学的研究出现了一些重要的动向,这些新的动向在很大程度上决定了战后数理统计学的发展方向;其中最有影响的是沃尔德A.Wald,1902-1950提出的序贯分析和统计决策理论;序贯分析的主旨是以“序贯抽样方案”代替统计推断中的传统的固定抽样方案;为了解决二战中军方提出的实际问题,沃尔德提出序贯分析这一崭新的统计方法;1947年,沃尔德发表了序贯分析专着,使序贯分析在战后发展为数理统计中的一个重要分支;1950年,沃尔德出版了着作统计决策函数;他的统计决策理论用博弈的观点看待数理统计问题,对于推断所获得的论断会产生什么后果,应采取何种对策或行动等这些不属于经典统计的内容,统计决策理论也将其纳入统计的范畴;沃尔德的思想方法对20世纪下半叶整个数理统计学的发展有着重要影响;数理统计在近些年来有所发展,但理论上突破不大,最引人注目的是它的普及和广泛的应用;它几乎渗透到一切学科之中,哪里有试验,哪里有数据,哪里就少不了数理统计;它已成为现代最基本的工具之一,没有数理统计就无法应付大量的数据和信息;数理统计还将为社会的进步作出更大贡献;。
概率论发展简史范文
概率论发展简史范文
概率论是构建定量分析的一种重要方法。
其发展历史有着悠久的历史。
古希腊数学家杰佛逊曾提出了首批可能性理论。
17世纪,法国哲学家蒙
德里安提出他的经典概率论理论,认为结果是一种机会,并将其与他的游
戏理论相结合。
18世纪中叶,英国数学家尼古拉斯·科特斯(Nicholas Cotes)提出了概率论的普遍原理,并引入新的概念,描述可能性的数学
表示。
后来,19世纪上半叶,法国数学家安东尼·贝尔提出了概率论的基
本概念,并建立了可能性的基本概念,贝尔的哲学观点使他成为当时最重
要的概率论家。
在19世纪晚期,克莱斯勒,拉斐尔和福特继续发展概率论,引入了抽样理论,以研究大量数据,识别潜在趋势。
20世纪上半叶,统计学家和数学家又进一步发展了概率论。
20世纪
50年代,模拟计算机的发展促进了概率论的发展,使其得以应用于工程
和科学领域。
此外,哥本哈根学派在概率论中引入了新的方法,如参数估计,建模和模拟。
随着计算机技术的进一步发展,概率学得到进一步发展。
60到70年代,概率论得到了更多的应用,如蒙特卡洛技术和信息论方法。
概率论与数理统计发展史简要、主要内容概要及其主要应用
概率论与数理统计是一门研究随机现象和数据分析的学科。
以下是关于概率论与数理统计发展史、主要内容概要以及其主要应用的简要介绍:发展史概率论与数理统计是数学的重要分支之一,其发展可以追溯到17世纪。
以下是一些重要的里程碑事件:- 1654年,法国贵族帕斯卡尔引入概率论的基本概念。
- 18世纪,瑞士数学家伯努利家族对概率论做出了系统的研究,并提出伯努利试验和大数定律。
- 19世纪,法国数学家拉普拉斯在概率论方面有很多重要贡献,提出了拉普拉斯公式和拉普拉斯逼近定理。
-20世纪,俄国数学家科尔莫哥洛夫发展了现代概率论的基本框架,建立起了测度论和概率测度的数学基础。
主要内容概要概率论研究随机现象的规律性和不确定性,主要包括以下几个方面的内容:1. 概率基本概念:包括样本空间、事件、随机变量等。
2. 概率分布:研究随机变量的取值及其对应的概率。
3. 大数定律:研究随机变量序列的稳定性,指出当样本容量足够大时,随机现象的长期平均值收敛于期望值的概率趋近于1。
4. 中心极限定理:研究多个相互独立的随机变量之和的分布趋近于正态分布的概率。
数理统计是利用样本数据对总体特征进行推断和决策的学科,主要内容如下:1. 抽样方法:研究如何从总体中获取代表性样本的方法。
2. 统计描述:通过统计量对总体特征进行度量和描述。
3. 参数估计:利用样本数据对总体参数进行估计。
4. 假设检验:根据样本数据对关于总体的假设进行推断和判断。
5. 方差分析和回归分析:研究多个变量之间的关系和影响。
主要应用概率论与数理统计具有广泛的应用领域,涉及自然科学、社会科学、工程技术等众多领域,包括但不限于以下方面:1. 金融和风险管理:用于分析投资组合的风险、金融市场波动性的预测和金融产品的定价。
2. 医学和生物统计学:应用于疾病概率分析、药物疗效评估和流行病学研究等。
3. 工程和质量控制:用于产品质量分析、过程改进和可靠性评估。
4. 社会科学和市场调查:用于样本调查、舆论调查和社会现象的分析。
概率论与数理统计电子版教材
概率论与数理统计电子版教材概率论与数理统计是一门重要的数学学科,它旨在研究随机现象和数据的统计规律,是自然科学、社会科学和工程技术等领域中不可或缺的基础学科。
本文将简要介绍概率论与数理统计的基本概念、分布、随机变量、随机过程和大数定律等内容。
一、概率论的基本概念概率是指一个事件在所有可能性中出现的可能性大小,它是一个0和1之间的实数。
概率论是一个基于集合论的数学理论,它研究随机事件,即不确定性事件的概率规律。
基本的概念包括样本空间、样本点、基本事件、和事件、差事件、交事件等。
样本空间是指所有可能的结果的集合,样本点是指样本空间中的一个元素,基本事件是指随机事件中最简单的一种,和事件是指随机事件中两个或多个事件发生的交集,差事件是指B事件不包含A事件的部分,交事件是指随机事件中两个或多个事件发生的并集。
二、分布概率论中的分布是指随机变量的概率分布模型,通常用于描述随机变量的概率密度函数或累积分布函数。
常见的分布包括离散分布和连续分布。
离散分布适用于描述一些离散的取值,像二项分布和泊松分布,而连续分布适用于描述取值连续的情况,像正态分布和t分布。
三、随机变量随机变量是指一个随机事件对应于一个实数或者一组实数的函数。
随机变量可以是离散的或连续的,离散的随机变量通常用概率质量函数描述,而连续的随机变量则用概率密度函数描述。
随机变量的期望和方差是随机变量的两个重要指标,它们可以用来描述随机变量的总体性质。
四、随机过程随机过程是指随机事件随时间变化的过程,它尤其适用于描述在不断变化的状态下的随机事件。
随机过程主要包括马尔科夫链、布朗运动和泊松过程等。
其中,马尔科夫链是指每一个状态都只依赖于前一步的状态,布朗运动是指在固定时间段内任意时刻的随机步长相加所得的路径,而泊松过程则是以随机变量为时间间隔的增量为标记的过程。
五、大数定律大数定律是概率论中的重要结果之一,它意味着随着试验次数的增加,随机事件的频率将趋近于其真实概率。
概率论与数理统计知识回顾
若 E( X Y ) 存在,则称它为 X 与 Y 的 k + l 阶混合原点矩。 若 E{[ X E( X )] [Y E(Y )] } 存在,则称它为 X 与 YБайду номын сангаас的 k + l 阶混合中心矩。
k l
k
l
结论: 显然数学期望 E ( X ) 是 X 的一阶原点矩,方差 D( X ) 是 X 的二阶中心矩,协方差 Cov( X , Y )是
常用分布的数字特征(2)
2 N ( , ) 时, X (5) 当 服从正态分布
E( X ) , D( X ) 2 .
2 2 N ( , , , ( X , Y ) 1 2 1 2 , ) 时, (6) 当 服从二维正态分布 E( X ) 1, D( X ) 12 ;
E(Y ) 2 , D(Y ) 22 ;
cov( X , Y ) 1 2 , XY
Thank you!
显然,协方差矩阵是对称阵。
高校大学生情况
x1 X x2 x 3
协方差矩阵为:
其中 x1 表征年龄,x2 表征身高,x3 表征月生活支出。
C11 C12 C13 C C C C 21 22 23 C31 C32 C33
常用分布的数字特征(1)
若 多 维 随 机 变 量 ( X1 , X 2 , X n ) 的 分 布 用 联 合 分 布 列
P( X1 x1i , X 2 x2i ,, X n xni ) 或 用 联 合 密度 概 率 p( x1, x2 ,, xn ) 表 示 , 则 Y g ( X1, X 2 ,, X n ) 的数学期望为
概率论的发展历史及应用
概率论的发展历史及应用概率论是数学的一个重要分支,研究的是随机现象和不确定性的数学模型和方法。
它有着丰富的发展历史,并且在各个领域中都有广泛的应用。
下面将从概率论的起源、发展过程、重要成果以及在实际中的应用几个方面进行详细分析,回答1500字以上。
人类对于不确定性的思考可以追溯到古代。
早在古希腊时代,人们已经开始对游戏和抛硬币等随机事件进行观察和研究。
然而,现代概率论的发展始于17世纪末的欧洲。
1654年,法国贵族帕斯卡在与数学家费马的通信中讨论了赌局的分赌问题,这可以看作是概率论的起源。
而在17世纪末和18世纪初,研究概率的工具和方法的发展取得了重要的突破。
概率论的发展历程中有两个重要的里程碑。
一个是拉普拉斯在1812年出版的《关于自然哲学的概率理论》(Théorie analytique des probabilités),这是概率论中第一本系统且完整的著作,奠定了概率论的基础。
拉普拉斯提出了概率的公理系统,并建立了概率的运算法则,成为后来概率论研究的基础。
另一个是科尔莫哥洛夫在1933年出版的《概率论基础》(Foundations of the Theory of Probability),这是概率论中第一本严密的数学著作,对概率论的定理和证明进行了系统的研究。
概率论的发展至今已经取得了许多重要成果。
首先,概率论建立了完整的公理体系,包括概率的定义、运算法则、一些基本定理等。
其次,概率论有了一些重要的分支,如条件概率、独立性、随机过程等。
此外,概率论也与其他数学分支相结合,如统计学、数理逻辑等,形成了统计学、数理统计等新的学科。
最后,概率论的数学方法也被广泛应用于物理学、生物学、经济学、金融学、工程学等各个领域,推动了科学和技术的发展。
概率论在实际中的应用广泛而深远。
在物理学中,概率论应用于量子力学、统计力学等领域,解释和描述微观粒子的行为。
在生物学中,概率论应用于遗传学、生态学等领域,研究基因的变异和生物群落的演变。
概率论与数理统计课件最新完整版
时间序列分析是一种统计学方法,用于分析和预测时间序列数据。随机过程在时间序列分析中用于描述数据随时间变化的随机性质。
随机过程在时间序列分析中用于建模和预测时间序列数据。通过使用随机过程,可以描述数据在不同时间点的变化和相关性,并基于历史数据预测未来的发展趋势。
THANK YOU
概率论与数理统计课件最新完整版
概率论基础数理统计初步概率论的应用数理统计的应用概率论与数理统计的交叉应用
01
概率论基础
概率是描述随机事件发生可能性大小的数值,通常用P表示。概率的取值范围在0到1之间,其中0表示事件不可能发生,1表示事件一定会发生。
概率的定义
概率具有可加性、可减性和有限可加性。可加性是指互斥事件的概率之和等于该事件的总概率;可减性是指对立事件的概率之和等于1;有限可加性是指任意有限个两两互斥事件的概率之和等于这些事件的总概率。
02
统计决策理论的基本思想是通过建立概率模型来描述不确定性,然后利用这些模型进行决策分析。
03
在统计决策理论中,常用的方法包括贝叶斯分析、假设检验和置信区间估计等。
04
统计决策理论在经济学、金融学、管理学等领域有广泛的应用,例如风险评估、投资组合优化和市场营销策略等。
01
试验设计涉及到如何选择合适的实验方法、如何分配实验对象、如何控制实验条件等问题。
03
概率论的应用
贝叶斯推断是一种基于概率的推理方法,它通过将先验知识与新获取的数据相结合,对未知参数进行估计和预测。
通过将先验概率分布和似然函数结合,可以得到后验概率分布,从而对未知参数进行推断。
在贝叶斯推断中,先验概率分布反映了在获取新数据之前对未知参数的认知,而似然函数则描述了数据与未知参数之间的关系。
概率论与数理统计1.3 概率的古典定义
抛掷一颗匀质骰子,观察出现的点数
样本空间
Ω ={1,2,3,4,5,6} 事件A
事件A的概率
n=6
={4,6} m=2 A=“出现的点数是不小于3的偶数”
m 2 1 P( A) n 6 3
不是古典概型的例子 1.掷两枚硬币{全H,一个H一个T,全T},则 n=3,A={掷两次出现至少一次H},P(A)=? 2/3?显然不对,原因是基本事件不是等概率的. 2.掷2个骰子出现的点数之和{2,3,…,12},不是 等概率的.
(2,6),(3,5),(4, 4),(6, 2),(5,3)
所以
11 5 P( A) , P(B) 36 36
3. 包括甲,乙在内的10个人随机地排成一行, 求甲与乙相邻的概率。若这10个人随机地排成 一圈,又如何呢?
解 总的基本事件数为
10!
排成行时,事件“甲乙相邻”的基本事件数为
a a a b 1 1 Ca b1 Ca b1Ca Cb1 C1
因此,
a Ca b 1 b p a Ca b a b
1.从五双大小型号不同的鞋子中任意抽取四只, 问能凑成两双的概率是多少? 解 设事件A =“能凑成两双鞋”, 总的基本事件数: C
4 10
有利事件数:C
b( a b 1)! b p (a b)! ab
解法2:
a N Ca b , 不区分同色球,所有的排法共有 再将所有的位置分成两类:第k个位置和剩余的(a+b-1) 个位置,放球顺序: (1)先放置第k个位置:从一个位置上挑一个位置,在b个黑球 中取一个,当然有b种方法,由于不区分 ,除去b,所以还是1. (2)再放置剩余的(a+b-1),从中挑a个位置,放进a个白球,在 剩余的b-1个位置上放进b-1个黑球.
概率论与数理统计概率历史介绍
概率论与数理统计概率历史介绍-CAL-FENGHAI.-(YICAI)-Company One1一、概率定义的发展与分析1.古典定义的历史脉络古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比.2.古典定义的简单分析古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提.如何在更多和更复杂的情况下,体现出“同等可能”伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要求,就是将总数为P(n,r)的各种排列(或总数为C(n,r)的各种组合)看成是等可能的,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,而且还有数学上的问题.“应用性的狭窄性”促使雅各布?伯努利(1654—1705)“寻找另一条途径找到所期待的结果”,这就是他在研究古典概率时的另一重要成果:伯努利大数定律.这条定律告诉我们“频率具有稳定性”,所以可以“用频率估计概率”,而这也为以后概率的统计定义奠定了思想基础.“古典定义数学上的问题”在贝特朗(1822—1900)悖论中表现得淋漓尽致,它揭示出定义存在的矛盾与含糊之处,这导致了拉普拉斯的古典定义受到猛烈批评.3.统计定义的历史脉络概率的古典定义虽然简单直观,但是适用范围有限.正如雅各布•伯努利所说:“……这种方法仅适用于极罕见的现象.”因此,他通过观察来确定结果数目的比例,并且认为“即使是没受过教育和训练的人,凭天生的直觉,也会清楚地知道,可利用的有关观测的次数越多,发生错误的风险就越小”.虽然原理简单,但是其科学证明并不简单,在古典概型下,伯努利证实了这一点,即“当试验次数愈来愈大时,频率接近概率”.事实上,这不仅对于古典概型适用,人们确信“从现实中观察的频率稳定性”的事实是一个普遍规律.1919年,德国数学家冯•米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数的增加,某个事件出现的频率总是在一个固定数值的附近摆动,显示出一定的稳定性,把这个固定的数值定义为这一事件的概率.4.统计定义的简单分析虽然统计定义不能像古典定义那样确切地算出概率,但是却给出了一个估计概率的方法.而且,它不再需要“等可能”的条件,因此,从应用的角度来讲,它的适用范围更广.但是从数学理论上讲,统计定义是有问题的.在古典概率的场合,事件概率有一个不依赖于频率的定义——它根本不用诉诸于试验,这样才有一个频率与概率是否接近的问题,其研究导致伯努利大数定律.在统计定义的场合这是一个悖论:你如不从承认大数定律出发,概率就无法定义,因而谈不上频率与概率接近的问题;但是你如承认大数定律,以便可以定义概率,那大数定律就是你的前提,而不是一再需要证明的论断了.5.公理化定义的历史脉络正因为古典定义和统计定义数学理论上的这样或那样的问题,所以到了19世纪,无论是概率论的实际应用还是其自身发展,都要求对概率论的逻辑基础作出更加严格的考察.1900年,38岁的希尔伯特(1862—1943)在世界数学家大会上提出了建立概率公理系统的问题,这就是著名的希尔伯特23个问题中的第6个问题.这引导了一批数学家投入这方面的工作.在概率公理化的研究道路上,前苏联数学家柯尔莫哥洛夫(1903—1987)成绩最为卓著,1933年,他在《概率论基础》中运用集合论和测度论表示概率论的方法赋予了概率论严密性.6.公理化定义的简单分析为什么直到20世纪才实现了概率论的公理化,这是因为20世纪初才完成了勒贝格测度与积分理论以及抽象测度与积分理论,而这都是概率论公理化体系建立的基础.柯尔莫哥洛夫借助实变函数论和测度论来定义概率概念,形成了概率论的公理化体系,他的公理体系既概括了古典定义、统计定义的基本特性,又避免了各自的局限.例如,公理中有一条,是把事件概率的存在作为一个不要证明的事实接受下来,在这个前提下,大数定律就成为一个需要证明且可以得到证明的论断,这就避免了“4”中统计定义的数学理论上的问题;而公理中关于“概率存在”的规定又有其实际背景,这就是概率的古典定义和统计定义.所以,我们说,概率论公理体系的出现,是概率论发展史上的一个里程碑,至此,概率论才真正成为了严格的数学分支.二、关于概率定义教学的几点思考对于概率的定义,教科书是先给出古典定义,然后再给出统计定义.这与历史上概率定义的发展相吻合,从“简单到复杂”.在教学中,我们不仅要明了这种顺序的设计意图,而且还要抓住不同定义的特点和思想,以引导学生更好地理解概率.1.古典定义的教学定位在前面的分析中,我们说“等可能”是古典概率非常重要的一个特征,它是古典概率思想产生的前提.正是因为“等可能”,所以才会有了“比率”.因此,“等可能性”和“比率”是古典定义教学中的两个落脚点.“等可能”是无法确切证明的,往往是一种感觉,但是这种感觉是有其实际背景的,例如,掷一枚硬币,“呈正面”“呈反面”是等可能的,因为它质地均匀;而掷一枚图钉,“钉帽着地”“顶针着地”不是等可能的,因为图钉本身给我们的感觉就是帽重钉轻.因此,“等可能”并不要多么严密的物理上或化学上的分析,只需要通过例子感知一下“等可能”和“不等可能”即可,以便让学生明白古典定义的适用对象须具备的条件.2.统计定义的教学定位从直观上讲,统计定义是非常容易接受的,但是它的内涵是非常深刻的,涉及到大数定律.在初中阶段,我们不可能让学生接触其严格的形式和证明.因此,统计定义定位在其合理性和必要性是比较恰当的.如何让学生体会其合理性和必要性?罗老师的课堂教学比较好地实现了这两点.从教学顺序来看,罗老师将“掷硬币”作为归纳统计定义的例子,“掷硬币”可以用古典定义求概率,所以概率值是明确的,而通过试验的方法计算得到的频率就可以和这个明确的概率值相比较,如此更容易让学生体会到“频率具有稳定性”这一事实,从而感受到“用频率估计概率”的合理性;罗老师将“掷图钉”作为统计定义的应用,“掷图钉”不能用古典定义求概率,由此能让学生体会到学习统计定义计算事件概率的必要性.从教学手段来看,罗老师主要采用了“学生试验”的方法,学生的亲自试验在这节课所起的作用是无可代替的:“亲自试验”获得的结果能够给学生以真实感和确切感;“亲自试验”能够让学生感受到频率的随机性和稳定性等特点.所以,像概率与统计的学习,学生应该有更多的主动权和试验权,在动手和动脑中感受概率与统计的思想和方法.3. 概率与统计教学的背后:专业素养的提升在课题研讨时,教师们表现出这样一些困惑:随着试验次数的增加,频率就越来越稳定频率估计概率,一定要大量试验实验次数多少合适事实上,这些问题涉及的就是概率与统计的专业素养.对于大多数教师而言,概率与统计相对而言比较陌生,这是很自然的,因为在教师自身接受的数学专业学习中,概率与统计就是一个弱项.但是,既然要向学生教授概率与统计,那么还是需要有“一桶水”的.就像上面的问题,翻阅任何一本《概率论与数理统计》,都可以给我们知识上的答案,而翻阅一下相关的科普读物或史料,就可以给我们思想方法上的答案.举个例子:伯努利大数定律:设m是n重伯努利试验中事件A出现的次数,又A在每次试验中出现的概率为p(),则对任意的,有.狄莫弗-拉普拉斯极限定理:设m是n重伯努利试验中事件A出现的次数,又A在每次试验中出现的概率为p(),则.伯努利大数定律只是告诉我们,当n趋于无穷时,频率依概率收敛于概率p.伯努利的想法是:只要n充分大,那么频率估计概率的误差就可以如所希望的小.值得赞赏的是,他利用了“依概率收敛”而不是更直观的p,因为频率是随着试验结果变化的,在n次试验中,事件A出现n次也是有可能的,此时p就不成立了.伯努利不仅证明了上述大数定律,而且还想知道:若想要把一个概率通过频率而确定到一定的精确度,要做多少次观察才行.这时,伯努利大数定律无能为力,但是狄莫弗-拉普拉斯极限定理给出了解答:.(*)例如研究课中掷硬币的问题,若要保证有95%的把握使正面向上的频率与其概率0.5之差落在0.1的范围内,那要抛掷多少次?根据(*)式,可以估计出.三、概率论发展简史概率论有悠久的历史,它的起源与博弈问题有关。
概率论发展简史
概率论发展简史
五、概率论的应用: 例如: 3.按掷硬币的方式回答a或b填是或否 ( ) a: “完成学业后,你是否会回国” b:“你的年龄是奇数”。
概率论发展简史
五、概率论的应用: 然后运用概率论方法,我们就可以从调查结 果中得到我们想知道的回国者比例。假定有300 人接受调查,结果有130个"是"。因为被调查者 回答问题a、b的概率各是50%,所以将各有约 150人回答a或b问题。又被调查者年龄是奇数的 概率各是50%,所以150个回答b问题的人中, 约有75个"是"。那么130个"是"的答案中,约有 55个"是"是问题a的答案,于是我们就可以得到 完成学业后愿意回国者的比例约55/150即11/30。
概率论和数理统计是一门随机数学的 两个分支,它们是密切联系的同类学科。 但是应该指出,概率论、数理统计、统计 方法又都各有它们自己所包含的不同内容。 概率论--是根据大量同类随机现象的统 计规律,对随机现象出现某一结果的可能 性作出一种客观的科学判断,对这种出现 的可能性大小做出数量上的描述;比较这 些可能性的大小、研究它们之间的联系, 从而形成一整套数学理论和方法。
数理统计--是应用概率的理论来研究大 量随机现象的规律性;对通过科学安排的 一定数量的实验所得到的统计方法给出严 格的理论证明;并判定各种方法应用的条 件以及方法、公式、结论的可靠程度和局 限性。使我们能从一组样本来判定是否能 以相当大的概率来保证某一判断是正确的, 并可以控制发生错误的概率。 统计方法--是一上提供的方法在各种具 体问题中的应用,它不去注意这些方法的 理论根据、数学论证。
概率论发展简史
四、概率论理论基础的建立: 概率论的第一本专著是1713年问世的雅 各· 伯努利的《推测术》。经过二十多年的艰 难研究,伯努利在该书中,表述并证明了著 名的“大数定律”。所谓“大数定律”,简单地 说就是,当实验次数很大时,事件出现的频 率与概率有较大偏差的可能性很小。这一定 理第一次在单一的概率值与众多现象的统计 度量之间建立了演绎关系,构成了从概率论 通向更广泛应用领域的桥梁。因此,伯努利 被称为概率论的奠基人。
概率论与数理统计课件(完整版)
1. 计算相互独立的积事件的概率: 若已知n个事件A1, A2, …, An相互独立,则 P(A1A2…An)=P(A1)P(A2)…P(An)
系统一:先串联后并联
A1
B1
A2
B2
A3
B3
A4
B4
*
例3. 100件乐器,验收方案是从中任 取3件测试(相互独立的), 3件测试后都认为音色纯则接收这批 乐器,测试情况如下: 经测试认为音色纯 认为音色不纯 乐器音色纯 0.99 0.01 乐器音色不纯 0.05 0.95
*
1. 公式法:
当A=S时, P(B|S)=P(B), 条件概率化为无条件概率, 因此无条件概率可看成条件概率.
注
计算条件概率有两种方法:
*
2.缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2次取到奇数的概率.
*
随机试验: (1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的结果; (3) 一次试验前不能确定会出现哪个结果.
*
2. 样本空间与随机事件
样本空间的分类:
离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
空集φ不包含任何样本点, 它在每次试验中都不发生,称为不可能事件。
概率论与数理统计发展及应用1
概率论与数理统计发展及应用摘要:通过上半学期概率论与数理统计这门课的学习,我大概了解了基本的概率知识,意识到这门课对于自己以后的发展和创新有着很大的帮助。
本文将根据自己的学习心得以及在网上,图书中查找的资料,从概率论的发展历程,以及其在各重要领域中的应用两个方面来阐述我对本门课的理解。
关键词:概率论,数理统计,发展,主要应用正文一、概率论及数理统计的发展1、历史背景17、18世纪,数学获得了巨大的进步。
数学家们冲破了古希腊的演绎框架,向自然界和社会生活的多方面汲取灵感,数学领域出现了众多崭新的生长点,而后都发展成完整的数学分支。
除了分析学这一大系统之外,概率论就是这一时期"使欧几里得几何相形见绌"的若干重大成就之一。
2、概率论的起源与发展概率论是一门研究随机现象规律的数学分支。
概率论的研究始于意大利文艺复兴时期当时在误差、人口统计、人寿保险等范畴中,需要整理和研究大量的随机数据资料,这就孕育出一种专门研究大量随机现象的规律性的数学,但当时刺激数学家们首先思考概率论的问题,却是来自赌博者的问题。
当时赌博盛行,而且赌法复杂,赌注量大,一些职业赌徒,为求增加获胜机会,迫切需要计算取胜的思路,研究不输的方法。
十七世纪中叶,帕斯卡和当时一流的数学家费尔马一起,研究了德·美黑提出的关于骰子赌博的问题,这就是概率论的萌芽。
1657年荷兰物理学家惠更斯发表了“论赌博中的计算”的重要论文,提出了数学期望的概念,伯努利把概率论的发展向前推进了一步,于1713年出版了《猜测的艺术》,指出概率是频率的稳定值,他第一次阐明了大数定律的意义。
1718年法国数学家棣莫弗发表了重要著作《机遇原理》,书中叙述了概率乘法公式和复合事件概率的计算方法,并在1733年发现了正态分布密度函数,但他没有把这一结果应用到实际数据上,直到1924年菜被英国统计学家K·皮尔森在一家图书馆中发现。
德国数学家高斯从测量同一物体所引起的误差这一随机现象独立的发现正态分布密度函数方程,并发展了误差理论,提出了最小二乘法。
概率论与数理统计发展简史
概率论学科历史三四百年前在欧洲许多国家,贵族之间盛行赌博之风。
掷骰子是他们常用的一种赌博方式。
因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现1点至6点中任何一个点数的可能性是相等的。
有的参赌者就想:如果同时掷两颗骰子,则点数之和为9与点数之和为10,哪种情况出现的可能性较大?17世纪中叶,法国有一位热衷于掷骰子游戏的贵族德·梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。
这是什么原因呢?后人称此为著名的德·梅耳问题。
又有人提出了“分赌注问题”: 两个人决定赌若干局,事先约定谁先赢得6局便算赢家。
如果在一个人赢3局,另一人赢4局时因故终止赌博,应如何分赌本?诸如此类的需要计算可能性大小的赌博问题提出了不少,但他们自己无法给出答案。
数学家们“参与”赌博。
参赌者将他们遇到的上述问题请教当时法国数学家帕斯卡,帕斯卡接受了这些问题,他没有立即回答,而把它交给另一位法国数学家费尔马。
他们频频通信,互相交流,围绕着赌博中的数学问题开始了深入细致的研究。
这些问题后来被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他独立地进行研究。
帕斯卡和费尔马一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌注问题”,并将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。
而惠更斯经过多年的潜心研究,解决了掷骰子中的一些数学问题。
1657年,他将自己的研究成果写成了专著《论掷骰子游戏中的计算》。
这本书迄今为止被认为是概率论中最早的论著。
因此可以说早期概率论的真正创立者是帕斯卡、费尔马和惠更斯。
这一时期被称为组合概率时期,计算各种古典概率。
在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。
概率论与数理统计课件 完整版
二、随机现象
自然界所观察到的现象: 确定性现象 随机现象
1.确定性现象
在一定条件下必然发生 的现象称为确定性现象.
实例
“太阳不会从西边升起”, “水从高处流向低处”, “可导必连续”, 确定性现象的特征: 条件完全决定结果
2020/4/3
2. 随机现象
在一定条件下可能出现也可能不出现的现象 称为随机现象. 实例1 “在相同条件下掷一枚均匀的硬币,观 察正反两面出现的情况”. 结果有可能出现正面也可能出现反面.
解:用 i 表示掷骰子出现的点数为 i,i1,6;
{ 1 , 2 , 3 , 4 , 5 , 6 } 基本事件 A i {i}i,i , 1 ,2 , ,6 ;
A{2,4,6}; B{1,3,5}.
2020/4/3
小结
1 随机现象的特征: 条件不能完全决定结果.
2. 随机现象是通过随机试验来研究的.
3. 记录某公共汽车站 某日上午某时刻的等 车人 数.
4. 考察某地区 10 月 份的平均气温.
5. 从一批灯泡中任取 一只,测试其寿命.
2020/4/3
四、概率的统计定义
1、随机事件:在试验的结果中,可能发生、也可能不发 生的事件。比如,抛硬币试验中,”徽花向上”是随机事 件;掷一枚骰子中,”出现奇数点”是一个随机事件等。
其结果可能为: 正品 、次品.
实例5 “过马路交叉口时,命” 可长可 短. 随机现象的特征: 条件不能完全决定结果
2020/4/3
说明 1. 随机现象揭示了条件和结果之间的非确定性联 系 , 其数量关系无法用函数加以描述. 2. 随机现象在一次观察中出现什么结果具有偶然 性, 但在大量重复试验或观察中, 这种结果的出现 具有一定的统计规律性 , 概率论就是研究随机现 象这种本质规律的一门数学学科. 如何来研究随机现象? 随机现象是通过随机试验来研究的. 问题 什么是随机试验?
概率论与数理统计的起源与发展
概率论与数理统计的起源与发展概率论产生于十七世纪,本来是有保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
早在1654年,意大利医生兼数学家卡当,据说曾大量地进行过赌博。
他在赌博时研究不输的方法,实际是概率论的萌芽。
在那个时代,虽然概率论的萌芽有些进展,但还没有出现真正的概率论。
十七世纪中叶,法国贵族德·美黑在骰子赌博中,由于有要急近处理的事情必须中途停止赌博,要靠对胜负的预测把赌资进行合理的分配,但不知用什么样的比例分配才算合理,于是就写信向当时法国的最高数学家帕斯卡请教。
正是这封信使概率论向前迈出了第一步。
帕斯卡和当时第一流的数学家费尔玛一起,研究了德·美黑提出的关于骰子赌博的问题。
于是,一个新的数学分支--概率论登上了历史舞台。
三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,这就是最早的概率论著作。
在概率问题早期的研究中,逐步建立了事件、概率和随机变量等重要概念以及它们的基本性质。
后来由于许多社会问题和工程技术问题,如:人口统计、保险理论、天文观测、误差理论、产品检验和质量控制等。
这些问题的提法,均促进了概率论的发展,从17世纪到19世纪,贝努利、隶莫弗、拉普拉斯、高斯、普阿松、切贝谢夫、马尔可夫等著名数学家都对概率论的发展做出了杰出的贡献。
在这段时间里,概率论的发展简直到了使人着迷的程度。
但是,随着概率论中各个领域获得大量成果,以及概率论在其他基础学科和工程技术上的应用,由拉普拉斯给出的概率定义的局限性很快便暴露了出来,甚至无法适用于一般的随机现象。
因此可以说,到20世纪初,概率论的一些基本概念,诸如概率等尚没有确切的定义,概率论作为一个数学分支,缺乏严格的理论基础。
概率论的第一本专著是1713年问世的雅各·贝努利的《推测术》。
经过二十多年的艰难研究,贝努利在该树种,表述并证明了著名的"大数定律"。
概率论与数理统计知识点总结(免费超详细版)
概率论与数理统计知识点总结(免费超详细版) 题目:概率论与数理统计知识点总结摘要本文总结了概率论和数理统计方面的基础知识,涉及概率分布、参数估计、假设检验、卡方检验、多元分析等。
对这些知识点的理解和了解可以帮助人们更好地分析和利用数据,促进数据分析的发展。
关键词:概率论,数理统计,概率分布,参数估计,假设检验,卡方检验,多元分析正文1.概率论概率论是数理统计中一门重要科学,它是一门数学研究现实世界事件发生的规律性、可预测性及不确定性的学科。
在概率论中,我们引入了诸如概率、期望和方差等概念,用来描述和推断某种随机现象的发生。
2.概率分布概率分布是在给定的实际情况下随机变量取值的概率分布。
典型的概率分布包括正态分布、泊松分布和二项分布。
此外,也有一些联合分布,例如协方差、共轭先验、贝叶斯估计等。
3.参数估计参数估计是根据样本数据估计总体参数的统计方法。
它涉及到将总体参数估计为样本参数的过程,通常使用最大似然估计、贝叶斯估计和假定测试等方法。
4.假设检验假设检验是基于统计学原理,用来评估某一假设是否真实存在的方法。
其中包括t检验、F检验、Z检验等,它们之间的区别在于所使用的抽样分布不同。
5.卡方检验卡方检验是一种统计检验,用于直接检验某个抽样值是否遵循某种理论分布。
卡方检验可以根据观察到的抽样数据和理论分布之间的差异来衡量分布概率值的有效性。
6.多元分析多元分析是一种分析不同变量之间交互影响的统计方法。
它包括多元回归分析、多元判别分析、因子分析等,能够帮助我们了解多个变量之间的关系。
结论本文总结了概率论和数理统计方面的基础知识,包括概率分布、参数估计、假设检验、卡方检验和多元分析等。
了解这些知识点可以帮助人们更好地分析和利用数据,促进数据分析的发展。
概率论和数理统计方面的知识点在实际应用中有着重要作用。
概率论可以帮助研究人员对随机现象进行建模、分析和推断,其中包括使用概率分布建立统计模型和估计参数,并使用假设检验和卡方检验来检验假设,以及用多元分析来推断不同变量之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、概率定义的发展与分析1.古典定义的历史脉络古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能. 16 世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812 年,法国数学家拉普拉斯(1749 —1827 )在《概率的分析理论》中给出概率的古典定义:事件 A 的概率等于一次试验中有利于事件 A 的可能结果数与该事件中所有可能结果数之比.2.古典定义的简单分析古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:( 1)可能结果总数有限;( 2)每个结果的出现有同等可能.其中第( 2)条尤其重要,它是古典概率思想产生的前提.如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要n r 的各种排列(或总数为n r)的各种组合)看成是等可能的,求,就是将总数为 P( , ) C( ,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,而且有数学上的.“ 用性的狭窄性”促使雅各布 ?伯努利( 1654 — 1705 )“ 找另一条途径找到所期待的果”,就是他在研究古典概率的另一重要成果:伯努利大数定律.条定律告我“ 率具有定性”,所以可以“用率估概率”,而也以后概率的定奠定了思想基.“古典定数学上的”在特朗(1822 — 1900 )悖中表得淋漓尽致,它揭示出定存在的矛盾与含糊之,致了拉普拉斯的古典定受到猛烈批.3.定的史脉概率的古典定然直,但是适用范有限.正如雅各布?伯努利所:“⋯⋯ 种方法适用于极罕的象.”因此,他通察来确定果数目的比例,并且“即使是没受教育和的人,凭天生的直,也会清楚地知道,可利用的有关的次数越多,生的就越小”.然原理,但是其科学明并不,在古典概型下,伯努利了一点,即“当次数愈来愈大,率接近概率”.事上,不于古典概型适用,人确信“从中察的率定性”的事是一个普遍律.1919 年,德国数学家 ?米塞斯( 1883 — 1953 )在《概率基研究》一中提出了概率的定:在做大量重复,随着次数的增加,某个事件出的率是在一个固定数的附近,示出一定的定性,把个固定的数定一事件的概率.虽然统计定义不能像古典定义那样确切地算出概率,但是却给出了一个估计概率的方法.而且,它不再需要“等可能”的条件,因此,从应用的角度来讲,它的适用范围更广.但是从数学理论上讲,统计定义是有问题的.在古典概率的场合,事件概率有一个不依赖于频率的定义——它根本不用诉诸于试验,这样才有一个频率与概率是否接近的问题,其研究导致伯努利大数定律.在统计定义的场合这是一个悖论:你如不从承认大数定律出发,概率就无法定义,因而谈不上频率与概率接近的问题;但是你如承认大数定律,以便可以定义概率,那大数定律就是你的前提,而不是一再需要证明的论断了.5.公理化定义的历史脉络正因为古典定义和统计定义数学理论上的这样或那样的问题,所以到了19 世纪,无论是概率论的实际应用还是其自身发展,都要求对概率论的逻辑基础作出更加严格的考察.1900 年,38 岁的希尔伯特(1862 — 1943)在世界数学家大会上提出了建立概率公理系统的问题,这就是著名的希尔伯特23 个问题中的第 6 个问题.这引导了一批数学家投入这方面的工作.在概率公理化的研究道路上,前苏联数学家柯尔莫哥洛夫(1903 — 1987)成绩最为卓著,1933 年,他在《概率论基础》中运用集合论和测度论表示概率论的方法赋予了概率论严密性.为什么直到 20 世纪才实现了概率论的公理化,这是因为20世纪初才完成了勒贝格测度与积分理论以及抽象测度与积分理论,而这都是概率论公理化体系建立的基础.柯尔莫哥洛夫借助实变函数论和测度论来定义概率概念,形成了概率论的公理化体系,他的公理体系既概括了古典定义、统计定义的基本特性,又避免了各自的局限.例如,公理中有一条,是把事件概率的存在作为一个不要证明的事实接受下来,在这个前提下,大数定律就成为一个需要证明且可以得到证明的论断,这就避免了“4”中统计定义的数学理论上的问题;而公理中关于“概率存在”的规定又有其实际背景,这就是概率的古典定义和统计定义.所以,我们说,概率论公理体系的出现,是概率论发展史上的一个里程碑,至此,概率论才真正成为了严格的数学分支.二、关于概率定义教学的几点思考对于概率的定义,教科书是先给出古典定义,然后再给出统计定义.这与历史上概率定义的发展相吻合,从“简单到复杂”.在教学中,我们不仅要明了这种顺序的设计意图,而且还要抓住不同定义的特点和思想,以引导学生更好地理解概率.1.古典定义的教学定位在前面的分析中,我们说“等可能”是古典概率非常重要的一个特征,它是古典概率思想产生的前提.正是因为“等可能”,所以才会有了“比率”.因此,“等可能性”和“比率”是古典定义教学中的两个落脚点.“等可能”是无法确切证明的,往往是一种感觉,但是这种感觉是有其实际背景的,例如,掷一枚硬币,“呈正面”“呈反面”是等可能的,因为它质地均匀;而掷一枚图钉,“钉帽着地”“顶针着地”不是等可能的,因为图钉本身给我们的感觉就是帽重钉轻.因此,“等可能”并不要多么严密的物理上或化学上的分析,只需要通过例子感知一下“等可能”和“不等可能”即可,以便让学生明白古典定义的适用对象须具备的条件.2.统计定义的教学定位从直观上讲,统计定义是非常容易接受的,但是它的内涵是非常深刻的,涉及到大数定律.在初中阶段,我们不可能让学生接触其严格的形式和证明.因此,统计定义定位在其合理性和必要性是比较恰当的.如何让学生体会其合理性和必要性?罗老师的课堂教学比较好地实现了这两点.从教学顺序来看,罗老师将“掷硬币”作为归纳统计定义的例子,“掷硬币”可以用古典定义求概率,所以概率值是明确的,而通过试验的方法计算得到的频率就可以和这个明确的概率值相比较,如此更容易让学生体会到“频率具有稳定性”这一事实,从而感受到“用频率估计概率”的合理性;罗老师将“掷图钉”作为统计定义的应用,“掷图钉”不能用古典定义求概率,由此能让学生体会到学习统计定义计算事件概率的必要性.从教学手段来看,罗老师主要采用了“学生试验”的方法,学生的亲自试验在这节课所起的作用是无可代替的:“亲自试验”获得的结果能够给学生以真实感和确切感;“亲自试验”能够让学生感受到频率的随机性和稳定性等特点.所以,像概率与统计的学习,学生应该有更多的主动权和试验权,在动手和动脑中感受概率与统计的思想和方法.3.概率与统计教学的背后:专业素养的提升在课题研讨时,教师们表现出这样一些困惑:随着试验次数的增加,频率就越来越稳定?频率估计概率,一定要大量试验?实验次数多少合适?事实上,这些问题涉及的就是概率与统计的专业素养.对于大多数教师而言,概率与统计相对而言比较陌生,这是很自然的,因为在教师自身接受的数学专业学习中,概率与统计就是一个弱项.但是,既然要向学生教授概率与统计,那么还是需要有“一桶水”的.就像上面的问题,翻阅任何一本《概率论与数理统计》,都可以给我们知识上的答案,而翻阅一下相关的科普读物或史料,就可以给我们思想方法上的答案.举个例子:伯努利大数定律:设 m 是 n 重伯努利试验中事件 A 出现的次数,又 A 在每次试验中出现的概率为 p(),则对任意的,有.狄莫弗 -拉普拉斯极限定理:设 m 是 n 重伯努利试验中事件 A 出现的次数,又 A 在每次试验中出现的概率为p(),则.伯努利大数定律只是告诉我们,当 n 趋于无穷时,频率依概率收敛于概率p .伯努利的想法是:只要n充分大,那么频率估计概率的误差就可以如所希望的小.值得赞赏的是,他利用了“依概率收敛”而不是更直观的p ,因为频率是随着试验结果变化的,在 n 次试验中,事件 A 出现 n 次也是有可能的,此时p 就不成立了.伯努利不仅证明了上述大数定律,而且还想知道:若想要把一个概率通过频率而确定到一定的精确度,要做多少次观察才行.这时,伯努利大数定律无能为力,但是狄莫弗 -拉普拉斯极限定理给出了解答:.( *)例如研究课中掷硬币的问题,若要保证有95% 的把握使正面向上的频率与其概率0.5 之差落在 0.1 的范围内,那要抛掷多少次?根据( *)式,可以估计出.三、概率论发展简史概率论有悠久的历史,它的起源与博弈问题有关。
可追溯到15世纪末至16世纪中期,意大利的一些学者开始研究掷骰子等赌博中的一些简单问题,例如比较掷两个骰子出现总点数为9 或 10 的可能性大小。
1494 年,意大利数学家巴乔利(L.Pacioli,1445-1517),在其著作《算术、几何及比例性质摘要》中记载:A,B 两人进行一场公平赌博,约定先赢得 s=6 局者获胜。
而在 A 胜局且B 胜局时中断。
巴乔利认为该赌博最多需要进行(s-1)2+1=11 局,因而赌金分配方案应为与之比,即的比例来分配赌本 .1539 年,卡尔达诺 (G.Cardano,1501-1576) ,通过实例指出巴乔利的分配方案是错误的,指出这样不考虑赌徒可能再赢得局数的算法是错误的。
他认为,对于 A 有利的情形是:若再赌 1 场则 A 胜;若再赌 2 场,则 B 先胜 A 后胜;若再赌 3 场,则 B 先胜 2 场而 A 胜最后 1 场;若再赌 4 场,则 B 先胜 3 场而 A 胜最后 1 场。
只有在赌 4场B 全胜时才对 B 有利。
于是得出应按(1+2+3+4 )/1 来分赌本。
他也没有找到正确的解法。
1556 年,塔塔利亚( Niccolo Fontana,1499-1557, 绰号 Tartaglia )也批评了巴乔利的解法,并甚至怀疑能找到数学解答的可能性。
“类似问题应属于法律而非数学,故无论如何分配都有理由上诉。
”不过,他也提出一种解法(略)17 世纪中叶,法国数学家帕斯卡、费马及荷兰数学家惠更斯基于排列组合的方法研究了一些较复杂的赌博问题,他们解决了“合理分配赌注问题”(即“得分问题”,)、“输光问题”等等。
1654 年,法国一位名叫梅累的狂热赌徒向帕斯卡提出一个困扰他很久的问题:“两个赌徒相约赌若干局,谁先赢 s 局就算是谁赢。
可是当一个赌徒 A 赢 a 局(a<s),而另一个赌徒 B 赢 b 局(b <s)时,赌博因故终止了,问赌本应如何分配?”帕斯卡将这个问题和他的解法寄给费尔马,这是 1654 年 7 月 29 日电事情。