河北省中考模拟题(数学)

合集下载

2023年河北省中考数学模拟复习卷(答案在卷尾)

2023年河北省中考数学模拟复习卷(答案在卷尾)

2023年河北省中考数学综合复习卷考试范围:初中;考试时间:120分钟;满分:120分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题(本大题有16个小题,共42分。

1~10小题各3分,11~16小题各2分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.若23a <<时,化简23a a -+-=( )A .1B .25a -C .1-D .52a -2.把长为2023个单位长度的线段AB 放在单位长度为1的数轴上,则线段AB 能盖住的整点有( ) A .2022个 B .2023个 C .2022或2023个 D .2023或2024个3.如图,将一个含45︒的三角板ABC ,绕点A 按顺时针方向旋转60︒,得到ADE ,连接BE ,且2,90AC BC ACB ==∠=︒,则线段BE =( )A BC D .1 4.下列计算:①()011-=-;②()2124-=;③55-=±.其中正确的有( ) A .3个 B .2个 C .1个 D .0个5.2022年10月12日下午,“天宫课堂”第三课在中国空间站开讲,神舟十四号飞行乘组三位航天员陈冬、刘洋、蔡旭哲进行授课,央视新闻抖音号进行全程直播,某一时刻观看人数达到421.1万,421.1万用科学记数法可以表示为( )A .70.421110⨯B .64.21110⨯C .4421.110⨯D .3421110⨯6.如图,在矩形ABCD 中,6cm AB =,对角线AC 与BD 相交于点O ,DE AC ⊥,垂足为E ,3AE CE =,则BD 的长为( )A .B .C .12cmD .7.如图,索玛立方块是由丹麦数学家皮亚特·海恩发明的,它是由7个不规则的积木单元,拼成一个333⨯⨯的立方体,有400多种拼法,则下列四个积木单元中,俯视图面积最大的是( )A .B .C .D .8.用换元法解方程222131x x x x-+=-时,若设21x y x =-,则原方程可化为关于y 的方程是( ) A .22310y y -+= B .21203y y C .2320y y -+= D .2320y y ++=9.已知3,7a b ab +=-=,则多项式22a b ab a b +--的值为( )A .24B .18C .24-D .18-10.如图,在平面上将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠放在一起,则312=∠+∠-∠( )A .24°B .26°C .28°D .30°11.如图,边长为4的正方形ABCD 内接于O ,E 是劣弧AB 上的动点(不与点A ,B 重合),F 是劣弧BC 上一点,连接OE ,OF ,分别与AB ,BC 交于点G ,H ,且90EOF ∠=︒,则在点E 运动过程中,下列关系会发生变化的是( )甲:AE 与BF 之间的数量关系;乙:GH 的长度;丙:图中阴影部分的面积和A .只有甲B .只有甲和乙C .只有乙D .只有乙和丙12.定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD 是ABC 的外角,求证:ACD A B ∠=∠+∠.证法1:如图.∠180A B ACB ∠+∠+∠=︒(三角形内角和定理)又∠180ACD ACB ∠+∠=︒(平角定义)∠ACD ACB A B ACB ∠+∠=∠+∠+∠(等量代换)∠ACD A B ∠=∠+∠(等式性质)证法2:如图,∠76A ∠=︒,59B ∠=︒,且135ACD ∠=︒(量角器测量所得)又∠1357659︒=︒+︒(计算所得)∠ACD A B ∠=∠+∠(等量代换)下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理13.王师傅用角尺平分一个角,如图①,学生小顾用三角尺平分一个角,如图②,他们都在AOB ∠两边上分别取OM ON =,前者使角尺两边相同刻度分别与M ,N 重合,角尺顶点为P ;后者分别过M ,N作OA ,OB 的垂线,交点为P ,则射线OP 平分AOB ,均可由OMP ONP ≌△△得知,其依据分别是( )A .SSS ;SASB .SAS ;SSSC .SSS ;HLD .SAS ;HL14.2022年12月4日11时01分,神州十四号载人飞船与空间站组合体成功分离返回地球,为了欢迎在中国空间站出差183天的航天员陈冬、刘洋、蔡旭哲回家,北京市育英学校举行了“我的航天梦”英语演讲比赛.有9名学生通过海选进入决赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A .众数B .频率C .平均数D .中位数15.如图,在矩形ABDC 中,AC =4cm ,AB =3cm ,点E 以0.5cm/s 的速度从点B 到点C ,同时点F 以0.4cm/s 的速度从点D 到点B ,当一个点到达终点时,则运动停止,点P 是边CD 上一点,且CP =1,且Q 是线段EF 的中点,则线段QD +QP 的最小值为( )A .B .5CD 16.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产进行治污改造,其月利润y (万元)与月份x 之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误..的是( )A .4月份的利润为50万元B .治污改造完成后每月利润比前一个月增加30万元C .治污改造完成前后共有4个月的利润低于100万元D .9月份该厂利润达到200万元二、填空题(本大题共3个小题,每小题3分,共9分.其中19小题第一空1分,第二空2分)17.小明在学习圆的相关知识时,看到书本上提到可以用一把丁字尺(如图1)来找圆心,他想到爸爸的工具箱里有丁字尺,于是想利用丁字尺还原一个破损的圆,已知尺头4cm AB =,尺身刻度线l 垂直平分AB ,他摆出的情况如图2,发现两次测量丁字尺的尺身交于刻度为6cm 的位置,则这个破损的圆的直径是_______cm.18.在ABC 中,AB AC =,点G F ,分别为AB BC ,的中点,22AG AD EC ==,连接EG DF ,,将ABC 分成四块,如图(1)中∠,∠,∠,∠,四块图形恰好能拼成如图(2)的矩形,则tan B =___________.19.如图①,1234,,,O O O O 为四个等圆的圆心,,,,A B C D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是___;如图②,12345,,,,O O O O O 为五个等圆的圆心,,,,,A B C D E 为切点,请你在图中画出一条直线,将这五个圆分成面积相等的两部分,并说明这条直线经过的两个点是 __.(答案不唯一)三、解答题(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤) 20.(7分)已知:整式21A n =+,2B n =,21C n =-,整式0C >.(1)当1999n =时,写出整式A B +的值______(用科学记数法表示结果);(2)求整式22A B -;(3)嘉淇发现:当n 取正整数时,整式A 、B 、C 满足一组勾股数,你认为嘉淇的发现正确吗?请说明理由.21.(8分)我们定义:一个整数能表示22a b a b +++(a ,b 是整数)的形式,则这个数为“和谐数”,例如8是“和谐数”,理由:因为2282121=+++,所以8是“和谐数”.(1)请判断14______“和谐数”(填“是”或“不是”);(2)请你写出一个大于14且小于20的“和谐数”:______;(3)当整数m ,n 满足()222817x m n x x ++=-+时,求“和谐数”22m n m n +++的值;(4)若实数x ,y 满足992280x y xy +--=,求22x y x y +++的最小值.22.(8分)小红、小明、小亮要参加某电视台组织的主持人演讲比赛,按程序分别进行答辩、笔试和网络投票,(1)在进行答辩之前,需要抽签决定答辩次序,直接写出小红抽到第一个答辩的概率;(2)答辩、笔试成绩如下表,网络投票每张选票只限填写小红、小明、小亮其中的一人,且每张得票记1分,统计选票后,绘出不完整的统计图.答辩、笔试成绩统计表根据以上信息,请解答: ①网络选票总数是________;补全条形统计图:②比赛组委会将答辩、笔试和网络投票三项得分按5∠4∠1的比例确定每人的总成绩,分数最高者为冠军,请你通过计算说明谁是冠军.23.(10分)对于平面直角坐标系xOy 中的点A 和点P ,若将点P 绕点A 逆时针旋转90°后得到点Q ,则称点Q 为点P 关于点A 的“垂链点”,图1为点P 关于点A 的“垂链点”Q 的示意图.(1)已知点A 的坐标为()00,,点P 关于点A 的“垂链点”为点Q ; ①若点P 的坐标为()20,,则点Q 的坐标为_______________; ②若点Q 的坐标为()21-,,则点P 的坐标为__________; (2)如图2,已知点C 的坐标为()10,,点D 在直线113y x =+上,若点D 关于点C 的“垂链点”在坐标轴上,试求出点D 的坐标; (3)如图3,已知图形G 是端点为()10,和()02-,的线段,图形H 是以点O 为中心,各边分别与坐标轴平行的边长为6的正方形,点M 为图形G 上的动点,点N 为图形H 上的动点,若存在点()0T t ,,使得点M 关于点T 的“垂链点”恰为点N ,请直接写出t 的取值范围.24.(10分)图1是某种型号圆形车载手机支架,由圆形钢轨、滑动杆、支撑杆组成.图2是它的正面示意图,滑动杆AB 的两端都在圆O 上,A 、B 两端可沿圆形钢轨滑动,支撑杆CD 的底端C 固定在圆O 上,另一端D 是滑动杆AB 的中点,(即当支架水平放置时直线AB 平行于水平线,支撑杆CD 垂直于水平线),通过滑动A 、B 可以调节CD 的高度.当AB 经过圆心O 时,它的宽度达到最大值10cm ,在支架水平放置的状态下:(1)当滑动杆AB 的宽度从10厘米向上升高调整到6厘米时,求此时支撑杆CD 的高度.(2)如图3,当某手机被支架锁住时,锁住高度与手机宽度恰好相等(AE AB =),求该手机的宽度.25.(12分)在平面直角坐标系中,抛物线223(0)y ax ax a a =--≠的顶点为P ,且该抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧).我们规定抛物线与x 轴围成的封闭区域称为“区域G ”(不包括边界);横、纵坐标都是整数的点称为整点.(1)如果抛物线223y ax ax a =--经过点(13),. ①求a 的值;②直接写出“区域G ”内整数点的个数;(2)当a<0时,如果抛物线223y ax ax a =--在“区域G ”内有4个整数点,求a 的取值范围;(3)当0a >时,抛物线与直线x a =交于点C ,把点C 向左平移5个单位长度得到点D ,以CD 为边作等腰直角三角形CDE ,使90DCE ∠=︒,点E 与抛物线的顶点始终在CD 的两侧,线段DE 与抛物线交于点F ,当2tan 3ECF ∠=时,直接写出a 的值.26.(14分)ABC 的边BC 在直线l 上,AC BC ⊥,且AC BC =,EFP △的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.(1)如图1,直接写出AB 与AP 的数量关系:______,AB 与AP 的位置关系:______;(2)将EPF 沿直线l 向左平移到图2的位置时,EP 交AB 于点O ,交AC 于点Q ,连接AP ,BQ ,求证:ABQ APQ ∠=∠;(3)将EPF 沿直线l 向左平移到图3的位置时,EP 的延长线交AC 的延长线于点Q ,连接AP ,BQ ,试探究ABQ ∠与APQ ∠满足的数量关系,并说明理由;(4)若1cm AC BC ==,AB =,点P 在CB 的延长线上继续向左平移,当:3:2CBQ CBA ∠∠=时,请直接写出CBQ △与CBA △的面积之比.参考答案:1.B 【分析】直接利用绝对值的性质化简求出答案.【详解】解:23a <<,20a ∴-<,()222a a a ∴-=--=-,23a a ∴-+-23a a =-+-25a =-.故答案为:B .【点睛】此题主要考查了绝对值的性质,正确利用a 的取值范围化简是解题关键.2.D【分析】根据题意把长为1个单位长度的线段AB 放在单位长度为1的数轴上,可能盖住2个或1个点,以此类推,找出规律即可解答.【详解】解:1个单位长度的线段放在数轴上,两端的放在整数点上,盖住2个点,两端不在整数点上,盖住1个点;2个单位长度的线段放在数轴上,两端的放在整数点上,盖住3个点,两端不在整数点上,盖住2个点; 3个单位长度的线段放在数轴上,两端的放在整数点上,盖住4个点,两端不在整数点上,盖住2个点; ⋯n 个单位长度的线段放在数轴上,两端的放在整数点上,盖住()1n +个点,两端不在整数点上,盖住n 个点;∴2023个单位长度的线段放在数轴上,两端的放在整数点上,盖住2024个点,两端不在整数点上,盖住2023个点;故答案为:D .【点睛】此题考查了数轴规律题,解题的关键是根据题意分情况找出规律.3.A【分析】连接BD ,延长BE 交AD 于点F ,根据旋转性质可知AB AD =,60DAB ∠=︒,90AED ∠=︒,2AE DE AC BC ====,由此得出ABD △为等边三角形,然后进一步通过证明BAE BDE ≌得出ABE DBE ∠∠=,根据等腰三角形三线合一可知BF AD ⊥,且AF DF =,由此利用勾股定理分别计算出AB 、BF 的长,最后通过BE BF EF =-进一步计算即可得出答案.【详解】解:如图,连接BD ,延长BE 交AD 于点F ,由旋转可知,AB AD =,60DAB ∠=︒,90AED ∠=︒,2AE DE AC BC ====,ABD ∴为等边三角形,AB BD ∴=,在BAE 与BDE △中,AE DE =,BA BD =,BE BE =,BAE BDE ∴≌(SSS ), ABE DBE ∴∠=∠,∠BF AD ⊥,且AF DF =,2AC BC ==,90ACB ∠=︒,AB ∴=22222+=AB BD AD ∴===22AF ∴=2BF ∴=226AB AF -90AED ∠=︒,AE DE =,45FAE ∴∠=︒,BF AD ⊥,45FEA ∴∠=︒,EF AF ∴==2BE BF EF ∴=-=62故选:A .【点睛】本题主要考查了旋转的性质、全等三角形性质及判定和勾股定理与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.4.D【分析】根据零指数幂,有理数的乘方,绝对值的计算法则求解即可.【详解】解:①()011-=,计算错误,不符合题意;②()224-=,计算错误,不符合题意;③55-=,计算错误,不符合题意; ∠计算正确的有0个,故选D .【点睛】本题主要考查了零指数幂,有理数的乘方,绝对值,熟知相关知识是解题的关键,注意非零底数的零次幂的结果为1.5.B【分析】科学记数法的表示形式为10(110)n a a ⨯≤<,根据小数点移动的位数确定n 的值即可. 【详解】解:421.1万=4211000=64.21110⨯.故选:B .【点睛】本题考查了科学记数法的表示方法,解题的关键是正确确定a 的值以及n 的值.6.C【分析】由矩形的性质得出OA OD OC ==,由已知条件得出OE CE =,由线段垂直平分线的性质得出OD CD =,即可求出BD 的长. 【详解】解:3AE CE =,4AC CE ∴=,四边形ABCD 是矩形,122OA OC AC CE ∴===,12OD BD =,AC BD =,6cm CD AB ==, 2OA OD OC CE ∴===,OE CE ∴=DE AC ⊥,6cm OD CD ∴==,212cm BD OD ,故选:C .【点睛】本题考查了矩形的性质,线段垂直平分线的性质,证明OD CD =是解决问题的关键.7.D【分析】根据俯视图中正方形的个数作出判断即可.【详解】解:A 、B 、C 三个选项中俯视图都是由3个小正方形组成,D 选项俯视图中有4个小正方形组成,因此俯视图面积最大的是D 选项中的图形,故D 正确.故选:D . 【点睛】本题主要考查了几何体的俯视图,解题的关键是分别判断出四个选项俯视图中正方形的个数.8.A【分析】把原方程按按照所给条件换元,整理即可.【详解】解:设21x y x =-, 222131x x x x-+=-可化为123y y +=, ∠2213y y +=,∠22310y y -+=,故选:A .【点睛】本题考查换元法解方程,解题的关键是熟练掌握换元法.9.D【分析】先将22a b ab a b +--进行因式分解,然后整体代入求值即可.【详解】解:∠3,7a b ab +=-=,∠22a b ab a b +--()()ab a b a b =+-+()(1)a b ab =+-(3)(71)=-⨯-18=-.故选:D .【点睛】本题主要考查了代数式求值以及因式分解的应用,解决本题关键是正确完成分解因式.10.A【分析】首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出312∠∠∠、、的度数是多少,进而求出312∠+∠-∠的度数即可. 【详解】解:正三角形的每个内角是:180360︒÷=︒,正方形的每个内角是:360490︒÷=︒,正五边形的每个内角是:()521805-⨯︒÷31805=⨯︒÷5405=︒÷108=︒,正六边形的每个内角是:()621806-⨯︒÷41806=⨯︒÷7206=︒÷120=︒,则()()()312906012010810890∠+∠-∠=︒-︒+︒-︒-︒-︒301218=︒+︒-︒24=︒.故选:A .【点睛】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n 边形的内角和()()2?1803n n =-≥且n 为整数).(2)多边形的外角和指每个顶点处取一个外角,则n 边形取n 个外角,无论边数是几,其外角和永远为360°.11.C【分析】连接,OB OA ,根据题意可得AOB EOF ∠=∠,45OAB OBH ∠=∠=︒,从而得到AOE BOF ∠=∠,进而得到AE BF =;再证得AOG BOH △≌△,可得OGH 是等腰直角三角形,从而得到2GH OG =,再由在点E 运动过程中,OG 的长度在发生变化,可得GH 的长度会改变;分别求出EOF S 扇形,OGBH S 四边形,再由阴影部分的面积和为24OGBH EOF S S π-=-四边形扇形,即可.【详解】解:如图,连接,OB OA ,∠正方形ABCD 内接于O ,∠90AOB ∠=︒,45OAB OBH ∠=∠=︒,∠90EOF ∠=︒,∠AOB EOF ∠=∠,∠AOE BOF ∠=∠,∠AE BF =,即AE 与BF 之间的数量关系不变;∠45OAB OBH ∠=∠=︒,OA OB =,AOE BOF ∠=∠,∠AOG BOH △≌△,∠OG OH =,∠OGH 是等腰直角三角形,∠222GH OG OH OG +=,而在点E 运动过程中,OG 的长度在发生变化,∠GH 的长度会改变;根据题意得4AB =, ∠22OA OB OE AB ==== ∠(29022360EOF S ππ⨯==扇形,∠AOG BOH △≌△,∠AOG BOH S S =,∠112222422BOG BOH BOG AOG AOB OGBH S S S S S S OA OB =+=+==⋅=⨯四边形, ∠图中阴影部分的面积和为24OGBH EOF S S π-=-四边形扇形,不变;综上所述,关系会发生变化的是乙.故选:C【点睛】本题主要考查了圆的综合题,正方形的性质,熟练掌握圆周角定理,扇形面积公式,根据题意得到AOG BOH △≌△是解题的关键.12.B【分析】根据定理证明的一般步骤进行分析判断即可解答.【详解】解:∠证法1按照定理证明的一般步骤,从已知出发经过严谨的推理论证,得出结论的正确,具有一般性,无需再证明其他形状的三角形,∠A 的说法不正确,不符合题意;B 的说法正确,符合题意;C 、∠定理的证明必须经过严谨的推理论证,不能用特殊情形来说明,∠C 的说法不正确,不符合题意;D 、∠定理的证明必须经过严谨的推理论证,与测量次数的多少无关,∠D 的说法不正确,不符合题意,综上,B 的说法正确,故选:B .【点睛】本题主要考查了三角形的外角的性质的证明以及定理的证明的一般步骤,依据定理证明的一般步骤分析解答是解题的关键.13.C【分析】根据题意可知:王师傅用角尺平分一个角时使得:OM ON =,PM PN =,OP OP =,故王师傅的依据为:SSS ;学生小顾用三角尺平分一个角时使得:OM ON =,90OMP ONP ∠=∠=︒,且OP OP =,故学生小顾的依据为:HL ;即可得到结果【详解】∠王师傅用角尺平分一个角,在AOB ∠两边上分别取OM ON =,使角尺两边相同刻度分别与M ,N 重合,角尺顶点为P ;∠OM ON =,PM PN =,OP OP =,∠()SSS OMP ONP ≌△△,故王师傅的依据为:SSS ;∠学生小顾用三角尺平分一个角,在AOB ∠两边上分别取OM ON =,分别过M ,N 作OA ,OB 的垂线,交点为P ,∠OM ON =,90OMP ONP ∠=∠=︒,且OP OP =,∠()HL OMP ONP △≌△,故学生小顾的依据为:HL ;故答案为:C【点睛】本题考查了全等三角形的判定和角平分线的概念,熟练掌握全等三角形的判定方法是解决问题的关键14.D【分析】根据题意,可以选取合适的统计量,从而可以解答本题.【详解】解:∠有9名学生参加比赛,一名学生想知道自己能否进入前5名,∠这名学生要知道这组数据的中位数,故选:D .【点睛】本题考查统计量的选择,解题的关键是明确题意,选取合适的统计量.15.A【分析】如图,建立如图所示的平面直角坐标系,连接QB ,PB .首先用t 表示出点Q 的坐标,发现点Q 在直线y =2上运动,求出PB 的值,再根据PQ +PD =PQ +QB ≥PB ,可得结论.【详解】解:如图,建立如图所示的平面直角坐标系,连接QB ,PB .∠四边形ABDC 是矩形,∠AC =BD =4cm ,AB =CD =3cm ,∠C (-3,0),B (0,4),∠∠CDB =90°,∠BC 222234CD CB +=+(cm ),∠EH ∠CD ,∠△BEH ∠∠BCD ,∠BE EH BH BC CD BD==,∠0.5534t EH BH==,∠EH=0.3t,BH=0.4t,∠E(-0.3t,4-0.4t),∠F(0,0.4t),∠QE=QF,∠Q(-320t,2),∠点Q在直线y=2上运动,∠B,D关于直线y=2对称,∠QD=QB,∠QP+QD=QB+QP,∠QP+QB≥PB,PB2224+5,∠QP+QD5∠QP+QD的最小值为5故选:A.【点睛】本题考查轴对称最短问题,矩形的性质,相似三角形的判定和性质,轨迹等知识,解题的关键是构建平面直角坐标系,发现点Q在直线y=2上运动.16.C【分析】直接利用已知点求出一次函数与反比例函数的解析式进而分别分析得出答案.【详解】A、设反比例函数的解析式为kyx =,把(1,200)代入得,k=200,∠反比例函数的解析式为:200yx =,当x=4时,y=50,∠4月份的利润为50万元,正确意;B、治污改造完成后,从4月到6月,利润从50万到110万,故每月利润比前一个月增加30万元,正确;C、当y=100时,则200 100x=,解得:x =2,则只有3月,4月,5月共3个月的利润低于100万元,不正确.D 、设一次函数解析式为:y =kx +b ,则4506110k b k b +=⎧⎨+=⎩,解得:3070k b =⎧⎨=-⎩, 故一次函数解析式为:y =30x −70,故y =200时,200=30x −70,解得:x =9, 则治污改造完成后的第5个月,即9月份该厂利润达到200万元,正确.故选:C .【点睛】此题主要考查了一次函数与反比函数的应用,正确得出函数解析式是解题关键. 17.10【分析】依题意,确定圆心位置,利用垂径定理构造直角三角形,求解即可.【详解】如图:确定圆心O ,依题意:OC AB ⊥122AC AB ∴== 在直角OCA 中:222222640OA AC OC =+=+=210OA =故答案为210OA =【点睛】本题考查了垂径定理和勾股定理的综合运用,关键是根据题意建立圆的模型,利用垂径定理确定线段长度,从而求解.1815【分析】以F 为原点,BC 所在直线为x 轴,建立直角坐标系,设DF 交GE 于M ,过G 作GN BC ⊥于N ,过E 作EP BC ⊥于P ,延长GE 交x 轴Y 于H ,设BF CF m AF n ===,,用相似三角形性质可求出113113,,,,,224444G m n E m n D m n ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,从而可得直线DF 解析式为3n y x m =,直线GE 解析式为255n y x n m =-+,即可求出()3,,2,088m n M H m ⎛⎫ ⎪⎝⎭,根据四块图形恰好能拼成如图(2)的矩形,得222FM MH FH +=,即()22222332028888m n m n m m ⎛⎫⎛⎫⎛⎫⎛⎫∴++-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,化简整理有15n =,在Rt ABF 中,15tan AF n B BF m ===. 【详解】解:AB AC =,A ∴在BC 的垂直平分线上,点G F ,分别为AB BC ,的中点, AG BG BF CF ∴==,,22AG AD EC ==,1144AD EC AC AB ∴===, 以F 为原点,BC 所在直线为x 轴,建立直角坐标系,设DF 交GE 于M ,过G 作GN BC ⊥于N ,过E 作EP BC ⊥于P ,延长GE 交x 轴Y 于H ,如图:设BF CF m AF n ===,,GN BC AF BC ⊥⊥,,90AFB GNB ∴∠=∠=︒,又ABF GBN ∠=∠,ABF GBN ∴∽,GN BN BG AF BF AB∴==,即12GN BN n m ==, 1122GN n BN m ∴==,, 12NF m ∴=, 1122G m n ⎛⎫∴- ⎪⎝⎭,, 同理CEP CAF ∽,14PE CP CE n m AC ∴===, 1144PE n CP m ∴==,, 34PF m ∴=, 3144E m n ⎛⎫∴ ⎪⎝⎭,, 同法可得1344D m n ⎛⎫ ⎪⎝⎭,, 设直线DF 解析式为1y k x =,把1344D m n ⎛⎫ ⎪⎝⎭,代入得:11344mk n =, 解得:13n k m=, ∠直线DF 解析式为3n y x m =, 设直线GE 解析式为22y k x b =+,把1131,,,2244G m n E m n ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭代入得: 222211223144mk b n mk b n ⎧-+=⎪⎪⎨⎪+=⎪⎩,解得:22525n k m b n ⎧=-⎪⎪⎨⎪=⎪⎩, ∠直线GE 解析式为255n y x n m =-+, 联立得3255n y x m n y x n m ⎧=⎪⎪⎨⎪=-+⎪⎩,解得:838m x n y ⎧=⎪⎪⎨⎪=⎪⎩,388m n M ⎛⎫∴ ⎪⎝⎭,, 在255n y x n m =-+中,令0y =得2x m =, ()2,0H m ∴,四块图形恰好能拼成如图(2)的矩形,90FMH ∴∠=︒, 222FM MH FH ∴+=,()0,0F ,()22222332028888m n m n m m ⎛⎫⎛⎫⎛⎫⎛⎫∴++-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 化简整理可得2253n m =, 00m n >>,,15n ∴=, 在Rt ABF 中,15tan AF n B BF m === 15 【点睛】本题考查锐角三角函数,矩形的性质,解题的关键是读懂题意,建立直角坐标系,求出M 的坐标.19. 作图见解析,1O 和3O (答案不唯一) 作图见解析,13O O 与24O O 的交点O 和5O (答案不唯一)【分析】利用中心对称图形进行分析,对于图①,过13,O O 的直线即可满足题意;对于图②过13O O 和24O O 的交点O 和5O 的直线即可满足题意.【详解】解:图①既是轴对称图形,也是中心对称图形,则只需过它的对称中心任意画一条直线即可,如图所示:∴如过13,O O 的一条直线(答案不唯一),故答案为:1O 和3O ;图②它不是中心对称图形,图①中,直线过图形的对称中心即可;一个圆时,只要过圆心即可,则画一条过13O O 和24O O 的交点O 和5O 的直线即可,如图所示:故答案为:13O O 与24O O 的交点O 和5O .【点睛】本题考查利用对称性质作图,借助图形,准确分析图形的对称特征是解决问题的关键. 20.(1)6410⨯(2)22(1)n -(3)正确,理由见解析【分析】1()根据题意可得,()()22121A B n n n +=++=+,把1999n =代入计算应用科学记数法表示方法进行计算即可得出答案;2()把21A n =+,2B n =,代入22A B -中,可得()()22212n n +-,应用完全平方公式及因式分解的方法进行计算即可得出答案;3()先计算()()2222221B C n n +=+-,计算可得()221n +,应用勾股定理的逆定理即可得出答案.【详解】(1)解:()()22121A B n n n +=++=+, 当1999n =时,原式()219991=+22000=6410=⨯; 故答案为:6410⨯;(2)()()2222212A B n n -=+- ()2222214n n n =++- ()22221n n =-+ 22(1)n =-;(3)嘉淇的发现正确,理由如下:()()2222221B C n n +=+-()2222421n n n =+-+ ()221n =+,222B C A ∴+=,∴当n 取正整数时,整式A 、B 、C 满足一组勾股数.【点睛】本题主要考查了勾股定理及逆定理,科学记数法,熟练掌握勾股定理及逆定理,科学记数法的计算方法进行求解是解决本题的关键.21.(1)是(2)18(3)12或14(4)12【分析】(1)根据“和谐数”的定义,即可求解;(2)根据“和谐数”的定义,即可求解;(3)根据()222817x m n x x ++=-+,可得22228217x n m x m x x +=+++-,从而得到41m n =-⎧⎨=±⎩,再代入,即可求解;(4)根据992280x y xy +--=,可得()2928xy x y =+-,再代入把原式变形为()2241x y +-+,即可求解.【详解】(1)解:∠22143131=+++,∠14是“和谐数”;故答案为:是(2)解:∠22183232=+++,∠18是“和谐数”;故答案为:18(3)解:∠()222817x m n x x ++=-+,∠22228217x n m x m x x +=+++-, ∠222817m m n =-⎧⎨+=⎩,解得:41m n =-⎧⎨=±⎩, ∠当1n =时,()()2222414114m n m n +++=-++-+=,当1n =-时,()()()()2222414112m n m n +++=-+-+-+-=,综上所述,“和谐数”22m n m n +++的值为12或14;(4)解:∠992280x y xy +--=,∠()2928xy x y =+-,∠22x y x y +++2222y xy x y x y x =-++++ ()22x y x y xy -=+++()()2928y x x y x y -++=+++()()2828x y x y =+-++,()2241x y +-+=∠()204x y +-≥,∠()212124x y -≥++,即2212x y x y +++≥,∠22x y x y +++的最小值为12.【点睛】本题主要考查了完全平方公式的应用,熟练掌握完全平方公式,理解“和谐数”的定义是解题的关键.22.(1)13; (2)①300张;条形图见解析;②小明;【分析】(1)根据概率公式解答即可;(2)①利用小红的票数和票数所占百分比求出总票数,便可得到小亮的票数;进而补全条形图;②根据答辩分数占50%,笔试分数占40%,投票分数占10%,分别计算三人的加权平均得分;分数最高的即为冠军.(1)解:∠三人抽到第一个答辩的概率相等,∠小红抽到第一个答辩的概率为13. (2)解:①由小红的得票数和百分比可得:总票数=102÷0.34=300(张);小亮的票数=300-102-108=90(张);∠完整条形图为:②由答辩、笔试和网络投票三项得分按5∠4∠1的比例确定每人的总成绩,可得:小红得分=92×0.5+85×0.4+102×0.1=90.2(分);小明得分=89×0.5+88×0.4+108×0.1=90.5(分);小亮得分=90×0.5+89×0.4+90×0.1=89.6(分);小明分数最高,故:小明是冠军.【点睛】本题考查了概率公式,条形统计图和扇形统计图的联系,利用加权平均数作决策;掌握加权平均数的计算方法是解题关键.23.(1)①()()02? 12,②, (2)413D ⎛⎫ ⎪⎝⎭,或()01D , (3)713t ≤≤或1133t -≤≤- 【分析】(1)根据旋转的性质,即可求解;(2)①当点D 在第一象限时,点D 关于点C 的“垂链点”在x 轴上,CD x ⊥轴,即可求解;②当点D 在第二象限时,证明DHC COD '≌即可求解;(3)分点N 落在正方形右边一条边上、上边一条边上两种情况,分别求解即可.【详解】(1)点A 的坐标为()00,,即点A 是原点,根据旋转性质得:①点()02Q ,②点()12P ,, 故答案为()02,,()12, (2)①当点D 在第一象限时,点D 关于点C 的“垂链点”在x 轴上,CD x ∴⊥轴,故点413D ⎛⎫ ⎪⎝⎭,; ②当点D 在第二象限时,如下图,设点1m 13D m ⎛⎫+ ⎪⎝⎭,,点D (0,n ),点D 的“垂链点”D 在y 轴上,过点D 作DH x ⊥轴于点H ,9090DCH HDC OCD DCH ∠∠∠+=︒+∠'=︒,,HDC OCD ∠∠∴=',90DHC COD ∠∠︒'==,DC D C '=,DHC COD '≌,则DH OC =,即1113m +=,解得:0m =, 故点()01D ,, 综上,点413D ⎛⎫ ⎪⎝⎭,或()01D , (3)图形G 所在的直线表达式为:22y x =-,设点()22M m m -,,其中01m ≤≤, 当N 落在正方形的右边的一条边上,①当T 在x 轴上方时,如下图:分别过M 、N 作y 轴的垂线交于点H '、G ',同理可证:NG T TH ''≌M ,TH NG '=',即()223t m --=,21t m =+,而01m ≤≤,且3N y ≤,则713t ≤≤; ②当T 在x 轴下方时,当3t =-时,点M 关于点T 的“垂链点”恰好为N 在正方形的边上,故3t =-;当点T 在3t =-下方时,且3N x ≥-,同理可得:3m t =--,解得:3t 且0t >,不符合题意舍去;当N 点落在正方形的上面的一条边上时,同理可得:3t m =-,而01m ≤≤,且3N y ≤,解得:1133t -≤≤-, 综上,t 的取值范围是:713t ≤≤或1133t -≤≤-. 【点睛】本题考查一次函数综合运用,正方形的性质,图形的旋转,解不等式等,这种新定义类的题目,通常按照题设顺序逐次求解,解题时注意分类讨论,避免遗漏.24.(1)支撑杆CD 的高度为9cm .(2)手机的宽度为8cm .【分析】(1)如图,连结OA ,由题意可得:O 的直径为10,6,AB = 由,OD AB ⊥ 先求解,OD 从而可得答案;(2)如图,记圆心为O ,连结OA ,证明,AE CD BF AB 设,AD BD x ==则2,AE CD BF AB x 则25,OD x 再利用勾股定理建立方程求解即可.【详解】(1)解:如图,连结OA ,由题意可得:O 的直径为10,6,AB =5,OA,CD AB ⊥ 即,OD AB ⊥ 3,AD BD ∴==22534,OD9.CD OC OD所以此时支撑杆CD 的高度为9cm .(2)解:如图,记圆心为O ,连结OA ,由题意可得:,90,AB AE E EAB ABF∠四边形AEFB 为正方形,,CD EF,AE CD BFAB ,CD AB ⊥∴ 设,AD BD x ==则2,AE CD BF AB x5,OA OC25,OD x由勾股定理可得:2225=25,x x 解得120,4,x x ==经检验0x =不符合题意,舍去,取4,x = 8AB =(cm ),即手机的宽度为8cm .【点睛】本题考查的是正方形的判定与性质,垂径定理的应用,勾股定理的应用,一元二次方程的解法,理解题意,建立方程解题是关键.25.(1)①34a =-;②6个 (2)当3142a -<-时,“区域G ”内有4个整数点; (3)12a =或32a =【分析】(1)①将点(13),代入223y ax ax a =--,求出a 的值即可;。

河北省邯郸市馆陶县2023-2024学年九年级中考模拟数学试题(含详解)

河北省邯郸市馆陶县2023-2024学年九年级中考模拟数学试题(含详解)

2024 年河北省初中毕业生升学文化课模拟考试数 学试 卷注意事项:1.本试卷共8页,总分120分,考试时长120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡的相应位置.3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效.答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B 铅笔将答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题.5.考试结束时,请将本试卷和答题卡一并交回.一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,是轴对称图形的是( )2.将算式 |14−13|可以变形为( )A.14−13B.13+14C.−14−13D.13−143.小李准备从A 处前往B 处游玩,根据图1所示,能够准确且唯一确定B 处位置的描述是( )A.点 B 在点 A 的南偏西 48°方向上B.点 B 在距点A4 km 处C.点 B 在点 A 的南偏西48°方向上4k m 处D.点 B 在点A 的北偏西48°方向上 4k m 处4.若 3ᵐ⁺²=9,则m=( )A.-1B.0C.1D.25.如图2,圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形).已知地面阴影(圆形)的直径为1.5米,桌面距地面1米.若灯泡距离桌面2米,则桌面的直径为( )A.0.25米B.0.5米C.0.75米D.1米6.实数 1200用科学记数法表示为n102.1⨯,则n2102.1⨯表示的原数为( )A.1 200 000 B.120 000C.14 400 000 D.1 440 0007.如图3,在正方形木框ABCD 中,AB=10cm,将其变形,使∠A=60°,则点 D,B 间的距离为( )A.102cmB.103cmC.10 cmD.20cm8.若m是关于x 的不等式-2x+3>7的一个解,则对于 m的值下列判断可能正确的是( )A.2<m<3B.-1<m<0C.-2≤m≤-1D.-6<m<-49.我国古代的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两……”意思是:“今有生丝30斤,干燥后损耗3斤 12 两(我国古代1斤等于 16 两)……”据此,若得到14斤干丝,需使用生丝x斤,则正确的是( )A.依题意,得3030−3+1216=x14B.依题意,得3030−3−1216=x14C.需使用生丝14037斤D.得到14斤干丝,需损耗生丝2021斤10.已知8−m12=2,则m=( )A.4B.2C.1D.1211.如图4,一根直的铁丝AB=20cm,欲将其弯折成一个三角形,在同一平面内操作如下:①量出AP=5cm;②在点 P 右侧取一点 Q,使点 Q 满足 PQ>5 cm;③将AP向右翻折,BQ向左翻折.若要使A,B 两点能在点M 处重合,则 PQ的长度可能是( )A.12 cmB.11 cmC.10 cmD.7 cm12.如图5-1,使用尺规经过直线l外的点 P 作已知直线l的平行线,作图痕迹如图5-2:下列关于图中的四条弧线①、②、③、④的半径长度的说法中,正确的是( )A.弧②、③的半径长度可以不相等B.弧①的半径长度不能大于 AP的长度C.弧④以 PA的长度为半径D.弧③的半径可以是任意长度13.对于分式M=m+2m+3,有下列结论:结论一:当m=-3时,M=0;结论二:当M=-1时,m=-2.5;结论三:若m>-3,则M>1.其中正确的结论是( )A.结论一B.结论二C.结论二、结论三D.结论一、结论二14.用相同尺寸的长方形纸板制作一个无盖的长方体纸盒.先在纸板上画出其表面展开图(需剪掉阴影部分),两种裁剪方案如图6-1和图6-2所示,图中A ,B ,C 均为正方形:下列说法正确的是( )A.方案 1中的 a=4B.方案2中的b=6C.方案1所得的长方体纸盒的容积小于方案 2所得的长方体纸盒的容积D.方案1所得的长方体纸盒的底面积与方案2所得的长方体纸盒的底面积相同15.有一段平直的公路AB ,A 与B 间的距离是50m.现要在该路段安装一个测速仪,当车辆经过A 和B 处时分别用光照射,并将这两次光照的时间差t(s)输入程序后,随即输出此车在AB 段的平均速度v(km/h),则v 与t 间的关系式为( ) A.v =50tB.v =180tC.v =1259tD.v =360t16.问题情境:如图7-1,在△ABC 中,AB=AC=8,BC=8 3,AD 是BC 边上的中线.如图7-2,将点C 沿EF 折叠后与点 D 重合,将顶点 B 沿GH 折叠,使得顶点 B 与点F 重合,GF 与DE 交于点K.若设△GHF 的面积为S ₁,四边形 GKEA 的面积为S ₂,则 S ₁和 S ₂ 的值分别为( )A.932,43 B.932,23 C.934,43 D.934,23二、填空题(本大题共3个小题,共10分.其中17,18小题各3分,19小题第 1个空2分,第2,3个空各1分)17.已知a,b 互为相反数,则. ab +a²的值为 .18.如图8,从家到公园有A ₁,A ₂ 两条路线可走,从公园到超市有 B ₁,B ₂ 两条路线可走,现让小明随机选择一条从家出发经过公园到达超市的行走路线,那么恰好选到经过路线 A ₁ 与 B ₂的概率是 .19.如图9,在正五边形 ABCDE中,.AB=2,点M是AB 的中点,连接DM,点 P 在边BC上(不与点 C 重合),将.△CDP沿PD 折叠得到△QDP.(1)∠DQP=(2)当点 Q落在 DM 上时,∠DPQ=___________;(3)AQ 的最小值为 .三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)若A+3x²−5x+3=−x²+3x−2.(1)求多项式 A;(2)判断多项式A的值是否是正数,并说明理由.21.(本小题满分9分)如图10,整数m,n,t在数轴上分别对应点M,N,T.(1)若m,n互为相反数,描出原点O的位置并求t 的值;(2)当点 T为原点,且:m−n+□=−3时,求“□”所表示的数.22.(本小题满分9分)某校为了解学生对“党史知识”的掌握情况,进行“学党史”知识竞赛(满分100分),并随机抽取5 0名学生的测试成绩作为样本进行研究,将成绩分组为A:50≤x<60,B:60≤x<70,C:70≤x<80,D:80≤x<90,E:90≤x≤100,进行整理,得到不完整的频数分布直方图,如图11所示,且C组成绩从小到大排列如下:70,71,72,72,74,77,78,78,,79,79,79.(1)通过计算,补全频数分布直方图;(2)在这个样本中,中位数是78.5分,设被“”盖住的成绩为a分,求a的值;(3)已知这个样本的平均数是78分,若又加入一名学生的成绩为78分,将这名学生的成绩计入样本后,判断新的样本平均数和方差与原样本相比是否发生改变.23.(本小题满分 10分)图 12 是小李同学设计的一个动画示意图,光点从点 P(2,1)发出,其经过的路径为抛物线G: y=a(x−ℎ)²+k的一部分,并落在水平台子上的点Q(4,1)处,其达到的最大高度为2,光点在点Q处被反弹后继续向前沿抛物线L:y=−2x²+bx+c的一部分运行,已知台子的长.AB=4,AQ=1,点 M 是AB 的中点.(1)求抛物线G的对称轴及函数表达式;(2)若光点被弹起后,落在台子上的BM之间(不含端点),求 b所有的整数值.李阿姨正在练习扇子舞,如图13-1,她握住扇子的端点 Q,将扇子绕点 Q在平面内逆时针旋转一周.佳佳认真观察扇子的运动,画出示意图(图 13-2),研究其中的数学问题.经测量可得 OQ=36cm,∠POQ=120°,扇形 QO'M 从O'M 与OP 重合的状态开始绕点Q 逆时针旋转,点 P 的对应点为点M.(1)当点O'落在弧 PQ 上时,求∠O'QO的度数,并判断点 O 是否在直线MO′上;(2)当O'Q 所在直线与扇形POQ第一次相切时,求点 O'经过的路径的长;(3)连接OM,当扇形 QO'M 转动一周时,求 OM 的取值范围.25.(本小题满分 12分)如图14,在平面直角坐标系中,点 N(n-1,n+3),M(2,0),A(-10,-1),B(4,6),连接AB,在线段AB上的整数点(横、纵坐标都为整数的点)处设置感应灯,当有点落在整点处,或从点 M发出光线(射线 MN)照射到线段AB上的整数点时,该处的感应灯会亮.(1)求线段 AB所在直线的函数解析式;(2)当点 N在线段AB 上时,请通过计算说明点 N(n-1,n+3)是否会使感应灯亮;(3)若线段上的感应灯被射线 MN分为两部分,并且两部分感应灯的个数相同(不包括边界上的点),求n的取值范围.如图15-1,在四边形ABCD中,AB‖CD,∠CBA=2∠A,点 P 从点 C 开始以每秒1个单位长度的速度在射线CD上运动,连接PB 并延长,将射线PB 绕点P 逆时针旋转,旋转角总与∠C相等,当旋转后的=k,DM=y,点 P 的运动时间为ts.射线与射线 DA 相交时,设交点为 M.令CBCD(1)当点 P 在线段CD 上(点 P 不与端点重合)时,求证:∠PBC=∠DPM.(2)如图15-2,当k=1,且点 P 在线段CD 上(点 P 不与端点重合)时,在线段CB上截取CG=CP,连接PG,求证:GP=DM.,且点 P 在 CD 的延长线上时,已知tan C=22,BC=3,①求出 y与t的函(3)如图15-3,当k=34数关系式;②若BP,AD交于点H,已知△HMPO△BPC,,直接写出t的值.数学模拟试题参考答案说明:1.在阅卷过程中,如考生还有其他正确解法,可参照评分标准按步骤酌情给分.2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数.一、选择题(本大题共16 个小题,共38分.1~6小题各 3分,7~16小题各2分)题号12345678答案A D C B D A C D 题号910111213141516答案BBDcBCBA1.A解:由轴对称图形的概念知,选 A.2.D解:: 14<13,∴|14−13|==13−14.3.C解:准确且唯一确定位置的描述是点 B 在点 A 的南偏西48°方向上4k m 处,故选 C.4.B解:由: 3ᵐ⁺²=9,得 3ᵐ×3²=3²,∴3ⁿ=3²÷3²=3⁰,故m=0.5.D解:构造几何模型如图:依题意知BC=1.5米,AF=2米,AG=3米,由△DAE∽△BAC 得 DE BC =AF ΛG ,即 DE 1.5=23,得 DE=1 米,即桌面的直径为1 米.6.A解:: ∴1200=1.2×10³,∴n =3,∴1,2×10²ⁿ=1,2×10⁶=1200000.7.C解:如图,连接DB,∵AD=AB=10cm,∠A=60°,∴△ABD 为等边三角形,∴BD=AB=10cm.8.D解:-2x+3>7的解集为x<-2,只有-6<m<-4可能正确,故选D.9.B解:依题意,得 3030−3−1216=x14,解得x=16,16-14=2(斤),∴若得到14斤干丝,则需使用生丝16斤,损耗生丝2斤.10.B解: ∵m 12=8−2=2,∴m =2÷12=2.11.D解:设 PQ=x cm,则BQ=(15-x) cm,根据三角形三边关系可得 x−5<15−x,x +5>15−x,解得5<x<10.故选 D.12.C解:该作图过程中,弧①的半径长度为任意长;弧②、③的半径长度相等,且大于 12EF 的长;弧④以 PA 的长度为半径.只有 C 选项正确.13.B解: |M−1=m +2m +3−1=−1m +3.∵m >−3时, −1m +3<0,故M<1,结论三不正确;m=-3,分式无意义;M=-1时,m=-2.5,故选 B.14.C解:方案1:a=12÷4=3,所折成的无盖长方体的底面积为3×3=9.容积为5×9=45.方案2:b=4,所折成的无盖长方体的底面积为4×2=8.容积为6×8=48.故选 C.15.B解:∵速度=路程/时间, 1m/s =3.6km/ℎ,∴v =180t.16.A解:∵AB=AC=8,BC=8 3,AD 是BC 边上的中线,F 为 DC 的中点,∴FC =14 :BC =23,BD =43, :AD =AB 2−BD 2=4.∵BH =HF,∴2BH +23=83∴BH =33.易知 1BG;HωBAD,∴+BHBD =CHAD ,∴3343=GH4,GH =3,∴∴S 1=12HF ×GH =932.由折叠易知∠EDC=∠C,∠GFB=∠B.∵AB=AC,∴∠B=∠C,∴∠EDC=∠B,∠GFB=∠C,∴DE∥AB,GF∥AC,∴四边形GKEA 为平行四边形.易得 BD =CD =12BC =43,DF =CF =23,DE =AE =12AB =4,∴EF =42−(23)2=2.过点 F 作 FM⊥CE 于点M.∵S EFC =12FE ⋅FC =12CE ⋅FM, ∴CE ⋅FM =2×23=43. ∵S 2=AE ⋅FM,AE =CE,∴S 2=43.二、填空题(本大题共3个小题,共10分.其中17,18小题各3分,19小题第1个空 2分,第2,3个空各1分)17.0解: ab +a²=a (b +a )."a ,b 互为相反数,∴b+a=0,∴原式=0.18. 14解:从家到公园,再到超市的路线有 A ₁与B ₁,A ₁ 与 B ₂,A ₂与 B ₁,A ₂ 与 B ₂共四种,则恰好选到经过路线 A ₁ 与 B ₂ 的概率是 14.19.(1)108 (2)45 (3)5−1解:(1)∵五边形的内角和为( (5−2)×180°=540°,∴∠C=∠DQP=∠CDE=108°.(2)如图1,由图形的轴对称可知,∠CDM =∠EDM =12∠CDE =54∘,∠CDP =∠QDP =12∠CDM =27∘,∴∠DPQ=180°-∠DQP-∠QDP=180°-108°-27°=45°.(3)∵CD=QD,∴点Q 在以D 为圆心,2 为半径的圆上,如图2. 连接AD,交圆D 于点Q,此时AQ 最短,此时点 B,P 重合,∠CPD=∠DPQ=∠QBA=36°,∴∠DBA=∠BQA=72°,∴△ABQ∽△ADB, ∴ABDA =AQAB ,∴22+AQ =AQ 2,∴AQ =5−1.三、解答题(本大题共7个小题,共72分)20.解: (1)A =−x²+3x−2−(3x²−5x +3)=−4x²+8x−5.……………………………………………………………5分(2)多项式A 的值不会是正数,………………………………………………6分理由如下:A= =−4x²+8x−5=−4(x²−2x )−5=−4(x²−2x +1−1)−5=−4(x−1)²−-1. ∵−4(x−1)²≤0, ∴−4(x−1)²−1<0,∴多项式A 的值不会是正数.…………………………………………………………………9分21.解:(1)∵m,n 互为相反数,∴m+n=0,即点 M,N 到原点的距离相等,∴ 原点的位置如图所示:……………………………………4分则t=-1.…………………………………………………………………………………………5分(2)∵点 T 为原点,则m=-2,n=4.∵m-n+□=-3,∴--2-4+□=-3,∴□=3.……………………………………………………………………………………9分22.解:(1)∵50-7-9-12-6=16.补全统计图如下:…………………………………………3分(2)∵样本容量为50,7+9+12=28,∴中位数落在C组.将样本数据从小到大排列,则中位数是第25,26 个数的平均数,a+792=78.5.解得a=78.即a的值为78.……………………………………………………………………………………7分(3)平均数不变,方差改变………………………………………………9分23.解:(1)点 P(2,1),点 Q(4,1)是抛物线上的一对对称点,∴对称轴为直线x=3.…………………………………………………………………………2分∵抛物线G 达到的最大高度为2,所以y=a(x−3)²+2,将点 P(2,1)代入,得1=a×(2−3)²+2,解得a=-1,∴抛物线G的函数表达式为y=−(x−3)²+2.…………………………………5分(2)∵AB=4,AQ=1,∴BQ=3.又 Q(4,1),∴点B(7,1),点M(5,1),………………………………………………………………………7分∴当点 Q(4,1)与点 M(5,1)是抛物线上的一对对称点时,−b2×(−2)=4+52=92,∴b=18.…8分当点 Q(4,1)与点 B(7,1)是抛物线上的一对对称点时,−b2×(−2)=4+72=112,∴b=22,…9分∴18<b<22,∴b所有的整数值为19,20,21.………………………………………………10分24.解:(1)如图1,连接OO',∵OO′=QO′=QO,∴△OQO′为等边三角形,∴∠OQO′=∠OO′Q=60°.………………………………………3分∵∠POQ=∠MO′Q=120°,∴∠MO′O=∠MO′Q+∠OOQ=120°+60°=180°,∴点O在直线MO'上.…………………………………………………………………………5分(2)当扇形 QO'M 的半径(O′Q所在直线与扇形POQ 第一次相切时,如图2,则∠OQO′=90°,∴l(x)=18π(cm).………………………………………………………………………8分=90×36π180(3)根据题意可知旋转中心为点 Q,MQ 为定值,∴当扇形 QO'M 旋转一周时,点 M的轨迹是以点Q 为圆心,MQ 的长为半径的一个圆.如图3,向两侧延长QO,分别交大圆Q于点 A,B,∴OA,OB的长分别为 MQ 的最小值和最大值.连接PQ,如图4,过点 O 作OE⊥PQ 于点 D,交PQ 于点E,∴PD =12PQ,∠POE =12∠POQ =60∘,∴PD =OP sin60∘=36×32=183(cm ),∴PQ =2×183=363(cm ),∴OA =(363−36)cm,OB =(363+36)cm,∴OM 的取值范围为(363−36)cm ≤OM ≤(363+36)cm.…10分25.解:(1)设线段AB 所在直线的解析式为y=kx+b.∵经过点A(-10,-1),B(4,6), ∴−1=−10k +b,6=4k +b,解得 k =12,b =4,∴线段 AB 所在直线的函数解析式为 y =12x +4.……………………4分(2)当点 N(n-1,n+3)在直线 AB 上时,n +3=12(n−1)+4,解得n=1,∴点 N(0,4),∴点 N(0,4)为线段 AB 上的整数点,∴当点N 在线段AB 上时,点N(n-1,n+3)会使感应灯亮.…………………………………8分(3)直线AB 的函数表达式为y= 12x+4,A(-10,-1),B(4,6),∴线段AB 上的整数点有(-10,-1),(-8,0),(-6,1),(-4,2),(-2,3),(0,4),(2,5),(4,6)共8个,其中(-4,2),(-2,3)为中间两个整数点,为临界点.当射线MN 经过(-4,2),(2,0)时,直线MN 的函数表达式为 y =−13x +23,将点 N(n-1,n+3)代入得 n +3=−13(n−1)+23,解得 n =−32.同理可得,当射线MN 经过(-2,3),(2,0)时,直线 MN 的函数表达式为 y =−34x +32,将点 N(n-1,n+3)代入得 n +3=−34(n−1)+32,解得 n =−37,∴符合条件的n 的取值范围为 −32<n <−37. …12分26.(1)证明:∵∠DPB=∠C+∠PBC,∴∠DPM+∠BPM=∠C+∠PBC.∵∠BPM=∠C,∴∠PBC=∠DPM.………………………………………………2分(2)当k=1,且点 P 在线段CD 上时,CB=CD,CG=CP,∴∠CGP =12(180∘−∠C ),CB−CG =CD−CP,即GB=PD.∵AB∥CD,∴∠C+∠CBA =180°.∴∠CBA =2∠A,∴∠A =12(180∘−∠C ),∴∠CGP =∠A.∵AB∥CD,∴∠A+∠ADC =180°.∵∠CGP+∠BGP=180°,∴∠BGP=∠ADC.又∵∠PBC=∠DPM,∴△BGP≌△PDM,∴GP=DM.………………………………………8分(3)①如图,在射线CB 上截取( CG =CP,连接PG,过点 G 作( GE ⊥CP,,垂足为点 E.由(1)的推理可知 ∠PBC =∠KPM,∴∠GBP =∠DPM.由(2)的推理可知 ∠CGP =∠A.∵AB‖CD,∴∠PDM=∠A,∴∠CGP =∠PDM,∴△BGP △PDM,∴BG PD =PG DM .∵在 Rt△ECG 中, tan C =22,CG =CP =t,∴CE =13t,EG =223t,∴PE =23t,∴PG =233t.由题意得,BC=3,CD=4,DM=y,∴t−3t−4=233ty ,∴y =23t 2−83t3t−9. ………………………………………………11分circle223+3.…………………………………………………13分解:记 PG 与AB 相交于点 N.∵△HMP∽△BPC,∴∠CPB=∠PMD.∵△BGP∽△PDM,∴∠BPG=∠PMD,∴∠CPB=∠BPG.∵AB∥CD,∴∠CPB=∠PBA,∴∠BPG=∠PBA,∴PN=BN.易得∠BGN=∠BNG,∴BN=PN=BG=t-3.∵ABCD,∴BC CG =PN PG ,∴3t =t−323t 3,∴t =23+3.。

2023年河北省石家庄四十二中中考数学模拟试卷(一)答案解析(3月份)

2023年河北省石家庄四十二中中考数学模拟试卷(一)答案解析(3月份)

2023年河北省石家庄四十二中中考数学模拟试卷(一)一、选择题(本大题共16个小题。

1~10小题每题3分,11~16小题每题2分,共42分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)已知,则下列结论一定成立的是()A.x=6,y=7B.C.y﹣x=1D.2.(3分)若一元二次方程(k﹣1)x2+3x+k2﹣1=0有一个解为x=0,则k为()A.±1B.1C.﹣1D.03.(3分)如图是由6块相同的小正方体组成的立体图形,从左面看到的形状是()A.B.C.D.4.(3分)在Rt△ABC中,∠C=90°,若a=5,b=12,则sin A的值为()A.B.C.D.5.(3分)若⊙P的半径为4,圆心P的坐标为(﹣3,4),则平面直角坐标系的原点O与⊙P的位置关系是()A.在⊙P内B.在⊙P上C.在⊙P外D.无法确定6.(3分)方程x2﹣5x=0的解是()A.x1=x2=0B.x1=x2=5C.x1=0,x2=﹣5D.x1=0,x2=5 7.(3分)把抛物线y=﹣x2的图象向右平移2个单位,再向上平移3个单位,得到新的抛物线为()A.y=﹣(x﹣2)2﹣3B.y=﹣(x+2)2+3C.y=﹣(x+2)2﹣3D.y=﹣(x﹣2)2+38.(3分)如图,已知△ABC与△DEF,下列条件一定能推得它们相似的是()A .∠A =∠D ,∠B =∠E B .∠A =∠D 且C .∠A =∠B ,∠D =∠ED .∠A =∠E 且9.(3分)如图,已知点A 、点C 在⊙O 上,AB 是⊙O 切线,连接AC ,若∠ACO =65°,则∠CAB 的度数为()A .35°B .30°C .25°D .20°10.(3分)如图,小明在A 时测得某树的影长为3m ,B 时又测得该树的影长为2m .若两次日照的光线互相垂直,则树的高度为()A .mB .2mC .6mD .m11.(2分)如图,在离铁塔100米的A 处,用测倾仪测得塔顶的仰角为α,测倾仪高AD 为1.4米,则铁塔的高BC 为()A .(1.4+100tan α)米B .米C .米D .(1.4+100sin α)米12.(2分)如图,四边形ABCD 内接于⊙O ,∠ABC =135°,AC =1,则⊙O 的半径为()A .4B .C .D .13.(2分)如图,曲线表示温度T(℃)与时间t(h)之间的函数关系,它是一个反比例函数的图象的一支.当温度T≤2℃时,时间t应()A.不小于h B.不大于h C.不小于h D.不大于h 14.(2分)小雨同学要找到到三角形的内心,根据下列各图中圆规作图的痕迹,可用直尺成功找到此点的是()A.B.C.D.15.(2分)如图,将边长为6的正六边形铁丝框ABCDEF(面积记为S1)变形为以点D为圆心,CD为半径的扇形(面积记为S2),则S1与S2的关系为()A.S1=S2B.S1=S2C.S1=S2D.S1=S2 16.(2分)如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,点D是半径为2的⊙A 上一动点,点M是CD的中点,则BM的最大值是()A.3B.3.5C.D.二、填空题(本大题共3个小题,17、18每小题3分,19小题每空2分,共10分)17.(3分)二次函数y=3(x﹣2)2+1的图象的顶点坐标是.18.(3分)如图,在平面直角坐标系中,△AOB的边OB在y轴上,边AB与x轴交于点D,=1,则反比例函数表且BD=AD,反比例函数的图象经过点A,若S△OAB达式为.19.(4分)小亮创办了一个微店商铺,营销一款小型LED护眼台灯,成本是20元/盏,在“双十一”前20天进行了网上销售后发现,该台灯的日销售量p(盏)与时间x(天)之间满足一次函数关系,且第1天销售了78盛,第2天销售了76盏,护眼台灯的销售价格y(元/盏)与时间x(天)之间符合函数关系式(1≤x≤20,且x为整数).(1)日销售量p(盏)与时间x(天)之间的一次函数关系式为.(2)这20天中最大日销售利润是.三、解答题(本大题共7个小题,共68分,解答应写出文字说明、证明过程成演算步骤)20.(6分)下而是小明解一元二次方程的过程,请认真阅读并完成相应的任务.解:2x2+4x﹣8=0二次系数化为1,得x2+2x﹣4=0…第一步移项,得x2+2x=4…第二步配方,得x2+2x+4=4+4,即(x+2)2=8…第三步由此,可得x+2=±2…第四步所以,x1=﹣2+2,x2=﹣2﹣2…第五步(1)小明同学解题过程中,从第步开始出现错误.(2)请给出正确的解题过程.21.(9分)某学校射击队计划从甲、乙两名运动员中选取一名队员代表该校参加比赛,在选拔过程中,每名选手射击10次,根据甲、乙队员成绩绘制了如图1、图2所示的统计2=[3×(6﹣7)2+图;并求得乙队员10次射击成绩的平均数和方差:=7环,s乙(5﹣7)2+(4﹣7)2+(7﹣7)2+2×(9﹣7)2+(10﹣7)2+(8﹣7)2]=3.4.(1)甲队员选拔赛成绩的众数是环,乙队员选拔赛成绩的中位数是环;(2)求甲队员10次射击成绩的平均数和方差,根据甲、乙两名队员的选拔赛成绩,你推荐谁代表学校参加比赛,并说明理由;(3)为提升射击队技战术水平,学校决定除甲、乙外,再从射击队其他4名队员(三名男生,一名女生)中随机选出两名队员一同前往观看比赛,用列表或画树形图的方法求出恰好选出一名男生利一名女生的概率.22.(9分)如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=30°.(1)求∠BAD的度数;(2)若AD=,求DB的长.23.(10分)某景观公园内人工湖里有一组小型喷泉,水柱从垂直于湖面的水枪喷出,若设距水枪水平距离为x米时水柱距离湖面高度为y米,y与x近似的满足函数关系y=a(x﹣h)2+k(a<0).现测量出x与y的几组数据如下:x(米)01234……y(米) 1.75 3.0 3.75 4.0 3.75……请解决以下问题:(1)求出满足条件的函数关系式;(2)身高1.75米的小明与水柱在同一平面中,设他到水枪的水平距离为m米(m≠0),画出图象,结合图象回答,若小明被水枪淋到m的取值范围.24.(10分)王刚同学在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸大树AB的高度,他在点C处测得大树顶端A的仰角为45°,再从C点出发沿斜坡走米到达斜坡上D点,在点D处测得树顶端A的仰角为30°,若斜坡CF的坡比为i=1:3(点E、C、B在同一水平线上).(1)求王刚同学从点C到点D的过程中上升的高度;(2)求大树AB的高度(结果保留根号).25.(10分)如图,在矩形ABCD中,AD=6,∠BAC=30°,点O为对角线AC上的动点(不与A、C重合),以点O为圆心在AC下方作半径为3的半圆O,交AC于点E、F.(1)直接写出AC的长;(2)当半圆O过点A时,求半圆被AB边所截得的弓形的面积;(3)若M为的中点,在半圆O移动的过程中,求BM的最小值;(4)当半圆O与矩形ABCD的边相切时,直接写出AE的长.26.(14分)如图,点O(0,0),A(﹣4,﹣1),线段AB与x轴平行,且AB=2,点B 在点A的右侧,抛物线l:y=kx2﹣2kx﹣3k(k≠0).(1)①该抛物线的对称轴为;②当0≤x≤3时,求y的最大值(用含k的代数式表示).(2)当抛物线l经过点C(0,3)时,①点B(填“是”或“不”)在l上;②连接CD,点P是第一象限内抛物线上的动点,设点P的横坐标为m,过点P作PE⊥CD,垂足为点E,则PE=时,m=.(3)在(2)的条件下,若线段AB以每秒2个单位长的速度向下平移,设平移的时间为t(秒),①若l与线段AB总有公共点,求t的取值范围;②若l同时以每秒3个单位长的速度向下平移,l在y轴及其右侧的图象与直线AB总有两个公共点,直接写出t的取值范围.2023年河北省石家庄四十二中中考数学模拟试卷(一)参考答案与试题解析(3月份)一、选择题(本大题共16个小题。

2024河北省张家口市桥西区中考数学最后一次模拟试题

2024河北省张家口市桥西区中考数学最后一次模拟试题

2024河北省张家口市桥西区中考数学最后一次模拟试题一、单选题1.如图,将函数21(3)12y x =++的图象沿y 轴向上平移得到一条新函数的图象,其中点A (-4,m ),B (-1,n ),平移后的对应点分别为点A '、B '.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是 ( )A . 21(3)22y x =+-B . 21(3)72y x =++C . 21325y x =+-() D . 21342y x =++() 2.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A ,B 在围成的正方体中的距离是( )A .0B .1 CD 3.下列实数为无理数的是 ( )A .-5B .72C .0D .π4.下列说法中不正确的是( )A .全等三角形的周长相等B .全等三角形的面积相等C .全等三角形能重合D .全等三角形一定是等边三角形 5.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是( )A .B .C .D .6.下列计算正确的是( )A .(8)80--=B .3C .22(3)9b b -=D .623a a a ÷=7.下列运算正确的是(A .2235a a a +=B .()339a a =C .248a a a ⋅=D .632a a a ÷= 8.已知点M 、N 在以AB 为直径的圆O 上,∠MON=x °,∠MAN= y °, 则点(x ,y )一定在( )A .抛物线上B .过原点的直线上C .双曲线上D .以上说法都不对 9.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC 为13m ,河面宽AB 为24m,则桥高CD 为( )A.15m B.17m C.18m D.20m10.下列实数中,结果最大的是()A.|﹣3| B.﹣(﹣π)C D.3二、填空题11.若|a|=20160,则a=.12.不等式5x﹣3<3x+5的非负整数解是.13.如图,平行线AB、CD被直线EF所截,若∠2=130°,则∠1=.14.工人师傅常用角尺平分一个任意伯.作法如下:如图所示,AOB∠是一个任章角,在边OA,OB上分别取OM ON=,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是AOB∠的平分线.这种作法的依据是.15.计算:2111xx x+= --.16.已知2240x x c-+=的一个根,则方程的另一个根是.三、解答题17.某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150元.(1)求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?(2)学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2m 元,陶艺耗材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺耗材和陶艺耗材的数量在原计划基础上分别增加了2.5m %和m %,结果在结算时发现,两种耗材的总价相等,求m 的值.18.若关于x 的方程311x a x x--=-无解,求a 的值. 19.如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 交于点D ,过点D 作∠ABD=∠ADE ,交AC 于点E .(1)求证:DE 为⊙O 的切线.(2)若⊙O 的半径为256,AD=203,求CE 的长.20.计算:(201122-⎛⎫+- ⎪⎝⎭﹣3tan30°. 21.如图,将等腰直角三角形纸片ABC 对折,折痕为CD .展平后,再将点B 折叠在边AC 上(不与A 、C 重合),折痕为EF ,点B 在AC 上的对应点为M ,设CD 与EM 交于点P ,连接PF .已知4BC =.(1)若M 为AC 的中点,求CF 的长;(2)随着点M在边AC上取不同的位置,①PFM△的形状是否发生变化?请说明理由;②求PFM△的周长的取值范围.22.我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四匹无零数,四军才分布一匹,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?23.某公司销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示该公司计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润12万元.(1)该公司计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该公司决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过68万元,问A种设备购进数量至多减少多少套?24.2018年4月12日上午,新中国历史上最大规模的海上阅兵在南海海域隆重举行,中国人解放军海军多艘战舰、多架战机和1万余名官兵参加了海上阅兵式,已知战舰和战机总数是124,战数的3倍比战机数的2倍少8.问有多少艘战舰和多少架战机参加了此次阅兵.。

2023年河北省九地市中考数学摸底试卷及答案解析(3月份)

2023年河北省九地市中考数学摸底试卷及答案解析(3月份)

2023年河北省九地市中考数学摸底试卷一、选择题(本大题有16个小题,共42分。

1~10小题各3分,11~16小题各2分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)2023的相反数是()A.2023B.C.﹣2023D.−2.(3分)从今年公布的全国第七次人口普查数据可知,湖北省人口约为5700万,其中5700万用科学记数法可表示为()A.5.7×106B.57×106C.5.7×107D.0.57×108 3.(3分)下列运算正确的是()A.a﹣2=﹣a2B.a2+a3=a5C.a2•a3=a6D.(a2)3=a6 4.(3分)如图,一束太阳光线平行照射在放置于地面的正六边形上,若∠1=19°,则∠2的度数为()A.41°B.51°C.42°D.49°5.(3分)下列运算或化简正确的是()A.B.C.D.6.(3分)如图所示几何体的主视图是()A.B.C.D.7.(3分)式子2a﹣a÷b可以化为()A.B.C.D.8.(3分)如图,快艇从点A处向正北方向航行到B处时,向右转60°航行到C处,再向左转40°继续航行,此时的航行方向在点C的()A.北偏东20°B.北偏西20°C.北偏东40°D.北偏西40°9.(3分)已知点(﹣2,y1),(3,y2)都在直线y=﹣x﹣5上,则y1,y2的值的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定10.(3分)语句“x的与x的和超过2”可以表示为()A.B.C.D.11.(2分)连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘,将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为()A.B.C.D.12.(2分)如图,⊙O中,点C为弦AB中点,连接OC,OB,∠OBC=34°,点D是优弧上一点,则∠ADB度数为()A.54°B.56°C.58°D.60°13.(2分)如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点A处,底端落在水平地面的点B处,现将梯子底端向墙面靠近,使梯子与地面所成角为β,已知sinα=cosβ=,则梯子顶端上升了()A.1米B.1.5米C.2米D.2.5米14.(2分)如图,P为AB上任意一点,分别以AP、PB为边在AB同侧作正方形APCD、正方形PBEF,设∠CBE=α,则下列结论错误的是()A.AP﹣PB=CF B.△APF≌△CPB C.AF⊥BC D.∠AFP=α15.(2分)如图,在平面直角坐标系中,菱形ABCD的边BC与x轴平行,A,B两点纵坐标分别为4,2,反比例函数经过A,B两点,若菱形ABCD边长为4,则k值为()A.B.C.﹣8D.16.(2分)如图,在矩形ABCD中,点E从点B开始,沿矩形的边BA﹣AD运动,AB=3,AD=4,CE与对角线BD相交于点N,F是线段CE的中点,连接OF,则OF长度的最大值是()A.1B.C.2D.二、填空题(本大题共3个小题,每小题3分,共9分,其中18题、19题第1空1分,第2空2分)17.(3分)已知关于x的一元二次方程x2+2x+m=0有两个不相等的实数根,则实数m的取值范围是.18.(3分)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,,将△ABC绕点A 逆时针旋转角α(0°<α<180°)得到△AB'C',并使点C'落在AB边上.(1)旋转角α的度数是.(2)线段AB所扫过部分的面积是.(结果保留π)19.(3分)如图,∠MON=40°,以O为圆心,4为半径作弧交OM于点A,交ON于点B,分别以点A,B为圆心,大于AB的长为半径画弧,两弧在∠MON的内部相交于点C,画射线OC交于点D,E为OA上一动点,连接BE,DE,则阴影部分周长的最小值为.三、解答题(本大题共7小题,共69分)20.(9分)老师就式子3×□+9﹣〇,请同学们自己出问题并解答.(1)小磊的问题:若□代表(﹣2)2,〇代表(﹣3)3,计算该式的值.(2)小敏的问题:若□代表,〇代表,计算的结果是有理数,求有理数a的值.(3)小捷的问题:若3×□+9﹣〇<4,且□和〇所代表的数是互为相反数,直接写出□所代表的数的取值范围.21.(9分)小丽与小霞两位同学解方程3(x ﹣3)=(x ﹣3)2的过程如下框:小丽:两边同除以(x ﹣3),得3=x ﹣3,解得,x =6.小霞:移项,得3(x ﹣3)﹣(x ﹣3)2=0,提取公因式,得(x ﹣3)(3﹣x ﹣3)=0.所以,x ﹣3=0或3﹣x ﹣3=0,解得x 1=3,x 2=0.(1)你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.(2)请结合上述题目总结:形如ax 2=bx (a ≠0)的一元二次方程的一般解法.22.(9分)2021年是中国共产党成立100周年.为普及党史知识,培养爱国主义精神,今年五月份,某市党校举行党史知识竞赛,每个班级各选派15名学员参加了网上测试,现对甲、乙两班学员的分数进行整理分析如下:甲班15名学员测试成绩(满分100分)统计如下:87,84,88,76,93,87,73,98,86,87,79,85,84,85,98.乙班15名学员测试成绩(满分100分)统计如下:77,88,92,85,76,90,76,91,88,81,85,88,98,86,89(1)按如表分数段整理两班测试成绩班级70.5~75.575.5~80.580.5~85.585.5~90.590.5~95.595.5~100.5甲12a 512乙33621表中a =;(2)补全甲班15名学员测试成绩的频数分布直方图;(3)两班测试成绩的平均数、众数、中位数、方差如表所示:班级平均数众数中位数方差甲86x8644.8乙8688y36.7表中x=,y=.(4)以上两个班级学员掌握党史相关知识的整体水平较好的是班.23.(10分)如图,已知AB是半圆O的直径,AB=4,点D是线段AB延长线上的一个动点,直线DF垂直于射线AB于点D,在直线DF上选取一点C(点C在点D的上方),使CD=OA,将射线CD绕点D逆时针旋转,旋转角为α(0°<α≤90°).(1)若OD=5,求点C与点O之间距离的最小值;(2)当射线DC与⊙O相切于点C时,求劣弧BC的长度.24.(10分)如图,一次函数y1=kx+b的图象与x轴、y轴分别交于点A,B,与反比例函数的图象交于点C(1,2),D(2,n).(1)直接写出不等式的解集.(2)分别求出两个函数的解析式;(3)连接OD,OC,求△COD的面积.25.(10分)如图,直线与x,y轴分别交于点B,A,顶点为P的抛物线y=ax2﹣2ax+c过点A.(1)直接写出点A,B的坐标及c的值;(2)若函数y=ax2﹣2ax+c在3≤x≤4时有最大值为a+2,求a的值;(3)当a<0时,连接AP,过点A作AP的垂线交x轴于点M.设△BMP的面积为S.直接写出S关于a的函数关系式.26.(12分)如图,在等腰直角三角形ABC中,∠ACB=90°,,边长为2的正方形DEFG的对角线交点与点C重合,点D在△ABC内部,DG与AC交于点M,连接AD,BE.(1)求证:△ACD≌△BCE;(2)当∠ADC=90°时,求AM的长;(3)当点A、D、E三点在同一直线上时,直接写出AD的长.2023年河北省九地市中考数学摸底试卷参考答案与试题解析(3月份)一、选择题(本大题有16个小题,共42分。

2023年河北省唐山市遵化市西留村中学中考数学模拟试卷(含答案解析)

2023年河北省唐山市遵化市西留村中学中考数学模拟试卷(含答案解析)

2023年河北省唐山市遵化市西留村中学中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图所示的几何体的主视图正确的是()A .B .C .D .2.下列计算正确的是()A .236a a a ⋅=B .()32626a a =C .()326a a =D .22a a -=3.文化部最新消息,2019年“五·一”期间全国国内旅游收入1176.7亿元,将1176.7亿用科学记数法表示为()A .81.176710⨯B .91.176710⨯C .101.176710⨯D .111.176710⨯4.下列运算正确的是().A .23x x x +=B .623a a a ÷=C .224()a a =D .236x x x ⋅=5.在一次体操比赛中,六位评委对某位选手的打分(单位:分)如下:9.2,9.4,9.1,9.3,9.2,9.6,这组数据的平均数和众数分别为()A .9.39.2B .9.29.2C .9.29.3D .9.39.66.当12a <<2a -的值是()A .1-B .1C .23a -D .32a-7.下列说法错误的是()A .若棱柱的底面边长相等,则它的各个侧面的面积相等B .正九棱柱有9条侧棱,9个侧面,侧面为长方形C .长方体、正方体都是棱柱D .三棱柱的侧面为三角形8.若一个所有棱长相等的三棱柱,它的主视图和俯视图分别是正方形和正三角形,则左视图是()A .矩形B .正方形C .菱形D .正三角形9.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的概率是()A .37B .47C .57D .6710.如图,点A 、B 、C 、D 都在⊙O 上,且四边形OABC 是平行四边形,则∠D 的度数为()A .45°B .60°C .75°D .不能确定11.已知点()11,A x y 、()22,B x y 是反比例函数2y x=-图象上的点,若120x x >>,则下列一定成立的是()A .120y y <<B .120y y <<C .210y y <<D .120y y <<12.如图,⊙O 过点B 、C ,圆心O 在等腰直角△ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为()A B .C D .13.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“冰墩墩”的图案,另外两张的正面印有“雪容融”的图案,现将它们背面朝上,洗匀后排列在桌面,任意翻开两张,那么两张图案相同的概率是()A .13B .12C .23D .3414.已知:222211⨯=+,333322⨯=+,444433⨯=+,…,若1010a ab b ⨯=+(a 、b 都是正整数),则a b +的最小值是()A .16B .17C .18D .1915.下列说法中正确的个数是()a -①一定是负数;②只有负数的绝对值是它的相反数;③数轴上任意一点都表示有理数;④最大的负整数是1-.A .1个B .2个C .3个D .4个16.如下图,在Rt △ABC 中,∠90ACB =︒,CA =CB ,2AB =,过点C 作CD ⊥AB ,垂足为D ,则CD 的长为()A .14B .12C .1D .2二、填空题17.计算:()3201201332-⎛⎫++-= ⎪⎝⎭______.18.如图,已知O 的半径为1,AB 为直径,C 为O 上一动点,过C 作O 的切线CP ,过A 作AM CP ⊥,垂足为M ,连结OM ,若AOM 为等腰三角形,则AM =______.19.如图,填在下面每个正方形中的四个整数之间都有相同的规律,根据这种规律,第n 个正方形中的m 值是_____(用含正整数n 的式子表示).三、解答题20.在距离港口80海里处,有一艘渔船发出求救信息,甲、乙两艘救援船同时接到救援任务,甲船立即出发,乙船因需要等候救援家属,在甲救援船驶离港口5海里时才出发.乙船以10海里/小时的速度匀速行驶,甲船途中因故障维修停船1小时,然后提高速度匀速行驶,到达目的地救援1小时后原路匀速返回与乙船相遇,甲船返回时的速度与提高后的速度相同,图中折线AB BC CD DE EF ----,线段OF 分别表示甲、乙两船与港口的距离(y 海里)与乙船出发时间(x 时)之间的图象.(1)求a 的值;(2)乙船出发多长时间与甲船相遇?(3)求b 的值;(4)请直接写出在两船第三次相遇前,两船相距10海里时的所有x 的值.21.山西祁县酥梨,洁白透黄、皮薄肉细、香甜酥脆、果汁多、营养丰富、品质上乘,被誉为“果中一绝,梨之上品”.一果园有甲、乙两支专业酥梨采摘队,已知甲队比乙队每天多采摘600公斤酥梨,甲队采摘28800公斤酥梨所用的天数与乙队采摘19200公斤酥梨所用的天数相同.问甲、乙两队每天分别可采摘多少公斤酥梨?22.在一次购物中,小明和小亮都想从微信、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.23.如图,已知直线y =12x 与双曲线y =kx交于A 、B 两点,点B 的坐标为(﹣4,﹣2),C 为第一象限内双曲线k y x=上一点12,且点C 在直线y =12x 的上方.(1)求双曲线的函数解析式;(2)若△AOC 的面积为6,求点C 的坐标.24.(1)将9个不同的数分别填入图中的9个空格中,使得每行、每列及对角线上各数的和都等于0;(2)将9个不同的数分别填入图中的9个空格中,使得每行、每列及对角线上各数的积都等于1.25.定义:对于数轴上的任意两点A ,B 分别表示数1x ,2x ,用12x x -表示他们之间的距离;对于平面直角坐标系中的任意两点()11,A x y ,()22,B x y 我们把1212x x y y -+-叫做A ,B 两点之间的直角距离,记作(),d A B .(1)已知O 为坐标原点,若点P 坐标为()1,3-,则(,)d O P =______;(2)已知C 是直线上2y x =+的一个动点,①若()1,0D ,求点C 与点D 的直角距离的最小值;②若E 是以原点O 为圆心,1为半径的圆上的一个动点,请直接写出点C 与点E 的直角距离的最小值.26.如图1,抛物线2y x bx c =-++与x 轴正半轴、y 轴分别交于()3,0A 、()0,3B 两点,点P 为抛物线的顶点,连接AB 、BP .(1)求抛物线的解析式;(2)求PBA ∠的度数;(3)如图2,点M 从点O 出发,沿着OA 的方向以1个单位/秒的速度向A 匀速运动,同时点N 从点A 出发,沿着AB 个单位/秒的速度向B 匀速运动,设运动时间为t 秒,ME x ⊥轴交AB 于点E ,NF x ⊥轴交抛物线于点F ,连接MN 、EF .①当EF MN ∥时,求点F 的坐标;②在M 、N 运动的过程中,存在t 使得BNP △与BMN 相似,请直接写出t 的值.参考答案:1.D【分析】从正面看,即可得到该几何体的主视图.【详解】从正面看,该几何体的主视图为:故选:D .【点睛】本题考查几何体的三视图,熟练掌握三视图的概念是解题的关键.2.C【分析】由同底数幂乘法、积的乘方、幂的乘方、合并同类项,分别进行判断,即可得到答案.【详解】解:A.235a a a ⋅=,故A 错误;B.()32628a a =,故B 错误;C.()326a a =,故C 正确;D.2a a a -=,故D 错误,故选:C .【点睛】本题考查了同底数幂乘法、积的乘方、幂的乘方、合并同类项,解题的关键是熟练掌握运算法则分别进行判断.3.D【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:1176.7亿=117670000000=1.1767×1011.故选:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.C【分析】根据合并同类项的法则、同底数幂的乘除法则以及幂的乘方法则逐项判断即得答案.【详解】A 选项,x 与2x 不是同类项,不能合并,因此A 中计算错误;B 选项,62624a a a a -÷==,因此B 中计算错误;C 选项,22224()a a a ⨯==,因此C 中计算正确;D 选项,23235x x x x +⋅==,因此D 中计算错误;故选C.【点睛】本题了合并同类项、同底数幂的乘除以及幂的乘方等知识,属于基础题目,熟练掌握幂的运算性质是解题的关键.5.A【分析】根据平均数和众数的定义分别进行解答即可.【详解】平均数为:(9.2+9.4+9.1+9.3+9.2+9.6)÷6=9.3;在这一组数据中9.2是出现次数最多的,故众数是9.2.故选A .【点睛】本题为统计题,考查众数与平均数的意义.6.B||a =|1|a -,再根据绝对值的性质去绝对值符号,然后再合并同类项即可.【详解】|2|a -,|1||2|a a =-+-,12=-+-a a ,1=,故选:B .【点睛】此题主要考查了二次根式的性质和化简,||a =.7.D【分析】由棱柱的底面边长相等可得侧面为全等的平行四边形,可判断A ;由正棱柱的定义可判断B ;由长方体、正方体的定义可判断C ;由棱柱的侧面为平行四边形可判断D .【详解】若棱柱的底面边长相等,则它的各个侧面是全等的平行四边形,故各个侧面的面积相等,故A 正确;由正棱柱的定义知正九棱柱有9条侧棱,9个侧面,由侧棱垂直于底面可得侧面为长方形,故B正确;长方体、正方体都是直四棱柱,显然为棱柱,故C正确;由三棱柱的定义可得三棱柱的侧面均为平行四边形,而非三角形,故D错误.故选D.【点睛】本题考查棱柱的定义和性质,考查空间想象能力和判断能力,属于基础题.8.A【分析】柱体的左视图一定是矩形或正方形,判断出这个长方形的边长即可.【详解】解:三棱柱的左视图的高一定是棱长,而宽等于俯视图正三角形的高,这个高一定小于棱长,那么左视图为矩形.故选:A.【点睛】此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.9.A【分析】直接利用轴对称图形的性质结合概率求法得出答案.【详解】解:如图所示:一共有7个空白三角形,当将1,2,3位置涂黑,则可以构成轴对称图形,故构成一个轴对称图形的概率是:3 7故选:A.【点睛】本题考查了利用轴对称设计图案以及概率公式,正确掌握轴对称图形的性质是解题的关键.10.B【分析】由圆周角定理可得∠D=12∠AOC;由平行四边形的性质,得∠ABC=∠AOC;由圆内接四边形的性质,得到∠ABC+∠D=180°,得到答案.【详解】解:由圆周角定理可得:∠AOC=2∠D ;∵OABC 是平行四边形∴∠ABC=∠AOC ∵ABCD 是圆内接四边形∴∠ABC+∠D=180°,∴2∠D+∠D=180°∴∠D=60°故答案为B.【点睛】本题考查了圆周角定理、平行四边形的性质、圆的内接四边形的知识,考查知识点较多,关键在于对知识的灵活运用.11.A【分析】反比例函数2(0y k x=-≠,k 为常数)中,当0k <时,双曲线在第二,四象限,在每个象限内,y 随x 的增大而增大判定则可.【详解】解:20k =-< ,∴双曲线在第二,四象限,在每个象限内,y 随x 的增大而增大,又120x x >> ,A ∴,B 两点不在同一象限内,120y y ∴<<;故选:A .【点睛】本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.12.C【详解】试题分析:过A 作AD ⊥BC ,由题意可知AD 必过点O ,连接OB ,∵△BAC 是等腰直角三角形,AD ⊥BC ,∴BD=CD=AD=3,∴OD=AD ﹣OA=2,Rt △OBD 中,根据勾股定理,得:C .考点:1.垂径定理;2.勾股定理;3.等腰直角三角形.13.A【分析】用B 表示“冰墩墩”的图案,X 表示“雪容融”的图案,列出树状图,根据概率公式即可求解.【详解】解:画树状图为:(用B 表示“冰墩墩”的图案,X 表示“雪容融”的图案)共有12种等可能的结果,其中两张图案相同的结果数为4,所以任意翻开两张,那么两张图案相同的概率41123==.故选:A .【点睛】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求出事件A 或B 的概率.14.D 【分析】根据前几个式子的特征可得规律:11n n n n n n ⨯=+--,根据规律求出a ,b ,再求值即可.【详解】解:222211⨯=+,333322⨯=+,444433⨯=+,…,由已知可得规律:11n n n n n n ⨯=+--,∵a b ×10=a b+10,∴a =10,b =9,∴a +b =19.故选D .【点睛】本题考查用代数式表示规律,解题关键是观察分析前几个式子的特征得出规律.【分析】根据正数和负数的定义、负整数的定义、相反数及绝对值的性质,对A 、B 、C 、D 四个选项进行一一判断.【详解】解:①0a =,0a -=,故题干的说法错误;②00=-,故题干的说法错误;③数轴上任意一点都表示实数,故题干的说法错误;④最大的负整数是1-的说法是正确的.故选:A .【点睛】此题主要考查正数和负数的定义,相反数及绝对值的性质和整数的定义,考查的知识点比较全面,是一道基础题.16.C【分析】由已知可得Rt ABC △是等腰直角三角形,得出112AD BD AB ===,再由Rt BCD 是等腰直角三角形得出1CD BD ==.【详解】解:90ACB ∠=︒ ,CA CB =,45A B \=Ð=°∠,CD AB ⊥ ,121AD BD AB ∴===,90CDB ∠=︒,1CD BD ∴==.故选:C .【点睛】本题主要考查了等腰直角三角形,解题的关键是灵活运用等腰直角三角形的性质求角及边的关系.17.18【分析】分别计算负指数幂,零指数幂和乘方,再算加减法.【详解】解:()3201201332-⎛⎫++- ⎪⎝⎭819=++18=故答案为:18.【点睛】本题考查了实数的混合运算,解题的关键是掌握负指数幂,零指数幂和乘方的运算18.1或12【分析】连接OC ,过O 点作OH AM ⊥于H ,如图,根据切线的性质得OC CP ⊥,则可判断四边形OCMH 为矩形,所以1HM OC ==,OH CM =,利用AOM 为等腰三角形得到1AM AO ==或=MA MO ,当=MA MO 时,设MO x =,CM y =,则AM x =,1AH x =-,利用勾股定理2221y x +=,222(1)1x y -+=,然后解方程组可得到对应的AM 的长度.【详解】解:连接OC ,过O 点作OH AM ⊥于H ,如图,CP 为O 的切线,OC CP ∴⊥,AM CP ⊥ ,OH AM ⊥,∴四边形OCMH 为矩形,1HM OC ∴==,OH CM =,AOM 为等腰三角形,1AM AO ∴==或=MA MO ,当=MA MO 时,设MO x =,CM y =,则AM x =,1AH x =-,在Rt OCM △中,2221y x +=,①在Rt OAH △中,222(1)1x y -+=,②②-①得222111x x x -+-=-,整理得22210x x --=,解得1x =,2x ,AM ∴的长为12,综上所述,AM 的长为1或12.故答案为:1【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理、折叠的性质和解直角三角形.19.(﹣1)n +1[(n +1)2+1]【分析】观察图形,找到规律每个正方形中左上角的数分别为1,2,3,4....n ,右下角的数分别为5,﹣10,17,﹣26....(﹣1)n +1[(n +1)2+1],进而求得第n 个图形中m 的值.【详解】解:每个正方形中左上角的数分别为1,2,3,4....n ;右下角的数分别为5,﹣10,17,﹣26....(﹣1)n +1[(n +1)2+1];所以m =(﹣1)n +1[(n +1)2+1];故答案为:(﹣1)n +1[(n +1)2+1].【点睛】本题考查了数字类规律,找到规律是解题的关键.20.(1)2(2)2时,4时,7时20分(3)1733(4)3,5,7【分析】(1)由图可知,两船第一次在点(),20B a 相遇,因为乙的速度为10海里/时,根据时间=路程÷速度即可求解;(2)由图可知,两个函数图象的交点有3个,所以两船相遇有三次,第一次:在B 点相遇,此时时间为2时;第二次:在BF 与CD 的交点相遇.先利用待定系数法求出CD 的解析式为2040y x -=,OF 的解析式为10y x =,把2040y x -=代入10y x =求出x 的值为第二次相遇的时间;第三次相遇在F 点,则时间为()()7807020107-÷=++时20分;(3)把F 点的横坐标代入乙的解析式即可求出b 的值;(4)由图可知,当2x ≤时,由于乙船的速度大于甲船的速度,而0x =时,甲在乙前面5海里,所以2x ≤时两船不可能相距10海里;当23<≤x 时,甲船因故障维修,距离港口20海里,乙船距离港口10x 海里,由102010x -=,解得3x =;当36x ≤<时,甲船追上乙船并且超出乙船10海里,由()20401010x x --=,解得5x =;当67x ≤<时,甲船距离港口80海里,在目的地救援,乙船距离港口10x 海里,由801010x -=,解得7x =.【详解】(1)解:乙船以10海里/时的速度匀速行驶,a 小时行驶20海里,20102(a ∴=÷=小时);(2)两船相遇有三次,第一次:在B 点相遇,此时时间为2时;第二次:在BF 与CD 的交点相遇.设直线CD 的解析式为y kx n =+,()3,20C ,()6,80D ,320680k n k n +=⎧∴⎨+=⎩,解得2040k n =⎧⎨=-⎩,∴直线CD 的解析式为2040y x =-,直线OF 的解析式为10y x =,把2040y x =-代入10y x =,得204010x x -=,解得4x =,所以第二次相遇的时间为4时;第三次相遇在F 点.E 点横坐标为7,∴当7x =时,1070y x ==,∴甲船原路匀速返回与乙船相遇需要的时间为()()1807020103-÷+=小时20=分钟,∴第三次相遇的时间7时+13时7=时20分;(3)当173x =时,2201107333b x ===;(4)由图可知,当2x ≤时,由于乙船的速度大于甲船的速度,而0x =时,甲在乙前面5海里,所以2x ≤时两船不可能相距10海里;当23<≤x 时,由102010x -=,解得3x =;当36x ≤<时,由()20401010x x --=,解得5x =;当67x ≤<时,由801010x -=,解得7x =,在两船第三次相遇前,两船相距10海里时x 的值为3,5,7.【点睛】本题考查了一次函数的应用,待定系数法求一次函数的解析式,路程、速度与时间之间的关系,两函数交点坐标的求法,难度适中.从图中获取有用信息是解题的关键.21.甲队每天可采摘1800公斤酥梨;乙队每天可采摘1200公斤酥梨【分析】设甲队每天可采摘x 公斤酥梨,则乙队每天可采摘()600x -公斤酥梨.根据题意列出分式方程求解即可.【详解】解:设甲队每天可采摘x 公斤酥梨,则乙队每天可采摘()600x -公斤酥梨.根据题意得0288001920006x x =-.解得x =1800.经检验,x =1800是原分式方程的解.∴6001200x -=.答:甲队每天可采摘1800公斤酥梨,乙队每天可采摘1200公斤酥梨.【点睛】本题考查分式方程的实际应用,熟练掌握该知识点是解题关键.22.13【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.【详解】解:将微信记为A 、支付宝记为B 、银行卡记为C ,画树状图得:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为39=13.【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.23.(1)双曲线的函数解析式为y =8x(2)点C 的坐标为(2,4)【分析】(1)利用待定系数法即可解决.(2)过点A 作AE ⊥x 轴于E ,过点C 作CF ⊥x 轴于F ,根据AOC COF AOE ACFE S S S S =+- 梯形=6,列出方程即可解决.【详解】(1)∵点B (﹣4,﹣2)在双曲线y =k x 上,∴4k -=﹣2,∴k =8,∴双曲线的函数解析式为y =8x .(2)过点A 作AE ⊥x 轴于E ,过点C 作CF ⊥x 轴于F ,∵正比例函数与反比例函数的交点A 、B 关于原点对称,∴A (4,2),∴OE =4,AE =2,设点C 的坐标为(a ,8a ),则OF =a ,CF =8a,则AOC COF AOE ACFE S S S S =+- 梯形,=12×8a a⨯+12(2+8a )(4﹣a )﹣12×4×2=216a a-,∵△AOC 的面积为6,∴216a a-=6,整理得a 2+6a ﹣16=0,解得a =2或﹣8(舍弃),经检验2a =是所列方程的根且符合题意,∴点C 的坐标为(2,4).【点睛】本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.24.(1)见解析;(2)见解析【分析】(1)关键是确定中间的数为0,然后在一条直线的另两个数为互为相反数,找出4对互为相反数,即可.(2)乘积为1,确定中间的数为1,那么在一条直线的另两个数为互为倒数,然后找出4对互为倒数,且满足乘积为1,即又互为倒数.【详解】解:(1)如图1所示:(2)如图2所示:【点睛】本题考查互为相反数、互为倒数的意义,以及九方格中的数据规律,趣味性较强,本题的关键是找准正中间的数字.25.(1)4(2)①3;②2【分析】(1)根据新定义得(,)|01||30|d O P =++-,然后去绝对值即可;(2)①设C 点坐标为(,2)x x +,根据新定义得(,)|1||2|d C D x x =-++,再分类讨论:对于1x >或21x -≤≤或<2x -,分别计算(,)d C D ,然后确定最小值;②作OC ⊥直线2y x =+于C ,交O 于E ,可得此时点C 与点E 的直角距离的值最小,求出点C 和点E 的坐标,则可得(,)d C E .【详解】(1)解:(,)|01||30|d O P =++-13=+4=,故答案为4;(2)①设C 点坐标为(,2)x x +,(,)|1||20||1||2|d C D x x x x =-++-=-++,当1x >时,(,)12213d C D x x x =-++=+>,当21x -≤≤时,(,)123d C D x x =-++=,当<2x -时,(,)12213d C D x x x =---=-->,∴点C 与点D 的直角距离的最小值为3;②如图,作OC ⊥直线2y x =+于C ,交O 于E ,此时点C 与点E 的直角距离的值最小,在2y x =+中,令0x =,则2y =,即2OA =,令0y =,则2x =-,即2OB =,则OAB 为等腰直角三角形,∵OC AB ⊥,∴AC BC =,45AOC BOC ∠=∠=︒,∴2002,22C -++⎛⎫ ⎪⎝⎭,即()1,1C -,过E 作EF x ⊥轴,垂足为F ,∴OEF 为等腰直角三角形,∵点E 在以原点O 为圆心,1为半径的圆上,∴1OE =,∴2OF EF ==,∴E 点坐标为(,∴(,)112d C E =-=【点睛】本题考查了圆的综合题:掌握直线与圆的位置关系、绝对值的意义和等腰直角三角形的性质;通过阅读理解新概念、新定义的意义.26.(1)223y x x =-++(2)90PBA ∠=︒(3)①(2,3)F ;②1t =【分析】(1)运用待定系数法即可求得答案;(2)如图1,过点P 作PD y ⊥轴于点D ,可证:PBD △是等腰直角三角形,AOB 是等腰直角三角形,即可求得答案;(3)①如图2,延长FN 交x 轴于点G ,由AEM △是等腰直角三角形,可得3EM AM t ==-,再由四边形EFNM 是平行四边形,可得EM FN =,建立方程求解即可得出答案;②如图3,过点N 作NG x ⊥轴于点G ,由于90MBN ∠<︒,故MBN PBN ∠≠∠,若90BMN PBN ∠=∠=︒,推出0=t ,不符合题意;若90BNM PBN ∠=∠=︒,可求得1t =,进而可得BNM NBP △∽△,故1t =.【详解】(1)解: 抛物线2y x bx c =-++经过(3,0)A 、(0,3)B 两点,∴9303b c c -++=⎧⎨=⎩,解得:23b c =⎧⎨=⎩,∴抛物线的解析式为223y x x =-++;(2)2223(1)4y x x x =-++=--+ ,∴顶点(1,4)P ,如图1,过点P 作PD y ⊥轴于点D ,则(0,4)D ,90PDB ∠=︒,1PD ∴=,431BD =-=,PD BD ∴=,PBD ∴△是等腰直角三角形,45PBD ∴∠=︒,BP =3OA OB == ,90AOB ∠=︒,AOB ∴ 是等腰直角三角形,45ABO ∴∠=︒,AB =180180454590PBA PBD ABO ∴∠=︒-∠-∠=︒-︒-︒=︒;(3)①如图2,延长FN 交x 轴于点G ,由题意得:OM t =,AN ,3AM t ∴=-,FN x ⊥ 轴,90AGN ∴∠=︒,由(2)知:AOB 是等腰直角三角形,45BAO ∴∠=︒,ANG ∴ 是等腰直角三角形,AG NG t ∴===,(3,0)G t ∴-,当3x t =-时,22223(3)2(3)34x x t t t t -++=--+-+=-+,2(3,4)F t t t ∴--+,24FG t t ∴=-+,2243FN FG NG t t t t t ∴=-=-+-=-+,ME x ⊥ 轴,AEM ∴△是等腰直角三角形,3EM AM t ∴==-,ME x ⊥ 轴,EF MN ∥ ,FN x ⊥轴,∴四边形EFNM 是平行四边形,EM FN ∴=,233t t t ∴-=-+,解得:1t =或3t =(不符合题意,舍去),(2,3)F ∴;②存在.如图3,过点N 作NG x ⊥轴于点G ,由①知:OM t =,AN ,AG NG t ==,32MG t ∴=-,BN ∴=,BP =90PBN ∠=︒,90MBN ∠<︒ ,MBN PBN ∴∠≠∠,若90BMN PBN ∠=∠=︒,则90BMO NMG ∠+∠=︒,90BOM MGN ∠=∠=︒ ,90BMO MBO ∴∠+∠=︒,MBO NMG ∴∠=∠,BMO MNG ∴△∽△,∴OB OM MG NG=,即3132t t t ==-,323t ∴-=,解得:0=t (不符合题意,舍去),故BMN PBN ∠≠∠,若90BNM PBN ∠=∠=︒,则90ANM ∠=︒,AMN ∴ 是等腰直角三角形,2AM t ∴=,33OA OM AM t ∴=+==,1t ∴=,当1t =时,MN AN =BN AB AN ∴=-==,12MN BN =12=,∴MN BP BN BN =,且90BNM PBN ∠=∠=︒,BNM NBP ∴△∽△,综上所述,当BNP △与BMN 相似时,1t =.【点睛】本题是二次函数综合题,考查了待定系数法,等腰直角三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质等,运用分类讨论思想和数形结合思想是解题关键.。

2023学年河北省任丘市任丘市第八中学中考模拟数学试题(含解析)

2023学年河北省任丘市任丘市第八中学中考模拟数学试题(含解析)
三、解答题 20.已知两个整式 A x2 2x , B ■x 2 ,其中系数■被污染.
(1)若■是 2 ,化简 A B ; (2)当 x 2 时,若 A 2B 的值总是非负数,在数轴上标出系数■的取值范围. 21.一个不透明的口袋里装有分别标有汉字“魅”“力”“石”“门”的四个小球,除汉字不同 之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球. (1)从中任取一个球,球上的汉字刚好是“石”的概率为________; (2)甲从中任取一球,不放回,再从中任取一球,请用列表或画树状图的方法,求甲取出 的两个球上的汉字恰好能组成“魅力”或“石门”的概率 P1 ; (3)乙从中任取一球,记下汉字后放回,然后再从中任取一球,记乙取出的两个球上的汉 字恰好能组成“魅力”或“石门”的概率为 P2 ,则 P1 ________ P2 (填“>”“<”或“=”). 22.某班生活委员为班级购买奖品后与学习委员对话如下. 生活委员:“我买相同数量的软面笔记本和硬面笔记本分别花去了12 元和 21元,而每本 硬面笔记本比软面笔记本贵1.2 元.” 学习委员:“你肯定搞错了,你买不到相同数量的两种笔记本.” (1)请你通过计算分析学习委员说得对不对;
(1) DFE 的度数为________; 试卷第 4 页,共 7 页
(2)若 BFP 50 .则 CE 与 PF ________(填“平行”或“不平行”).
19.如图、在平面直角坐标系 xOy 中,矩形 ABCO 的顶点 A,C 分别在 x 轴,y 轴的正
半轴上,点 D,E 是 CO 的两个三等分点,过点 D,E 作 x 轴的平行线分别交 AB 于点 F,
a b
c d
,其中
B
a
b
b
,C
c
d

2023年河北省承德市八校联考中考数学模拟试卷(含解析)

2023年河北省承德市八校联考中考数学模拟试卷(含解析)

2023年河北省承德市八校联考中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、选择题(本大题共16小题,共42.0分。

在每小题列出的选项中,选出符合题目的一项)1.嘉琪将一个正五边形纸片沿图中虚线剪掉一个小三角形后,发现剩下纸片的周长变小了,能正确解释这一现象的数学知识是( )A. 垂线段最短B. 两点确定一条直线C. 两点之间,线段最短D. 两点间距离的定义2. 与−214相等的是( )A. −3×34B. −34C. −3÷34D. −3−143. 新冠病毒的直径约为18000nm ,18000用科学记数法表示为a ×10n 的形式,下列有关a 、n 的说法正确的是( )A. a 为整数,n 为正数B. a 为整数,n 为负数C. a 为小数,n 为正数D. a 为小数,n 为负数4. 若32x +1=13,则(x +2)2023的值为( )A. −1B. 1C. 2022D. 20245. 下列各式正确的是( )A. 2.5=0.5B. (−3)2=−3C. 2 3−2= 3D. 8÷ 2=26.如图,在▱ABCD 中,BD 为对角线,下列结论正确的是( )A. ∠α=∠βB. ∠α+∠β=∠γC. ∠α+∠β>∠γD. ∠α+∠β<∠γ7.如图,这是正方体的表面展开图,折叠成正方体后,与点A 重合的点为( )A. P 1B. P 2C. P 2和P 3D. P 1和P 48. 依据所标识的数据,下列平行四边形一定为菱形的是( )A.B.C. D.9. 若(1a −1b )÷2O 的运算结果为整式,则“〇”中的式子可能为( )A. a−bB. a +bC. abD. a 2−b 210.如图,在Rt △ABC 中,∠ABC =90°,∠BAC =30°,AC=2.Rt △ABC 可以绕点A 旋转,旋转的角度为60°,分别得到Rt △AB 1C 1和Rt △AB 2C 2,则图中阴影部分的面积为( )A.7π6− 32 B. 7π12−32 C. 7π−36D.3π4− 3211. 小亮有三双颜色分别为灰色、白色、蓝色的袜子和两双颜色分别为灰色、黑色的鞋子,他随机穿上一双袜子和鞋子,则恰好都为灰色的概率是( )A. 13B. 12C. 16D. 2312. 能运用等式的性质说明如图事实的是( )A. 如果a +c =b +c ,那么a =b (a ,b ,c 均不为0)B. 如果a =b ,那么a +c =b +c (a ,b ,c 均不为0)C. 如果a−c=b−c,那么a=b(a,b,c均不为0)D. 如果a=b,那么ac=bc(a,b,c均不为0)13. 若长度为3、4、m的三条线段能组成一个钝角三角形,则m的值可能为( )A. 3B. 4C. 5D. 614. 已知在△ABC中,∠B=45°,在AB边上求作一点D,使得△BCD为等腰直角三角形.两位同学提供了如图所示的作图痕迹,对于作法Ⅰ、Ⅱ,说法正确的是( )A. Ⅰ、Ⅱ都可行B. Ⅰ、Ⅱ都不可行C. Ⅰ可行,Ⅱ不可行D. Ⅰ不可行,Ⅱ可行15. 如图,已知点PQ是边AB的三等分点,△ABC的面积为27,现从AB边上取一点D,沿平行BC的方向剪下一个面积为10的三角形,则点D在( )A. 线段AP上B. 线段PQ上,且靠近点PC. 线段PQ上,且靠近点QD. 线段BQ上16.如图,已知抛物线L:y=−tx2+2(1−t)x+4(常数t>0)与x轴分别交于点M(−2,0)和点N,与y轴交于点P,PQ//x轴交抛物线L于点Q,作直线MP和OQ.甲、乙、丙三人的说法如下:甲:若t=2,则点Q的坐标为(−1,4).乙:若MN=2PQ,则t的值有两个,且互为倒数.丙:若OQ//MP,点是直线OQ上一点,点M到直线的最大距离为25.下列判断正确的是( )A. 甲对,乙和丙错B. 乙对,甲和丙错C. 甲和丙对,乙错D. 甲、乙、丙都对第II卷(非选择题)二、填空题(本大题共3小题,共9.0分)17. 如图,这是30位同学在学校举办的“文明礼仪”比赛中的得分情况,则这些成绩的众数为______ 分.18.如图,在△ABP中,B、P两个顶点在x轴上,点A在x轴的上方,以点P为位似中心作△ABP的位似图形△CDP,其中点B、P、D在x轴上对应的数分别为−3、−1和3.(1)△ABP与△CDP的位似比为______ ;(2)若点A的纵坐标为a,则点C的纵坐标为______ .19. 在疫情防控期间,阳光学校要购买A、B两种型号的测温计,已知A型号测温计的单价为a元,B型号测温计的单价比A型号测温计的单价贵10元.(1)B型号测温计的单价为______ 元(用含a的式子表示);(2)若用1200元购买A型号测温计的数量与用1500元购买B型号测温计的数量相同,则可列方程为______ .阳光学校计划购买两种型号的测温计共60个,费用不超过2600元,则至少购买A 型号测温计______ 个.三、解答题(本大题共7小题,共69.0分。

河北省沧州市中考数学模拟试卷含答案解析

河北省沧州市中考数学模拟试卷含答案解析

河北省沧州市中考数学模拟试卷(3月份)一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项符合题目要求.1.下面哪个式子可以用来验证小明的计算3﹣(﹣1)=4是否正确?()A.4﹣(﹣1) B.4+(﹣1)C.4×(﹣1)D.4÷(﹣1)2.下列运算正确的是()A.a3+a2=a5B.3a2﹣a2=22C.a3•a2=a5D.a6÷a3=a23.下了四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列各式中,能用平方差公因式分解的是()A.x2+x B.x2+8x+16 C.x2+4 D.x2﹣15.如图是一个几何体的三视图,则这个几何体的侧面积是()A.12πcm2B.8πcm2C.6πcm2D.3πcm26.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40° B.35°C.30°D.45°7.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b8.如图,直线AB、CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠BOD=15°30′,则下列结论中不正确的是()A.∠AOF=45° B.∠BOD=∠AOCC.∠BOD的余角等于75°30′D.∠AOD与∠BOD互为补角9.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.10.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变11.如图所示是测量一物体体积的过程:步骤一,将180ml的水装进一个容量为300ml的杯子中.步骤二,将三个相同的玻璃球放入水中,结果水没有满.步骤三,同样的玻璃球再加一个放入水中,结果水满溢出.根据以上过程,推测一颗玻璃球的体积在下列哪一范围内(1ml=1cm3)()A.10cm3以上,20cm3以下B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下D.40cm3以上,50cm3以下12.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠113.如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是()A.B.C.D.14.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.15.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,16.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用含a、b的式子表示)()A.(a+b)2B.(a﹣b)2C.2ab D.ab二、填空题:本大题共4小题,每小题3分,共12分,把答案写在题中横线上.17.计算﹣2sin45°的结果是.18.若(x﹣1)2=2,则代数式x2﹣2x+5的值为.19.如图,在半径为2的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为.20.如图,所有正三角形的一边都与x轴平行,一顶点在y轴正半轴上,顶点依次用A1,A2,A3,A4…表示,坐标原点O到边A1A2,A4 A5,A7A8…的距离依次是1,2,3,…,从内到外,正三角形的边长依次为2,4,6,…,则A23的坐标是.三、解答题:本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤.21.现规定=a﹣b+c﹣d,试计算,其中x=2,y=1.22.如图,已知点A(﹣4,2),B(﹣1,﹣2),平行四边形ABCD的对角线交于坐标原点O.(1)请直接写出点C、D的坐标;(2)写出从线段AB到线段CD的变换过程;(3)直接写出平行四边形ABCD的面积.23.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?24.如图是根据某市国民经济和社会发展统计公报中的相关数据绘制的两幅统计图(不完整).根据图中信息解答下列问题:(1)该市私人轿车拥有量约是多少万辆?(精确到1万辆)(2)请补全折线统计图.(3)经测定,汽车的碳排放量与汽车的排量大小有关,驾驶排量为1.6L的轿车,若一年行驶的路程为1万千米,则这一年该轿车的碳排放量约为2.7万吨,从该市随机抽取400辆私人轿车,不同排量的轿车数量统计如下表:排量(L)小于1.6 1.6 1.8 大于1.8轿车数量(辆)60 200 80 60按照上述的统计数据,通过计算估计:该市仅排量为1.6L的私人轿车(假定每辆车平均一年行驶的路程都为1万千米)的碳排放总量为多少万吨?25.如图,经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围;(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,直接写出AM的长.26.在平面直角坐标系中,O为原点,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点.(1)若四边形OABC为矩形,如图1,①求点B的坐标;②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F.若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围.河北省沧州市中考数学模拟试卷(3月份)参考答案与试题解析一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项符合题目要求.1.下面哪个式子可以用来验证小明的计算3﹣(﹣1)=4是否正确?()A.4﹣(﹣1) B.4+(﹣1)C.4×(﹣1)D.4÷(﹣1)【考点】有理数的减法.【分析】根据被减数、减数、差三者之间的关系解答.【解答】解:可以用4+(﹣1)验证.故选B.【点评】本题主要考查了有理数的减法,熟记被减数=差+减数是解题的关键.2.下列运算正确的是()A.a3+a2=a5B.3a2﹣a2=22C.a3•a2=a5D.a6÷a3=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法,可判断A,C;根据合并同类项,可判断B;根据同底数幂的除法,可判断D.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、合并同类项系数相加字母部分不变,故B错误;C、同底数幂的乘法底数不变指数相加,故C正确;D、同底数幂的除法底数不变指数相减,故D错误;故选:C.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.3.下了四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形,故正确;C、是轴对称图形,不是中心对称图形,故错误;D、是轴对称图形,不是中心对称图形,故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下列各式中,能用平方差公因式分解的是()A.x2+x B.x2+8x+16 C.x2+4 D.x2﹣1【考点】因式分解-运用公式法.【分析】直接利用公式法以及提取公因式法分解因式进而得出答案.【解答】解:A、x2+x=x(x+1),是提取公因式法分解因式,故此选项错误;B、x2+8x+16=(x+4)2,是公式法分解因式,故此选项错误;C、x2+4,无法分解因式,故此选项错误;D、x2﹣1=(x+1)(x﹣1),能用平方差公因式分解,故此选项正确.故选:D.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确运用公式法分解因式是解题关键.5.如图是一个几何体的三视图,则这个几何体的侧面积是()A.12πcm2B.8πcm2C.6πcm2D.3πcm2【考点】由三视图判断几何体;圆柱的计算.【分析】首先判断出该几何体,然后计算其面积即可.【解答】解:观察三视图知:该几何体为圆柱,高为3cm,底面直径为2cm,侧面积为:πdh=2×3π=6π,故选C.【点评】本题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体.6.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40° B.35°C.30°D.45°【考点】切线的性质.【分析】连接DB,即∠ADB=90°,又∠BCD=120°,故∠DAB=60°,所以∠DBA=30°;又因为PD 为切线,利用切线与圆的关系即可得出结果.【解答】解:连接BD,∵∠DAB=180°﹣∠C=60°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°﹣∠DAB=30°,∵PD是切线,∴∠ADP=∠ABD=30°,故选:C.【点评】本题考查了圆内接四边形的性质,直径对圆周角等于直角,弦切角定理,弦切角等于它所夹的弧对的圆周角求解.7.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b【考点】实数大小比较.【专题】计算题.【分析】将a,b,c变形后,根据分母大的反而小比较大小即可.【解答】解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选A.【点评】此题考查了实数比较大小,将a,b,c进行适当的变形是解本题的关键.8.如图,直线AB、CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠BOD=15°30′,则下列结论中不正确的是()A.∠AOF=45° B.∠BOD=∠AOCC.∠BOD的余角等于75°30′D.∠AOD与∠BOD互为补角【考点】垂线;余角和补角;对顶角、邻补角.【分析】根据垂线的定义和角平分线得出A正确;根据对顶角相等得出B正确;求出∠BOD的余角得出C不正确;根据邻补角关系得出D正确.【解答】解:∵OE⊥AB,∴∠AOE=90°,∵OF平分∠AOE,∴∠AOF=∠AOE=45°,∴A正确;夜∠BOD和∠AOC是对顶角,∴∠BOD=∠AOC,∴B正确;∵∠BOD的余角=90°﹣15°30′=74°30′,∴C不正确;∵∠AOD+∠BOD=180°,∴∠AOD和∠BOD互为补角,∴D正确;故选:C.【点评】本题考查了垂线、余角以及对顶角、邻补角的定义;熟练掌握角的互余和互补关系是解题的关键.9.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.10.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变【考点】动点问题的函数图象.【专题】数形结合.【分析】由于等腰直角三角形AEF的斜边EF过C点,则△BEC和△DCF都是直角三角形;观察反比例函数图象得反比例解析式为y=;当x=3时,y=3,即BC=CD=3,根据等腰直角三角形的性质得CE=3,CF=3,则C点与M点重合;当y=9时,根据反比例函数的解析式得x=1,即BC=1,CD=9,所以EF=10,而EM=5;由于EC•CF=x×y;利用等腰直角三角形的性质BE•DF=BC•CD=xy,然后再根据反比例函数的性质得BE•DF=9,其值为定值.【解答】解:因为等腰直角三角形AEF的斜边EF过C点,M为EF的中点,所以△BEC和△DCF 都是直角三角形;观察反比例函数图象得x=3,y=3,则反比例解析式为y=;A、当x=3时,y=3,即BC=CD=3,所以CE=BC=3,CF=CD=3,C点与M点重合,则EC=EM,所以A选项错误;B、当y=9时,x=1,即BC=1,CD=9,所以EC=,EF=10,EM=5,所以B选项错误;C、因为EC•CF=x•y=2×xy=18,所以,EC•CF为定值,所以C选项错误;D、因为BE•DF=BC•CD=xy=9,即BE•DF的值不变,所以D选项正确.故选D.【点评】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.11.如图所示是测量一物体体积的过程:步骤一,将180ml的水装进一个容量为300ml的杯子中.步骤二,将三个相同的玻璃球放入水中,结果水没有满.步骤三,同样的玻璃球再加一个放入水中,结果水满溢出.根据以上过程,推测一颗玻璃球的体积在下列哪一范围内(1ml=1cm3)()A.10cm3以上,20cm3以下B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下D.40cm3以上,50cm3以下【考点】一元一次不等式的应用.【专题】操作型.【分析】先求出剩余容量,然后分别除以3和4,就可知道球的体积范围.【解答】解:300﹣180=120,120÷3=40,120÷4=30故选:C.【点评】特别注意水没满与满的状态.12.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠1【考点】根的判别式;一元二次方程的定义.【分析】根据根的判别式和一元二次方程的定义可得4﹣4(k﹣1)(﹣2)=8k﹣4≥0且k≠1,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,∴△≥0且k≠1,∴△=4﹣4(k﹣1)(﹣2)=8k﹣4≥0且k≠1,∴k≥且k≠1,故选:D.【点评】本题主要考查了根的判别式以及一元二次方程的定义的知识,解答本题的关键是掌握一元二次方程有实数根,则△≥0,此题难度不大.13.如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是()A.B.C.D.【考点】概率公式;折线统计图.【专题】图表型.【分析】先求出3天中空气质量指数的所有情况,再求出有一天空气质量优良的情况,根据概率公式求解即可.【解答】解:∵由图可知,当1号到达时,停留的日子为1、2、3号,此时为(86,25,57),3天空气质量均为优;当2号到达时,停留的日子为2、3、4号,此时为(25,57,143),2天空气质量为优;当3号到达时,停留的日子为3、4、5号,此时为(57,143,220),1天空气质量为优;当4号到达时,停留的日子为4、5、6号,此时为(143,220,160),空气质量为污染;当5号到达时,停留的日子为5、6、7号,此时为(220,160,40),1天空气质量为优;当6号到达时,停留的日子为6、7、8号,此时为(160,40,217),1天空气质量为优;当7号到达时,停留的日子为7、8、9号,此时为(40,217,160),1天空气质量为优;当8号到达时,停留的日子为8、9、10号,此时为(217,160,121),空气质量为污染∴此人在该市停留期间有且仅有1天空气质量优良的概率==.故选:C.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.14.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.【考点】一次函数与二元一次方程(组).【分析】由图可知:两个一次函数的交点坐标为(﹣3,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣3,1),即x=﹣3,y=1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故选C.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.15.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,【考点】正多边形和圆;弧长的计算.【专题】压轴题.【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.【解答】解:连接OB,∵OB=4,∴BM=2,∴OM=2,==π,故选D.【点评】本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.16.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用含a、b的式子表示)()A.(a+b)2B.(a﹣b)2C.2ab D.ab【考点】整式的混合运算.【分析】用大正方形的面积减去4个小正方形的面积即可.【解答】解:()2﹣4×()2=﹣==ab,故选D.【点评】本题考查了整式的混合运算,求得大正方形的边长和小正方形的边长是解题的关键.二、填空题:本大题共4小题,每小题3分,共12分,把答案写在题中横线上.17.计算﹣2sin45°的结果是.【考点】实数的运算;特殊角的三角函数值.【分析】利用二次根式的性质以及特殊角的三角函数值求出即可.【解答】解:﹣2sin45°=2﹣2×=.故答案为:.【点评】此题主要考查了实数运算等知识,正确掌握相关性质是解题关键.18.若(x﹣1)2=2,则代数式x2﹣2x+5的值为6.【考点】完全平方公式.【分析】根据完全平方公式展开,先求出x2﹣2x的值,然后再加上5计算即可.【解答】解:∵(x﹣1)2=2,∴x2﹣2x+1=2,∴x2﹣2x=1,两边都加上5,得x2﹣2x+5=1+5=6.故答案为:6.【点评】本题考查了完全平方公式,熟记公式是解题的关键,利用“整体代入”的思想使计算更加简便.19.如图,在半径为2的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为6﹣2.【考点】正多边形和圆.【分析】如图,连接OB,OF,根据题意得:△BFO是等边三角形,△CDE是等腰直角三角形,求得△ABC的高和底即可求出阴影部分的面积.【解答】解:如图,连接OB,OF,根据题意得:△BFO是等边三角形,△CDE是等腰直角三角形,∴BF=OB=2,∴△BFO的高为;,CD=2(2﹣)=4﹣2,∴BC=(2﹣4+2)=﹣1,∴阴影部分的面积=4S△ABC=4×()•=6﹣2.故答案为:6﹣2.【点评】本题考查了正多边形和圆,三角形的面积,解题的关键是知道阴影部分的面积等于4个三角形的面积.20.如图,所有正三角形的一边都与x轴平行,一顶点在y轴正半轴上,顶点依次用A1,A2,A3,A4…表示,坐标原点O到边A1A2,A4 A5,A7A8…的距离依次是1,2,3,…,从内到外,正三角形的边长依次为2,4,6,…,则A23的坐标是(8,﹣8).【考点】规律型:点的坐标.【分析】根据每一个三角形有三个顶点确定出A23所在的三角形,再求出相应的三角形的边长以及A23的纵坐标的长度,即可得解.【解答】解:∵23÷3=7…2,∴A23是第8个等边三角形的第2个顶点,第8个等边三角形边长为2×8=16,∴点A23的横坐标为×16=8,∵边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,∴点A23的纵坐标为﹣8,∴点A23的坐标为(8,﹣8).故答案为:(8,﹣8).【点评】此题考查点的坐标变化规律,主要利用了等边三角形的性质,确定出点A23所在三角形是解题的关键.三、解答题:本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤.21.现规定=a﹣b+c﹣d,试计算,其中x=2,y=1.【考点】整式的混合运算—化简求值.【专题】新定义;整式.【分析】原式利用题中的新定义化简,将x与y的值代入计算即可求出值.【解答】解:原式=(xy﹣3x2)﹣(﹣2xy)﹣2x2﹣(﹣5+xy)=xy﹣3x2+2xy﹣2x2+5﹣xy=﹣5x2+2xy+5,当x=2,y=1时,原式=﹣20+4+5=﹣11.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.如图,已知点A(﹣4,2),B(﹣1,﹣2),平行四边形ABCD的对角线交于坐标原点O.(1)请直接写出点C、D的坐标;(2)写出从线段AB到线段CD的变换过程;(3)直接写出平行四边形ABCD的面积.【考点】平行四边形的性质;坐标与图形性质;平移的性质.【分析】(1)利用中心对称图形的性质得出C,D两点坐标;(2)利用平行四边形的性质以及结合平移的性质得出即可;(3)利用S ABCD的可以转化为边长为;5和4的矩形面积,进而求出即可.【解答】解:(1)∵四边形ABCD是平行四边形,∴四边形ABCD关于O中心对称,∵A(﹣4,2),B(﹣1,﹣2),∴C(4,﹣2),D(1,2);(2)线段AB到线段CD的变换过程是:绕点O旋转180°;(3)由(1)得:A到y轴距离为:4,D到y轴距离为:1,A到x轴距离为:2,B到x轴距离为:2,∴S ABCD的可以转化为边长为;5和4的矩形面积,∴S ABCD=5×4=20.【点评】此题主要考查了平行四边形的性质以及中心对称图形的性质,根据题意得出S ABCD的可以转化为矩形面积是解题关键.23.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【考点】二次函数的应用.【专题】应用题.【分析】(1)根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的2倍,可得出AE=2BE,设BE=a,则有AE=2a,表示出a与2a,进而表示出y与x的关系式,并求出x的范围即可;(2)利用二次函数的性质求出y的最大值,以及此时x的值即可.【解答】解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BE=a,则AE=2a,∴8a+2x=80,∴a=﹣x+10,3a=﹣x+30,∴y=(﹣x+30)x=﹣x2+30x,∵a=﹣x+10>0,∴x<40,则y=﹣x2+30x(0<x<40);(2)∵y=﹣x2+30x=﹣(x﹣20)2+300(0<x<40),且二次项系数为﹣<0,∴当x=20时,y有最大值,最大值为300平方米.【点评】此题考查了二次函数的应用,以及列代数式,熟练掌握二次函数的性质是解本题的关键.24.如图是根据某市国民经济和社会发展统计公报中的相关数据绘制的两幅统计图(不完整).根据图中信息解答下列问题:(1)该市私人轿车拥有量约是多少万辆?(精确到1万辆)(2)请补全折线统计图.(3)经测定,汽车的碳排放量与汽车的排量大小有关,驾驶排量为1.6L的轿车,若一年行驶的路程为1万千米,则这一年该轿车的碳排放量约为2.7万吨,从该市随机抽取400辆私人轿车,不同排量的轿车数量统计如下表:排量(L)小于1.6 1.6 1.8 大于1.8轿车数量(辆)60 200 80 60按照上述的统计数据,通过计算估计:该市仅排量为1.6L的私人轿车(假定每辆车平均一年行驶的路程都为1万千米)的碳排放总量为多少万吨?【考点】折线统计图;条形统计图.【分析】(1)设该市私人轿车拥有量为x万辆,根据拥有量=拥有量×(1+的增长率)列出方程,解方程可得;(2)设增长率为m,根据拥有量×(1+增长率)=拥有量,列方程求解即可;(3)根据20私人轿车总量由14年1.6L的私人轿车占私人轿车拥有量的比例可得排量为1.6L的私人轿车数,再计算碳排放总量.【解答】解:(1)设该市私人轿车拥有量为x万辆,根据题意,得:(1+30%)x=108,解得:x=83,答:该市私人轿车拥有量约是83万辆;(2)设增长率为m,则60(1+m)=69,解得:m=0.15=15%,补全统计图如下图所示:(3)1.6L私人轿车的拥有量为:108×(200÷400)=54(万辆),所以该市仅排量为1.6L的私人轿车的碳排放总量为:540000×2.7=1458000(万吨),答:该市仅排量为1.6L的私人轿车的碳排放总量为1458000万吨.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.25.如图,经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围;(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,直接写出AM的长.【考点】二次函数综合题.【分析】(1)该抛物线的解析式中只有两个待定系数,只需将A、B两点坐标代入即可得解.(2)首先根据平移条件表示出移动后的函数解析式,从而用m表示出该函数的顶点坐标,将其代入直线AB、AC的解析式中,即可确定P在△ABC内时m的取值范围.(3)先在OA上取点N,使得∠ONB=∠ACB,那么只需令∠NBA=∠OMB即可,显然在y轴的正负半轴上都有一个符合条件的M点;以y轴正半轴上的点M为例,先证△ABN、△AMB相似,然后通过相关比例线段求出AM的长.【解答】解:(1)将A(0,﹣6)、B(﹣2,0)代入抛物线y=x2+bx+c中,得:,解得.∴抛物线的解析式:y=x2﹣2x﹣6=(x﹣2)2﹣8,顶点D(2,﹣8);(2)由题意,新抛物线的解析式可表示为:y=(x﹣2+1)2﹣8+m,即:y=(x﹣2+1)2﹣8+m.它的顶点坐标P(1,m﹣8).由(1)的抛物线解析式可得:C(4,0).∴直线AB:y=﹣3x﹣6;直线AC:y=x﹣6.当点P在直线AB上时,﹣3﹣6=m﹣8,解得:m=﹣1;当点P在直线AC上时,﹣6=m﹣8,解得:m=;又∵m>0,∴当点P在△ABC内时,0<m<.(3)由A(0,﹣6)、C(6,0)得:OA=OC=6,且△OAC是等腰直角三角形.如图,在OA上取ON=OB=2,则∠ONB=∠ACB=45°.∴∠ONB=∠NBA+∠OAB=∠ACB=∠OMB+∠OAB,即∠NBA=∠OMB.如图,在△ABN、△AM1B中,∠BAN=∠M1AB,∠ABN=∠AM1B,∴△ABN∽△AM1B,得:AB2=AN•AM1;由勾股定理,得AB2=(﹣2)2+(﹣6)2=40,又∵AN=OA﹣ON=6﹣2=4,∴AM1=40÷4=10,OM1=AM1﹣OA=10﹣6=4OM2=OM1=4AM2=OA﹣OM2=6﹣4=2.综上所述,AM的长为4或2.【点评】考查了二次函数综合题,曲线上点的坐标与方程的关系,平移的性质,二次函数的性质,等腰直角三角形的判定和性质,相似三角形的判定与性质,勾股定理.26.在平面直角坐标系中,O为原点,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点.(1)若四边形OABC为矩形,如图1,①求点B的坐标;②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F.若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围.【考点】四边形综合题.【专题】压轴题.【分析】(1)①根据OA=4,OC=2,可得点B的坐标;②利用相似三角形的判定和性质得出点的坐标;(2)根据平行四边形的性质,且分点在线段EF的延长线和线段上两种情况进行分析解答.【解答】解:(1)∵OA=4,OC=2,∴点B的坐标为(4,2);②如图1,过点P作PD⊥OA,垂足为点D,∵BQ:BP=1:2,点B关于PQ的对称点为B1,∴B1Q:B1P=1:2,∵∠PDB1=∠PB1Q=∠B1AQ=90°,∴∠PB1D=∠B1QA,∴△PB1D∽△B1QA,∴,∴B1A=1,∴OB1=3,即点B1(3,0);(2)∵四边形OABC为平行四边形,OA=4,OC=2,且OC⊥AC,∴∠OAC=30°,∴点C(1,),。

【最新】河北省衡水市中考数学模拟检测试卷(含答案解析)

【最新】河北省衡水市中考数学模拟检测试卷(含答案解析)

河北省衡水市中考数学模拟试卷(含答案)(时间120分钟满分:120分)一、选择题(本大愿共16个小题,1~10小题,每小题3分:11~16小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)在“有理数的加法与减法运算”的学习过程中,我们做过如下数学实验.“把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”用算式表示以上过程和结果的是()A.(﹣3)﹣(+1)=﹣4 B.(﹣3)+(+1)=﹣2C.(+3)+(﹣1)=+2 D.(+3)+(+1)=+42.(3分)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45°B.55°C.135° D.145°3.(3分)PM2.5是指大气中直径小于或等于0.00000025m的颗粒物,将0.00000025用科学记数法表示为()A.2.5×10﹣7 B.2.5×10﹣8 C.25×10﹣6 D.0.25×10﹣74.(3分)如图所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使图中阴影部分是一个轴对称图形,这样的涂法有()A.4种B.3种C.2种D.1种5.(3分)下列运算正确的是()A.a2+a3=2a5B.(﹣a3)2=a9C.(﹣x)2﹣x2=0 D.(﹣bc)4÷(﹣bc)2=﹣b2c26.(3分)如果式子有意义,那么x的取值范围在数轴上表示出来,正确的是()A. B.C. D.7.(3分)如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151° C.116° D.97°8.(3分)如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°9.(3分)某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()动时间(小时) 3 3.5 4 4.5人数 1 1 2 1A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75 C.中位数是4,平均数是3.8 D.众数是2,平均数是3.810.(3分)如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A. B. C.D.11.(2分)由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.12.(2分)关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0 B.a≠0 C.a≠5 D.a≠5且a≠013.(2分)如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A. = B. = C. = D. =14.(2分)如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0.其中正确结论的个数是()A.2个 B.3个 C.4个D.5个15.(2分)如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42°C.45° D.48°16.(2分)将一个无盖正方体纸盒展开(如图1),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图2),则所剪得的直角三角形较短的与较长的直角边的比是()A. B. C. D.二、填空题(17、18题每題3分,19题每空2分,共10分.把答案写在题中横线上)17.(3分)计算: = .18.(3分)阅读下面材料:如图,AB是半圆的直径,点D、E在半圆上,且D为弧BE的中点,连接AE、BD并延长,交圆外一点C,按以下步骤作图:①以点C为圆心,小于BC长为半径画弧,分别交AC、BC于点G、H;②分别以点G、H为圆心,大于GH的长为半径画弧,两弧相交于点M;③作射线CM,交连接A、D两点的线段于点I.则点I到△ABC各边的距离.(填“相等”或“不等”)19.(4分)将一列有理数﹣1,2,﹣3,4,﹣5,6,……,按如图所示有序排列.如图所示有序排列.如:“峰1”中峰顶C的位置是有理数4,那么,(1)“峰6”中峰顶C的位置是有理数;(2)2008应排在A、B、C、D、E中的位置.三解答题(共68分)20.(本小题满分8分)(1)a克糖水中有b克糖(a>b>0),则糖的质量与糖水的质量比为;若再添加c克糖,并全部溶解(c>0),则糖的质量与糖水的质量比为;生活常识告诉我们,添加的糖完全溶解后,频数 1 2 3 4 5 6 天图9糖水会更甜,因此我们可以猜想出以上两个质量比之间的大小关系是 ;.(2)我们的猜想正确吗?请你证明这个猜想。

2023年河北省张家口市蔚县代王城中学中考模拟数学考试

2023年河北省张家口市蔚县代王城中学中考模拟数学考试

2023年河北省张家口市蔚县代王城中学中考模拟数学考试学校:___________姓名:___________班级:___________考号:___________A.B. C.D.7.如图是嘉琪进行分式计算的过程,下列判断不正确的是()A.B.C.D.二、填空题三、解答题20.如图,某数学活动小组编制了一道有理数混合运算题,即输入一个有理数,按照自左向右的顺序运算,可得计算结果,其中“□”表示一个有理数.(2)若“□”表示负数,且计算结果为0,求输入的最大整数.21.某校举办“防疫”知识问答竞赛,每班参加的学生人数相同,按每班总分多少排列名(1)在甲房间时,小明测得MA a =,NB b =,90MPN ∠=︒,求证:AB a b =+;(2)在乙房间时,小明测得MC c =,75MPC ∠=︒,45NPD ∠=︒.①当2ND =时,求¼MN的长度; ②求乙房间的宽CD (用含c 的式子表示).25.如图,抛物线2y x bx c =-++与直线2y x c =+-交于A ,B 两点(点A 在点B 的左侧),该抛物线的对称轴是直线1x =.(1)若点(3,2)-在该抛物线上,求抛物线2y x bx c =-++的解析式;(2)当22x -≤≤,且2c =时,求抛物线2y x bx c =-++的最大值与最小值的差;(3)已知M 是直线AB 上的动点,将点M 向上平移2个单位长度得到点N ,若线段MN 与抛物线有公共点,请直接写出点M 的横坐标m 的取值范围.26.如图1,在平行四边形ABCD 中,45BAD ∠=︒,4AB =,BC a =,以AB 为直径在AB 的上方作半圆O ,交AD 于点E ,P 为»AB 上一动点(不与点A ,B 重合),将半圆O 沿BP 折叠,得到点A 的对称点A ',点O 的对称点O '.。

河北省中考数学模拟试卷(5)

河北省中考数学模拟试卷(5)

河北省中考数学模拟试卷(5)一.选择题(共16小题)1.下列关于的说法中,正确的是()A.是有理数B.是2的算术平方根C.不是实数D.不是无理数2.下列多边形中,既是轴对称图形又是中心对称图形的是()A.平行四边形B.正方形C.等腰梯形D.等边三角形3.下列运算:①a•a3=a3;②a6÷a3=a2;③(a﹣2)2=a2﹣4;④(a﹣3)(a+2)=a2﹣a﹣6,不正确的有()个.A.1B.2C.3D.44.若实数a,b,c,d在数轴上的对应点的位置如图所示,则①a>﹣4;②b+d<0;③|a|<c2;④c<的结论中,正确的是()A.①②B.①④C.②③D.③④5.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.对顶角相等,两直线平行6.根据相关部门统计,2020年全国普通高校毕业生约8340000人.将8340000用科学记数法表示应为()A.83.4×105B.8.34×105C.8.34×106D.0.834×107 7.由一些大小相同的小正方体组成的几何体从上面看的图形如右图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么这个几何体从左面看的图形是()A.B.C.D.8.方程3+2x=﹣1的解为()A.x=1B.x=﹣2C.x=3D.x=49.如图,△ABC中,AB<AC<BC,如果要用尺规作图的方法在BC上确定一点P,使P A+PB =BC,那么符合要求的作图痕迹是()A.B.C.D.10.从调查消费者购买汽车能源类型的扇形统计图中可看出,人们更倾向购买的是()A.纯电动车B.混动车C.轻混车D.燃油车11.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,∠ACB的平分线与∠ABC的外角平分线交于E点,连接AE,∠AEB的度数是()A.30°B.35°C.45°D.60°12.已知分式,当x=2时,分式的值为零;当x=﹣2时,分式没有意义,则分式有意义时,a+b的值为()A.﹣2B.2C.6D.﹣613.如图,边长为1的正六边形螺帽在足够长的桌面上滚动(没有滑动)一周,则O点所经过的路径长为()A.6B.5C.2πD.14.将一个圆分成四个扇形,使它们的圆心角的度数比为1:2:3:4,则这四个扇形中最大的圆心角是()A.90°B.144°C.180°D.210°15.我市某中学为便于管理,决定给每个学生编号,设定末尾用1表示男生,2表示女生.如果编号202003231表示“2020年入学的3班23号学生,是位男生”,那么2022年入学的6班20号女生同学的编号为()A.202006202B.202006201C.202206202D.202206201 16.如图,在△ABC中,点D、E、F分别是AB、BC、AC的中点,则下列四个判断中,不正确的是()A.四边形ADEF是平行四边形B.若∠A=90°,则四边形ADEF是矩形C.若AB=AC,则四边形ADEF是菱形D.若四边形ADEF是正方形,则△ABC是等边三角形二.填空题(共3小题)17.如图,把一个蛋糕分成n等份,要使每份中的角是45°,则n的值为.18.如果一个正多边形的一个内角是162°,则这个正多边形是正边形.19.平面直角坐标系xOy中,抛物线y=kx2﹣2k2x﹣3交y轴于A点,交直线x=﹣4于B 点.(1)若AB∥x轴,则抛物线的解析式是;(2)当﹣4<k<0时,记抛物线在A,B之间的部分为图象G(包含A,B两点),若对于图象G上任意一点P(x P,y P),y P≥﹣3,则k的取值范围是.三.解答题(共7小题)20.两组数据m,6,n与1,m,2n,7的平均数都是6,求这两组数据合并成一组数据后,这组新数据的中位数.21.全运会吉祥物以陕西秦岭独有的四个国宝级动物“金丝猴、羚牛、大熊猫、朱鹮”为创意原型,设计了一组幸福快乐、充满活力、精神焕发、积极向上的运动吉祥物形象.现有四张纪念卡片分别绘有吉祥物的图案(如图),纪念卡片背面完全相同,背面朝上,洗匀放好.(1)小丽从四张纪念卡片任意抽取一张,则小丽抽取到的卡片绘有吉祥物“羚羚”的概率为.(2)小明从四张纪念卡片中随机抽取两张卡片,请你用列表法或画树状图法求出小明抽到两张卡片恰好是“羚羚”和“熊熊”的概率.22.观察下列等式,,,将以上三个等式两边分别相加得.(1)猜想并写出;(2)计算:;(3)探究并计算:=;(4)计算:=.23.在平面直角坐标系xOy中,一次函数y=kx+5(x>﹣5)的图象G经过点A(﹣2,3),直线l:y=﹣x+b与图象G交于点B,与x轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当b=2时,直接写出区域W内的整点个数;②区域W内恰有3个整点,结合函数图象,求b的取值范围.24.问题提出:(1)如图1,已知Rt△ACB和Rt△ADB,∠ACB=90°,∠ADB=90°,其中CA=CB,∠DAB=30°,AB=4,求△ACB和△ADB的面积分别是多少?问题探究:滨河学校初二年级小张是一名特别爱好专研数学的学生,他在数学老师的帮助下发现:对于任意三角形,其中一个内角和其对边都为定值时,当另两边相等时,该三角形面积达到最大.例如,如图2,在△ABC中,已知三角形内角B和其对边AC都为定值,当BA=BC时,△ACB的面积达到最大.请利用小张同学的发现完成以下问题.(2)如图3,在△ACB中,∠BAC=120°,点D为BC的中点,AD=4,当△ABD面积最大时,求线段AB的值.问题解决:(3)如图4,已知等边△ACB,∠ADB=30°,CD=4,求四边形ADBC的面积的最小值.25.为预防新冠病毒,口罩成了生活必需品,某药店销售一种口罩,每包进价为6元,日均销售量y(包)与每包售价x(元)满足y=﹣5x+80,且10≤x≤16.(1)每包售价定为多少元时,药店的日均利润最大?最大为多少元?(2)当进价提高了a元,且每包售价为13元时,日均利润达到最大,求a的值.26.如图,AB、CD均为⊙O的直径,AB⊥CD.点M是射线CD上异于点C、O、D的一个动点,AM所在直线交⊙O于点N.点P是射线CD上另一点,且PM=PN.猜想:如图①,点M在直径CD上,PN与⊙O的位置关系是.探究:如图②,点M在直径CD的延长线上,判断PN与⊙O的位置关系,并说明理由.应用:如图③,点M在直径CD的延长线上,∠NMO=15°,⊙O的半径为1,直接写出图中阴影部分图形的面积.。

2023-2024学年河北省石家庄第四十一中学九年级下学期5月中考数学模拟试题

2023-2024学年河北省石家庄第四十一中学九年级下学期5月中考数学模拟试题

2023-2024学年河北省石家庄第四十一中学九年级下学期5月中考数学模拟试题一、单选题1.在1-,0,53, 6.8-和2024这五个有理数中,正数有()A .1个B .2个C .3个D .4个2.如图,把一个三角形沿虚线剪去一个角后得到一个四边形,若原三角形的周长为m ,得到的四边形的周长为n ,则关于m 与n 的大小关系是()A .m n =B .m n<C .m n>D .与原三角形的形状有关,无法判断3.式子2169--+-有下面两种读法;读法一:负2,负1,正6与负9的和;读法二:负2减1加6减9.则关于这两种读法,下列说法正确的是()A .只有读法一正确B .只有读法二正确C .两种读法都不正确D .两种读法都正确4.Rt ACB 和Rt DFE 是一副三角板,90ACB DFE ∠=∠=︒,45CAB ∠=︒,30DEF ∠=︒,将这副三角板按如图所示的位置摆放,点D 在边AC 上,点E 在边C 的延长线上,且AB EF ∥,则CDE ∠=()A .60°B .70︒C .75︒D .80︒5.用代数式表示“a 的3倍与b 的相反数的和”,下列不正确...的是()A .3a b-B .3a b+C .()3a b +-D .3b a-+6.一个几何体由若干个大小相同的小正方体组成,下图是该几何体的三视图,则这个几何体是()A .B .C .D .7.已知2m n +=-,4mn =-,则整式()()2332mn m n mn ---的值为()A .8B .8-C .16D .16-8.如图,在64⨯的正方形网格中,以格点A ,B ,C ,D ,E ,F 中的四个点为顶点,可以画出平行四边形的个数为()A .三B .四C .六D .八9.如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒……按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A .920B .1019C .13D .1210.如图,点M 是射线ON 上的一个动点(不与点O 重合),点A 在射线ON 外,且30AON ∠=︒,在点M 运动过程中,若AOM 为锐角三角形,则∠A 的取值范围是()A .6090A ︒<∠<︒B .3060A ︒<∠<︒C .030A ︒<∠<︒D .090A ︒<∠<︒11.李老师在黑板上出了一道题目,计算:23224x xx x +-++-.下面是三位同学的解答过程:小明:原式()()22222232262414444x x x x x x x x x x x +--+-+--=+===----;小亮:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-;小华:原式323131212(2)(2)2222x x x x x x x x x x x x +-++-+=-=-===++-++++.则关于以上三位学生的解答,下列说法正确的是()A .只有小明的解答正确B .只有小亮的解答正确C .小明和小亮的解答都不正确D .小明和小华的解答都正确12.如图,已知在ABC 中,70A ∠=︒,AC BC =,根据图中尺规作图痕迹,ACE ∠=()A .4︒B .5︒C .8︒D .10︒13.如图,弓形AMB 中, AB 所在圆的圆心为点O ,作 AB 关于直线AB 对称的 AB , AB 经过点O ,6AB =,点P 为C 上任一点(不与点A ,B 重合),点M ,N 分别是»AP , BP 的中点,则 MN的长为()A .3π6B .3C .23π3D 14.将一张半透明的矩形纸片ABCD 在平而直角坐标系中按如图所示的位置摆放,其中点B ,C 在x 轴的负半轴上,且3AD =,8AB =.双曲线:(0,0)kL y x k x=<<分别与边AB ,DC 交于点F E 、,连接AE ,在矩形纸片ABCD 沿着x 轴左右平移过程中,当点E 恰为DC 中点时,有2AF AE -=,则双曲线L 的表达式为()A .1y x=-B .4y x=-C .6y x=-D .8y x=-15.在数学综合实践课上,李老师拿出了如图1所示的三个边长都为1cm 的正方形硬纸板,并提出问题:“若将这三个正方形硬纸板互不重叠平放在桌面上,用一个圆形纸片将其完全覆盖,怎样摆放才能使这个圆形纸片的直径最小呢?”全班同学经过讨论后,得出如图2所示的三种方案,则下列说法正确的是()Acm B .方案二中圆形纸片的直径最小,直径是cm .C .方案二和方案三中圆形纸片的直径都最小,直径都是cm D .方案一、方案二和方案三中圆形纸片的直径都不是最小的16.如图1,在ABC V 中,90ABC ∠>︒,动点P 从点A 开始出发向点C 运动,连接BP ,设AP x =,BP y =,如图2是y 关于x 的函数图象,点Q 是函数图象上的最低点.观察图象,对于以下结论:①9AC =,4BC =;②30A ∠=︒;③当BCP 是直角三角形时,x 的值为7;④当79x <<时,BCP 是钝角三角形.其中正确的是()A .①②B .②③C .①④D .③④二、填空题17.如图,OA 的方向是北偏东15︒,OB 的方向是北偏西40︒.若AOC AOB ∠∠=,则OC 的方向是.18.已知22M a a =-,(1)把M 分解因式,结果是.(2)若1a +,则M 的值为.19.如图,在矩形纸片ABCD 中,3cm AB =,4cm BC =,点F 是AD 上一点(不与点A ,D 重合),连接BF ,将BAF △沿BF 翻折,点A 的对应点记作A '.(1)当点A '落在直线CF 上时,CF 的长是cm ;(2)当点A '落在直线BD 上时,AF 的长是cm .三、解答题20.如图,从左向右依次摆放序号分别为1,2,3,...n 的小正方形卡片,每个小正方形卡片上均画有若干个小圆点.其中任意相邻的4个小正方形卡片上的小圆点数量之和相等.(1)分别求出a ,b 的值;(2)当26n =时,所有这些小正方形纸片上的小圆点数量之和是多少?(3)小明说,第99个小正方形卡片上的小圆点的个数是3个,请直接判断他的说法是否正确.21.一个三位正整数,它的百位数字与个位数字相等,我们把这样的三位正整数叫作“对称数”,如101,232,555等都是“对称数”.(1)填空:①()101101-++=______=______11⨯;②()232232-++=______=_____25⨯;③()555555-++=______=_____60⨯.(2)小红观察(1)后有一个猜想:将“对称数”减去其各位数字之和,所得结果能够被9整除.请你再任意写出另外两个“对称数”,并通过计算验证小红的猜想;(3)设aba 为一个对称数,请你通过计算和推理说明小红的猜想是正确的.22.小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况.他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m 的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.如图1,在立柱上竖直安装了一个喷水装置ABC ,建立如图2所示的平面直角坐标系,一个单位长度代表1m 长,水流从y 轴上的喷头C 喷出,7m 4CO =,水流的路线为抛物线2:L y x bx c =-++(0x >,其中b ,c 均为常数)的一部分,当水流到达D 处时,达到最大高度,此时水流的最高点D 到喷头C 的水平距离为3m 2.(1)求抛物线L 的表达式及点D 的坐标;(2)定义“高差”:当抛物线上的点到喷头C 的水平距离x 在()0m x t ≤≤时,抛物线L 上的点到水平地面的距离()m y 的最大值与最小值的差叫作0到()m t 之间的“高差”,记作h (单位:m ).①当1t =时,求高差h 的值;②若()0m x t ≤≤时,总有9m 4h =,请直接写出....t 的取值范围.24.如图,在△ABC 中,AB AC =,BC =,30ABC ∠=︒.点D 是线段BC 上一点(不与点B ,C 重合),连接AD ,将ABD △沿直线AB 翻折后得到ABF △,将ACD 沿直线AC 翻折后得到ACE △,连接EF .(1)求tan AFE ∠的值;(2)设AD x =,用含x 的代数式表示AEF S ,并直接写出当x 为何值时,AEF S 最小,最小值是多少?(3)当点D ,A ,F 共线时,在备用图中画出四边形ADCE ,判断四边形ADCE 是哪种特殊的四边形,并说明理由.25.如图,在平面直角坐标系中,直线1l 与x 轴交于点()4,0A ,与y 轴交于点()0,3B -,直线29:34l y x =+与x 轴交于点C ,与y 轴交于点E ,且与1l 相交于D .点P 为线段DE 上一点(不与点D ,E 重合),作直线BP .(1)求直线1l 的表达式及点D 的坐标;(2)若直线BP 将ACD 的面积分为7:9两部分,求点P 的坐标;(3)点P 是否存在某个位置,使得点D 关于直线BP 的对称点D '恰好落在直线AB 上方的坐标轴上.若存在,直接写出....点P 的坐标;若不存在,请说明理由.26.如图,在ABC V 中,60C ∠=︒,点O ,D 分别在边AC ,BC 上,并且到AB 的距离相等,OD OA =,6CO =,4CD =.以点O 为圆心,半径长为1作⊙O ,再过点D 作⊙O 的切线DE ,DF ,切点分别为E ,F .(1)求证:ODE ODF△的面积及CA的长;.(2)求COD∥,(3)点P在线段DF上,且OP DE①求线段OP的长;②将①中的线段OP绕点O顺时针旋转一周,旋转过程中,将P的对应点记作点Q,请直接..写出..点Q到AB的最短距离.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.以长为3cm,5cm,7cm,10cm的四根木棍中的三根木棍为边,可以构成三角形的个数是【】
A.1个B.2个C.3个D.4个
7.制造一种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本【】
A.8.5%B.9%C.9.5一物体时,可能看
你填加的条件是:.
证明:
(2)在(1)的基础上,过点D作DE⊥AC,垂足为E,此时,判断DE是否为⊙O的切线,并请你说明理由.
证明:
得 分
评卷人
24.本题满分8分
某风景区对5个旅游景点的门票进行了调整,据统计,调价前后各景点的游客人数基本不变。有关数据如下表:
景点
A
B
C
D
E
原价(元)
10
10
15
20
A. B. C. D.
4.如图,在等腰梯形ABCD中,AB∥CD,AD=BC,
∠A=60°,AB=9,CD=5,则BC的长是【】
A.3B.4C.5D.6
5.如图,⊙O的直径为10,弦AB的长为8,M是
弦AB上的动点,则OM的长的取值范围是【】
A.3≤OM≤5B.4≤OM≤5
C.3<OM<5D.4<OM<5
实践二:提供选用的测量工具有:①皮尺一根;②教学用三角板一副;③长为2.5米的标杆一根;④高度为1.5米的测角仪(能测量仰角、俯角的仪器)一架。请根据你所设计的测量方案,回答下列问题:
(1)在你设计的方案中,选用的测量工具是(用工
具的序号填写)
(2)在右图中画出你的测量方案示意图;
(3)你需要测得示意图中的哪些数据,并分别用a、b、c、α等表示测得的数据:
25
现价(元)
5
5
15
25
30
平均日人数(千人)
1
1
2
3
2
(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平.问风景区是怎样计算的?
(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%。问游客是怎样计算的?
(3)你认为风景区和游客哪一个的说法较能反映整体实际?
15.已知梯形的上底长为4cm,下底长为8cm,则它的中位线
长为cm.
16.已知:一次函数y=kx+b的图象如图所示,则k0(填
“<”、“=”或“>”).
17.如图,⊙O的弦AB=8cm,弦CD平分AB于点E.若
CE=2cm,则ED的长为cm.
18.某校四个绿化小组一天植树的棵数如下:10,10,x,8,已
10.我们知道,溶液的酸碱度由pH确定,当pH>7时,溶液呈碱性,当pH<7时,溶液呈酸性.若将给定的HCl溶液加水稀释,那么在下列图像中,能反映HCl溶液的pH与所加水的体积(V)的变化关系的是【】
总 分
核分人
卷Ⅱ(非选择题,100分)
注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚
2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上
他在该月份的上网时间是多少小时?
得 分
评卷人
26.本题满分12分
为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:
实践一:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如右示意图的测量方案:把镜子放在离树(AB)8.7米的点E处,然后沿着直线BE后退到点D,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB)的高度.(精确到0.1米)
到不同的图形.如右图,图①是由若干个小
正方体所搭成的几何体,图②是从图①的上
面看这个几何体所看到的图形,那么从图①
的左面看这个几何体所看到的图形是【】
9.某市在“旧城改造”中计划在市内一块如图所示的三角
形空地上种植某种草皮以美化环境,已知这种草皮每平
方米售价为a元,则购买这种草皮至少需要【】
A.450a元B.300a元C.225a元D.150a元
总分
核分人
三、计算(本题共8个小题,共80分)
21.本题满分8分
计算:
总分
核分人
22.本题满分7分
如图,在正方形ABCD的边BC的延长线上取一点E,使CE=CA,AE与CD
交于F点.
求:∠AFC的度数.
得 分
评卷人
23.本题满分8分
(1)如图,在△ABC中,以AB为直径的⊙O交BC于点D,连结AD,请你填加一个条件,使△ABD≌△ACD,并说明全等的理由.
知这组数据的众数和平均数相等,那么这组数据的中位数
是.
19.用三块正多边形的木板铺地,拼在一起并相交于一点的各
边完全吻合,若其中两块木板的边数均为5,则第三块木板
的边数为.
20.2002年8月20~28日在北京召开了第24届国际数学家大会.大会会标如图所示,它是由四个相同的直角三角形拼成的(直角边长分别为2和3),则大正方形的面积是.
题号


21
22
23
24
25
26
27
28
得分
得 分
评卷人
二、填空:本大题共10小题;每小题2分,共20分.把答案填写在题中横线上.
11.计算: =.
12.函数 中,自变量x的取值范围是.
13.长江三峡工程电站的总装机容量是18200000千瓦,若用科学记数法表示电站
的总装机容量,应记为千瓦.
14.一个n边形的内角和为540°,则边数n的值为.
得 分
评卷人
25.本题满分12分.
某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系式如右下图所示,其中BA是线段,且BA∥x轴,AC是射线.
(1)当x≥30时,求y与x之间的函数关
系式;
(2)若小李4月份上网20小时,他应付
多少元的上网费用?
(3)若小李5月份上网费用为75元,则
2008年河北省初中升学统一考试
数学模拟试卷(一)
本试卷分卷I和卷II两部分.卷I为选择题,卷II为非选择题.
本试卷共120分,考试时间120分钟.
卷Ⅰ(选择题,共20分)
注意事项:
1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.
一、选择题:本大题共10小题;每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.气温在零下3摄氏度,记作【】
A.-3B.3C.-3℃D.3℃
2.函数 的图象一定经过的点的坐标是【】
A.(0,0)B.(0,4)C.(4,1)D.(4,0)
3.下列二次根式中,与 是同类二次根式的是【】
相关文档
最新文档