投影教案(第二课时)
中职机械制图教案:基本体的投影作图(全2课时)
中等专业学校2024-2025-1教案编号:备课组别机械组课程名称机械制图所在年级主备教师授课教师授课系部授课班级授课日期课题基本体的投影作图(第一课时)教学目标1.了解基本体的含义、分类及用途;2.掌握基本体的投影作图及尺寸标注;3.培养学生的空间想象能力;4.培养学生绘制和识读基本体三视图的能力。
重点基本体的含义与分类、作图与尺寸标注、对基本体进行点、线、面投影分析。
难点对基本体的线、面分析、回转体素线的投影、培养学生的空间想象能力。
教法启发式、讨论式、直观演示、比较法、练习法等多种教法,讲练结合教学设备多媒体设备、教师用绘图工具、学生用绘图工具、A4幅面的绘图纸教学环节教学活动内容及组织过程个案补充教学内容【组织教学】检查出勤情况,稳定情绪【教学引入】螺栓毛坯的三维图用AutoCAD绘图软件或SolidWorks实体设计软件动态展示物体(螺栓毛坯)的三维图。
提出问题:(1)物体是由哪些基本体组成?(2)如何用三视图表达?【新课教学】教学内容任何物体均可以看成是由若干基本体组合而成。
基本体包括平面体和曲面体两类。
平面体:棱柱、棱锥等;曲面体:如圆柱、圆锥、圆球等,也称回转体通过动画演示,引导学生观察分析:物体是由六棱柱、圆柱和圆锥台三部分基本体构成。
所以基本体的投影作图是后学学习组合体及零件图的重要基础。
一、棱柱特征:侧棱线相互平行,侧面是矩形;两端面相等的多边形正六棱柱为例,分析其投影特征和作图方法分析:顶面和底面是相互平行的正六边形;六个侧棱面均为矩形按图示位置分析三个视图作图(1)作正六棱柱的对称中心线和底面基线,定位;(2)画出反映主要形状特征的俯视图的正六边形(按外接圆尺寸φ30)。
教学内容(3)按三等规律画出主视图和左视图(高12)。
分析:俯视图正六边形,也是顶面和底面的重合投影,且反映实形;六条边分别是六个棱面有积聚性的投影。
主视图为三个矩形线框组合,中间的矩形是前、后棱面的重合投影,反映实形;顶面和底面投影积聚为上、下两条水平线。
中职机械制图教案:立体上点、线、面的投影(全3课时)
江苏省XY中等专业学校2022-2023-1教案教学内容1.点的三面投影习惯上我们将空间点用大写的字母表示,其投影用相应的小写字母表示。
空间点A的位置确定后,那么它的三面投影(a、a′、a″)投影就确定了,反之如果空间一点的三面投影确定,则空间点的位置也就确定。
2.点的三面投影规律(教师要注意解释)aa′⊥OX;a′a″⊥OZ;a′a yH= a″a yE点的投影规律与“长对正、宽相等和高平齐”是一致的。
3.点的投影和直角坐标系的关系A(x、y、z)空间A点到W面的距离为坐标X,即A→W=x;空间A点到V面的距离为坐标X,即A→V=y;空间A点到H面的距离为坐标X,即A→H=z。
空间点A与其坐标(x、y、z)式一一对应的关系,同样空间点A与其三面投影(a、a′、a″)也是一一对应的关系,从而我们可以得出点的投影与点的坐标也存在着一定的联系。
即水平投影a→(x、y);正面投影a→(x、z);侧面投影a→(y、z)教学内容教师提问:点的三个坐标值与点的位置有什么样的关系?即坐标值为多少时,点在空间?点在投影面上?点在投影轴上?点在原点?例题1:已知点A的V面投影a'和W面投影a X,求作H面投影a。
分析:根据点的投影规律可知:aa′⊥OX,过a′点作OX轴的垂线a′a X,所求a必定在a'a X的延长线上。
由aa X= a″a z,可确定a在a′a X延长线上的位置。
作图:(1)过a′作a′a X⊥OX并延长,如图2-14b所示。
(2)量取aa X= a″a z,可求得a。
也可如图2-14c 所示,利用45。
线作图。
4.两点的相对位置前面我们已经知道点在空间里的位置可由其坐标值来确定,假如空间里有两点A和B,那么它们之间的位置关系又如何确定?空间两点的位置关系可由两点的同名坐标值的差来确定。
如xA>xB、yB>yA、zA>zB,则点A在点B的左边、后面和上面。
例题2:已知空间点C(16,5,6),点D在点C 之右10mm、之前7mm、之上8mm,求作C、D两点的三面投影,如图2-16所示。
5.1.1投影与中心投影(教案)
(四ห้องสมุดไป่ตู้学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“投影在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
5.1.1投影与中心投影(教案)
一、教学内容
本节课选自教材第五章第一节第一部分“5.1.1投影与中心投影”。教学内容主要包括以下两点:
1.了解投影的概念,掌握平行投影和中心投影的特点及其应用。
-平行投影:通过实例,让学生了解平行投影的定义,掌握其在绘画、建筑设计等方面的应用。
-中心投影:引导学生探究中心投影的原理,理解中心投影在实际生活中的应用,如摄影、幻灯片等。
-投影与实际问题的结合:难点在于如何让学生将投影知识应用于解决实际问题。
-创设情境,如建筑设计、城市规划等,引导学生运用投影知识解决实际问题,提高学生的应用能力。
-投影的直观想象:难点在于如何培养学生的几何直观。
-通过观察、实践、讨论等多种教学活动,激发学生的几何直观,提高其分析问题的能力。
本节课的教学难点与重点在于培养学生的空间观念、几何直观和解决实际问题的能力。在教学过程中,教师应针对这些难点和重点进行有针对性的讲解和指导,确保学生理解透彻。
2.学习如何进行中心投影,掌握中心投影的基本方法。
-通过实际操作,让学生学会如何确定投影中心,掌握中心投影的基本步骤。
-结合实例,让学生运用中心投影方法解决实际问题,提高学生的实际操作能力。
本节课内容旨在帮助学生掌握投影的基本概念和方法,培养学生的空间想象能力和实际操作能力。
29.1投影(第2课时) 教案
29.1投影(第2课时)一、【教材分析】教学目标知识目标1.进一步理解投影的有关概念及其生活实例;2.理解正投影的意义,并能根据正投影的性质画出简单物体的正投影.能力目标通过对物体投影的学习,使学生学会关注生活中有关投影的数学问题,提高应用数学的意识.情感目标通过对知识的学习,培养学生积极主动参与数学活动的意识,增强学好数学的信心.教学重点能根据正投影的性质画出简单物体的正投影.教学难点归纳正投影的性质,正确画出简单物体的正投影.二、【教学流程】教学环节教学问题设计师生活动二次备课情景创设【回顾旧知】展示问题1、物体的影子在正北方,则太阳在物体的( )A.正北 B.正南 C.正西D.正东2、太阳发出的光照在物体上是______,车灯发出的光照在物体上是______ 。
()A.中心投影,平行投影B.平行投影,中心投影C.平行投影,平行投影D.中心投影,中心投影学生回顾已学过的知识和生活实例,为学习新知做好铺垫.自主探【正投影概念】1.观察图4-1-17(1)(2)(3)中的投影线有什么区别?它们分师生活动:教师展示图片,学生观察思考、相互交流,教师引导究别形成了什么投影?师生活动:教师展示图片,提出问题,学生观察思考,相互讨论,发表意见.图4-1-172.图(2)、图(3)的投影都是什么投影?它们的投影线与投影面的位置关系有什么区别?【探究1】:把一根直的细铁丝(记为线段AB)放在三个不同位置:①铁丝平行于投影面;②铁丝倾斜于投影面;③铁丝垂直于投影面(铁丝不一定要与投影面有交点).三种情形下铁丝的正投影各是什么图形?大小有何关系?【探究2】:把一块正方形硬纸板(记为正方形ABCD)放在三个不同的位置:①纸板平行于投影面;②纸板倾斜于投影面;③纸板垂直于投影面.三种情形下纸板的正投影各是什么图形?大小有何关系?学生回答图(2),图(3)两幅图中的投影都是平行投影,图(2)中的投影线斜着照射投影面,图(3)中的投影线垂直照射投影面.给出正投影的概念:通过观察活动,使学生体会到将实际问题抽象成几何图形,有助于分析问题的本质.经过对比更清楚地认识平行投影和中心投影的区别,为引出正投影的概念做必要的铺垫.师生活动:教师实物演示或图片展示,提出问题,学生观察、猜想、测量,教师引导学生归纳得出结论:①正投影是线段,线段长等于正投影长;②正投影是线段,线段长大于正投影长;③正投影是一个点.师生活动:教师实物演示,提出问题,学生先独立观察、思考,再相互交流,大胆猜想,勇于发表见解,教师引导学生归纳得出结论:①纸板的正投影与纸板的形状、大小一样;②纸板的正投影与纸板的形状、大小不完全一样;③纸板的正投影成为一条线段.当物体的某个面平行于投影面时,这个面的正投影与这个面有怎样的关系?【应用举例】例1 教材P90例题画出如图29-1-33摆放的正方体在投影面上的正投影.(1)正方体的一个面ABCD平行于投影面(图①);(2)正方体的一个面ABCD倾斜于投影面,底面ADEF垂直于投影面,并且其对角线AE垂直于投影面(图②).图29-1-33 师生活动:教师提出问题,学生独立思考,大胆猜想,得出结论.教师根据学生的回答进行完善,师生共同归纳物体正投影的性质:当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.设计意图:1.通过利用正投影的性质画出物体的正投影,巩固所学重点内容,提高学生灵活运用知识解决实际问题的能力,发展学生的空间观念.2.重点考查正投影的含义及性质.尝试应用1.球的正投影是( )A.圆面 B.椭圆面 C.点D.圆环.2.木棒长为1.2m,则它的正投影的长一定()A.大于 1.2mB.小于1.2mC.等于1.2mD.小于或等于1.2m3.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子()A. 相交B. 平行C. 垂直D. 无法确定对教材知识的加固教师提出问题学生独立思考解答通过设置自我尝试,进一步巩固所学新知,同时检测学习效果,4.投影线的方向如箭头所示,画出图中圆柱体的正投影.做到“及时巩固”.通过题目,使学生认识到不同的投影线得到不同的正投影.补偿提高1.如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是().2. 如图是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2米,桌面距离地面1米,若灯泡距离地面3米,求地面上阴影部分的面积.(结果保留π)教师指导性完成可引导学生回忆相似三角形的知识,用知识迁移解决新的问题.知识点:相似三角形对应边的比等于对应高的比对内容的升华理解认识三、【板书设计】四、【教后反思】。
教与学新教案九年级数学下册29.1正投影(第2课时)素材(新版)新人教版
投影与视图29.1 投影第2课时正投影素材一新课导入设计情景导入置疑导入归纳导入复习导入类比导入悬念激趣复习导入<1>什么叫投影?投影有哪几种?<2>图29-1-32表示一块三角尺在光线照射下形成的投影,其中哪个是平行投影,哪个是中心投影?图<2><3>的投影线与投影面的位置关系有什么区别?图29-1-32结论:图<1>中的投影线集中于一点,属于中心投影;图<2><3>中的投影线互相平行,属于平行投影;图<2>中,投影线斜着照射到投影面上;图<3>中投影线垂直照射到投影面上,即投影线垂直于投影面.[说明与建议] 说明:通过对投影的概念和类型的回顾,加强新旧知识之间的联系.建议:充分观察三个图形,发现其中的不同点,给出正投影的概念.条件允许的学校,可以让学生自己做试验探究.素材二考情考向分析[命题角度] 常见几何体的正投影与判断1.线段的正投影.位置线段AB平行于投影面线段AB倾斜于投影面线段AB垂直于投影面投影特点正投影是线段A1B1,线段AB=A1B1正投影是线段A2B2,线段AB>A2B2正投影是一个点A3<B3>2.正方形的正投影.位置纸板ABCD平行于投影面纸板ABCD倾斜于投影面纸板ABCD垂直于投影面投影特点正投影是正方形A1B1C1D1,它们的性质、大小一样正投影是四边形A2B2C2D2,它们的性质、大小不一样正投影是线段A3D3<或B3C3>例一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是<B>素材三教材习题答案P88 练习把下列物体与它们的投影用线连接起来:解:如下图:P92 练习如图,投影线的方向如箭头所示,画出圆柱体的正投影.解:P92 习题29.11.小华在不同时间于天安门前拍了几幅照片,下面哪幅照片是在下午拍摄的?<天安门是坐北朝南的建筑>解:第3幅照片是在下午拍摄的.2.请用线把图中各物体与它们的投影连接起来.解:3.如图,右边的正五边形是光线由上到下照射一个正五棱柱<正棱柱的上、下底面都是正多边形,并且侧棱垂直于底面>时的正投影,你能指出这时正五棱柱的各个面的正投影分别是什么吗?解:上、下底面的正投影是同一个正五边形,5个侧面的正投影分别是正五边形的5条边.4.一个圆锥的轴截面平行于投影面,圆锥的正投影是边长为3的等边三角形,求圆锥的体积和表面积.解:设该圆锥的正投影<轴截面的正投影>为正三角形ABC.过A作AD⊥BC于D,则AD=3×sin60°=错误!错误!,BD=错误!,S侧=错误!×π×3×3=错误!π.∴S表=错误!π+错误!π=错误!π,V=错误!×错误!π×错误!错误!=错误!错误!π.5.画出如图摆放的物体<正六棱柱>的正投影:<1>投影线由物体前方照射到后方;<2>投影线由物体左方照射到右方;<3>投影线由物体上方照射到下方.解:素材四图书增值练习[当堂检测]1. 如图,从左面看圆柱,则图中圆柱的投影是〔〕A.圆B.矩形C.梯形D.圆柱2. 太阳光垂直照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是〔〕A.与窗户全等的矩形 B.平行四边形C.比窗户略小的矩形 D.比窗户略大的矩形3. 〔2013达州〕下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序排列正确的是〔〕A.③①④②B.③②①④C.③④①②D.①②①③4. 如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是.5.如图是木杆和旗杆竖立在操场上,其中木杆在阳光下的影子已画出.〔1〕用线段表示这一时刻旗杆在阳光下的影子;〔2〕比较旗杆与木杆影子的长短;〔3〕图中是否出现了相似三角形?〔4〕上面的投影是正投影吗?为什么?参考答案1.B2.A3.C4.15π45.解:〔1〕线段MN即是旗杆在阳光下的影子.〔2〕根据图形可观察出旗杆的影子长.〔3〕有相似三角形,分别由旗杆与其影子和木杆与其影子以与太阳光线构成.〔4〕不是正投影,只有投影线和投影面垂直的投影才是正投影.[能力培优]专题一太阳光下的投影1.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是〔〕A.①②③④B.④①③②C.②③①④D.④③②①2.兴趣小组的同学要测量某棵树的高度.在阳光下,一名同学测得一根长为1米的直立竹竿的影长为0.6米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.3米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.8米,则树高为多少米?3.某校初三课外活动小组,在测量树高的一次活动中,如图所示,测得树底部中心A到斜坡底C的水平距离为8.8m.在阳光下某一时刻测得1米的标杆影长为0.8m,树影落在斜坡上的部分CD=3.2m.已知斜坡CD的坡比i=3求树高AB.〔结果保留整数,参考数据:3 1.7〕专题二灯光下的投影如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中,正确结论的序号是.5.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.〔1〕请你在图中画出路灯灯泡所在的位置〔用点P表示〕;〔2〕画出小华此时在路灯下的影子〔用线段EF表示〕.6.如图所示,点P表示广场上的一盏照明灯.〔1〕请你在图中画出小敏在照明灯P照射下的影子〔用线段表示〕;〔2〕若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P 的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离〔结果精确到0.1米〕.〔参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574〕专题三正投影7.如图,投影面上垂直立一线段AB,线段长为2 cm.〔1〕当投影线垂直照射投影面时,线段在地面上的投影是什么图形?请在左图中画出来.〔2〕当投影线与投影面的倾斜角为60°时,线段在投影面上的投影是什么图形?并画出投影示意图.〔3〕上面〔1〕、〔2〕问题中的投影都是正投影吗?为什么?8.在正投影中,正方形倾斜于投影面放置时,它的投影是什么图形?若正方形的面积为10,它的正投影的面积是5,你知道正方形与投影面的倾斜角是多少度吗?专题四规律探究题9.学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时刻,身高为1.6m的小明〔AB〕的影子BC的长是3m,而小颖〔EH〕刚好在路灯灯泡的正下方H点,并测得HB=6m.〔1〕请你在图中画出形成影子的光线,并确定路灯灯泡所在的位置G ;〔2〕求路灯灯泡的垂直高度GH ;〔3〕如果小明沿线段BH 向小颖〔点H 〕走去,当小明走到BH 的中点B 1处时,求其影子B 1C 1的长;当小明继续走剩下路程的13到B 2处时,求其影子B 2C 2的长;当小明继续走剩下路程的14到B 3处时,……,按此规律继续走下去,当小明走剩下路程的11 n 到B n 处时,其影子B n C n 的长为m 〔用含n 的代数式表示〕.[知识要点]1.投影:一个物体放在阳光下或灯光前,就会在地面上或墙壁上留下它的影子,这个影子称为物体的投影.投影要有照射光线和形成影子的地方,这就是投影线和投影面.2.平行投影:由平行光线形成的投影是平行投影.3.中心投影:由同一个点〔点光源〕发出的光线所形成的投影为中心投影.4.正投影的概念:在平行投影中,如果投射线垂直于投影面,那么这种投影称为正投影.几何体在一个平面上的正投影叫做这个几何体的视图.5.<1>当线段AB 平行于投影面P 时,它的正投影是线段A 1B 1,线段AB 与它的投影的大小关 系为AB =A 1B 1;<2>当线段AB 倾斜于投影面P 时,它的正投影是线段A 2B 2,线段AB 与它的投影的大小关系为AB >A 2B 2;<3>当线段AB 垂直于投影面P 时,它的正投影是一个点.6.<1>当纸板Q 平行于投影面P 时,Q 的正投影与Q 的形状、大小一样;<2>当纸板Q 倾斜于投影面P 时,Q 的正投影与Q 的形状、大小发生变化;<3>当纸板Q 垂直于投影面P 时,Q 的正投影成为一条线段.故当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同. [温馨提示]平行投影与中心投影的区别与联系.2.在平行投影下,一个图形上的点被投影后,对应点的连线互相平行.同一时刻,平行投影的影子方向和大小不随物体位置的变化而变化.3.中心投影的投射光线相交于一点,同一时刻,中心投影的影子方向随物体位置的变化而发生变化.4.正投影是平行投影的一种特例,正投影的特征是每条投影线都垂直于投影面.[方法技巧]1.因为一天之中,太阳东升西落,所以早晨物体的影子朝西,傍晚物体的影子朝东,但因为地处北半球,即使是夏天的正午,也由于太阳直射点的关系,物体的影子略微向北偏移,故一天之中影子方向的变化顺序为:正西→北偏西→正北→北偏东→正东;一天之中影子的长度的变化规律为:长→短→长.2.确定点光源的位置的方法:两个物体影子的顶端与物体的顶端的连线的交点为点光源的位置.区别 联系 光线 物体与投影面平行时的投影 平行投影 平行的投影线 全等 都是物体在光线的照射下,在某个平面内形成的影子〔即都是投影〕 中心投影 从一点出发的投影线放大〔位似变换〕3.分别自两个物体的顶端与其影子的顶端作一条直线,若两直线平行,则为平行投影;若两直线相交,则为中心投影,其交点是光源的位置.参考答案C [解析]太阳由东升起的过程中,物体的影子投向西侧,且由长到短,太阳偏西,物体的影子也转投向东侧,且由短到长.故选C.解:画出示意图如图所示.从图中我们看到小树在一组平行光的照射下,影子分成了三部分AC 、CD 、DG .因为小树和竖直台阶是水平的,所以四边形CDEF 是平行四边形,EF =CD ,因为同一时刻,不同物体的物高与影长之比相等,所以6.01==AC AF DG BE . 即6.018.43.0==AF BE . 解得BE =0.5,AF =8.所以小树的高AB =AF +EF +BE =8+0.3+0.5=8.8<米>.3.解:如图所示,延长BD 与AC 的延长线交于点E ,过点D 作DH ⊥AE 于点H .∵i =tan ∠DCH =CH DH =31=33, ∴∠DCH =30°. ∴DH =12CD =1.6m,CH =3DH ≈2.7 m. 由题意可知10.8DH HE =, ∴HE =0.8DH =1.28m.∴AE =AC +CH +HE ≈8.8+2.7+1.28=12.78<m>.∵8.01=AE AB ,所以168.078.128.0≈==AE AB <m>. ①③④ [解析]当木杆绕点A 按逆时针方向旋转时,如图所示,m>AC ,①成立;①成立,那么②不成立;当旋转到达地面时,有最短影长,等于AB ,③成立;由上可知,影子的长度先增大后减小,④成立.解:如图所示.〔1〕点P 就是所求的点;〔2〕EF 就是小华此时在路灯下的影子.6.解:〔1〕如图,线段AC 是小敏的影子.〔2〕过点Q 作QE ⊥MO 于E ,过点P 作PF ⊥AB 于F ,交EQ 于点D ,则PF ⊥EQ .在Rt △PDQ 中,∠PQD =55°,DQ =EQ -ED =4.5-1.5=3〔米〕.∵tan55°=错误!未找到引用源.,∴PD =3tan55°≈4.3〔米〕.∵DF =QB =1.6米,∴PF =PD +DF ≈4.3+1.6=5.9〔米〕.答:照明灯P 到地面的距离为5.9米.7.解:〔1〕点.〔2〕线段,这条线段BC 的长度为332.〔3〕〔1〕问中的投影是正投影,〔2〕问中的投影不是正投影,是平行投影.只有投影线和投影面垂直的投影才是正投影.8.是一个长方形,当正方形倾斜于投影面放置时,它与投影面平行的一边长等于原来的长度,而与投影面不平行的边长缩小.因为正方形的面积为10,它的正投影的面积是5,所以不平行的一边长的投影等于这边的一半,所以正方形与投影面的倾斜角是60度.9.解:〔1〕如图,点G 即为所求.〔2〕由题意得△∽△ABC GHC ,∴AB BC GH HC =, ∴1.6363GH =+, ∴ 4.8GH =m.〔3〕1111△∽△A B C GHC ,∴11111A B B C GH HC =, 设11B C 的长为x m,则1.64.83x x =+, 解得32x =〔m 〕,即1132B C =m . 同理22221.64.82B C B C =+, 解得221B C =〔m 〕,31n n B C n =+. 素材五 数学素养提升日晷简介日晷,本义是指太阳的影子.现代的"日晷〞指的是人类古代利用日影测得时刻的一种计时仪器,又称"日规〞.其原理就是利用太阳的投影方向来测定并划分时刻,通常由晷针和晷面组成.利用日晷计时的方法是人类在天文计时领域的重大发明,这项发明被人类沿用达几千年之久. 在一天中,被太阳照射到的物体投下的影子在不断地改变着:第一是影子的长短在改变.早晨的影子最长,随着时间的推移,影子逐渐变短,一过中午它又重新变长;第二是影子的方向在改变.在北回归线以北的地方,早晨的影子在西方,中午的影子在北方,傍晚的影子在东方.从原理上来说,根据影子的长度或方向都可以计时,但根据影子的方向来计时更方便一些.故通常都是以影子的方位计时.[1]随着时间的推移,晷针上的影子慢慢地由西向东移动.移动着的晷针影子好像是现代钟表的指针,晷面则是钟表的表面,以此来显示时刻.早晨,影子投向盘面西端的卯时附近;当太阳达正南最高位置〔上中天〕时,针影位于正北〔下〕方,指示着当地的午时正时刻.午后,太阳西移,日影东斜,依次指向未、申、酉各个时辰.。
最新冀教版九年级数学下册32.1投影公开课优质教案(2)
37.1平行投影教学设计教学设计思想:本节安排1课时讲授;影子是生活中常见地现象,教学中引用太阳光照射下地影子种种生活中地实例,目地是让学生体会影子在生活中地存在,激发学习地兴趣。
课前布置作业让学生观察不同时刻物体影子地变化,亲自感受变化地情况,再通过教师讲授逐步加深对投影相关概念地理解,并掌握其应用。
教学目标:1.知识与技能经历实践、探索地过程,知道平行投影、正投影地含义;能够确定物体在太阳光下地影子地特征;知道在不同时刻物体在太阳光下形成地影子地大小和方向是不同地。
2.过程与方法通过观察、想象、实践形成一定地空间想象能力,发展空间观念;探索不同时刻不同物体地影子地变化规律:影子长地比等于物体高度地比。
3.情感、态度与价值观通过理论研究自然现象,引发对大自然和社会生活探索地欲望,提高学习兴趣,增进数学地应用意识。
教学重点:理解平行投影地含义。
教学难点:通过对平行投影地认识进行物体与投影之间地相互转化。
教学方法:启发式。
教学安排:1课时。
教学媒体:幻灯片。
教学过程:- 2 -课前准备:让学生在课前观察物体在阳光下地影子,自己总结出一些结论。
一、创设情景问题1:师:请看这幅图片,哪位同学知道这是什么?(提出问题,激发学生地兴趣)教师陈述:日晷是我国古代利用日影测定时刻地仪器,它由“晷面”和“晷针”组成。
当太阳光照在日晷上时,晷针地影子就会投向晷面。
随着时间地推移,晷针地影子在晷面上慢慢地移动。
以此来显示时刻。
(看下图)设疑激趣:利用古代显示时刻地物体来引起学生地兴趣。
二、引出课题问题2:师:太阳光可看成平行地直线,在阳光下,我们经常看见物体地影子,那同学们你们知道影子地长短和方向在一天中是怎样变化地吗?下面我们来看几副图片:(幻灯显示)(1)(2)(3)上面地三幅图是在我国北方某地某天上午不同时刻地同一位置拍摄地,请根据树地影子,判断拍摄地先后顺序,并说明理由。
生:通过这几天观察,如果上午观察物体地影- 4 -子,都是逐渐变短地一个过程,所以拍摄地先后顺序是:(3)→(2)→(1)。
数学教案:立体几何的投影与计算 (2)
数学教案:立体几何的投影与计算一、立体几何的投影立体几何是数学中研究空间形状和位置关系的一个重要分支,投影是立体几何中的一项基本概念和计算方法。
投影是将三维物体在二维平面上的映射,通过投影可以观察到物体在不同视角下的形状和位置。
在实际生活中,人们经常利用投影来进行建筑设计、工程测量等活动,因此了解和掌握立体几何的投影与计算方法具有重要的实际应用价值。
1. 平行投影平行投影是指当投影光线与平面垂直,物体与投影平面平行时的投影方法。
平行投影的计算方法相对简单,可以通过线性代数中的投影变换来实现。
对于一个给定的三维物体,在平行投影中,我们可以通过将物体上的每个点与投影平面进行相交,然后得到每个点的投影点,最后用直线连接所有的投影点就得到了物体在平行投影平面上的投影。
2. 透视投影透视投影是指当投影光线与物体的平面不垂直,物体与投影平面不平行时的投影方法。
在透视投影中,投影光线不再保持平行关系,因此物体在不同角度下的形状和大小都会有所变化。
透视投影的计算方法相对复杂,一般需要利用几何关系和数学模型来进行计算。
二、立体几何的计算立体几何的计算方法是指通过给定的几何图形和相关条件,求解出所需的未知量。
立体几何的计算内容主要包括计算几何体的体积、表面积和相关参数,以及计算几何体之间的位置关系等。
1. 体积计算计算几何体的体积是立体几何中最基本的计算问题之一。
常见的几何体如立方体、圆柱体、球体等都有相应的体积计算公式。
以计算立方体的体积为例,我们可以通过边长的关系来计算立方体的体积,即体积等于边长的立方。
对于其他几何体,我们可以利用类似的思路和几何关系来进行计算。
2. 表面积计算计算几何体的表面积也是立体几何中常见的计算问题。
不同几何体的表面积计算方法各不相同。
例如,计算圆柱体的侧面积可以利用圆的周长和高度来计算,计算球的表面积可以利用球的半径来计算。
有时候,为了简化计算,我们可以利用立体几何的投影来近似计算几何体的表面积。
高中数学投影教案设计
高中数学投影教案设计
目标:学生能够理解和应用投影的概念,掌握投影的计算方法
教学目标:
1. 了解什么是投影,掌握投影的基本概念
2. 掌握正交投影和斜投影的计算方法
3. 能够应用投影的知识解决实际问题
教学准备:
1. 教材:高中数学教材相关章节
2. 教具:投影仪、黑板、彩色粉笔、学生尺、投影板
3. 辅助资料:相关练习题、例题
教学步骤:
1. 引入:通过展示真实物体的投影效果,引导学生探讨投影的概念和应用意义。
2. 讲解:介绍投影的定义、类型,重点讲解正交投影和斜投影的计算方法。
3. 练习:学生根据教师提供的练习题,自行计算各种图形的投影。
4. 实践:设计实际问题,让学生应用投影知识解决问题,培养学生的实际运用能力。
5. 检查:教师批改学生完成的练习,并针对性地进行讲解和指导。
6. 总结:让学生总结本节课学到的内容,巩固知识。
延伸拓展:
1. 鼓励学生自行设计和制作立体图形,通过投影展示图形的特点。
2. 引导学生利用投影的知识解决实际生活中的问题,锻炼学生的实际应用能力。
教学反思:
1. 学生是否理解了投影的基本概念和计算方法?
2. 学生在应用投影知识解决问题时是否能够灵活运用?
3. 学生对于立体几何的投影知识是否有较好的掌握能力?
教学设计说明:通过引入、讲解、练习、实践等多种教学方法,帮助学生全面理解和掌握投影的概念和计算方法,培养其解决实际问题的能力。
同时,通过延伸拓展和反思,促进学生对知识的深入理解和应用。
2024-2025学年沪科版初中数学九年级(下)教案第25章投影与视图25.2三视图(第2课时)
第25章投影与视图25.2 三视图第2课时棱柱的三视图教学反思教学目标1.了解棱柱的有关概念,进一步提高空间想象能力.2.画含有看不见棱的几何体的三视图.3.由三视图想象出立体图形后能进行简单的面积或体积的计算.教学重难点重点:棱柱的有关概念及其三视图.难点:由三视图想象出立体图形后能进行简单的面积或体积的计算.教学过程导入新课问题:小明学习了三视图的画法后,画出了一个几何体的三视图,如图所示.你能想象这个这个几何体的形状吗?师生活动:学生观察图片,思考,并进行口答.师生活动:学生思考,讨论,交流,教师引出本节课的课题.探究新知合作探究1.棱柱的定义相对的两个面是平行且全等的多边形的多面体叫做棱柱.侧棱与底面垂直的棱柱称为直棱柱.侧棱与底面不垂直的棱柱称为斜棱柱.底面是正多边形的直棱柱称为正棱柱.棱柱的底面是几边形,就称这个棱柱是几棱柱.2.棱柱的分类棱柱是按照什么特征进行分类的?例1 根据物体的三视图,描述物体的形状.【分析】由主视图可知,物体的正面是正五边形;由俯视图可知,由上向下看到物体有两个面的视图是矩形,它们的交线是一条棱(中间的实线表示),可见到,另有两条棱(虚线表示)被遮挡;由左视图可知,物体左侧有两个面是矩形,它们的交线是一条棱(中间的实线表示),可见到.综合各视图可知,物体的形状是正五棱柱.【归纳总结】虑整体图形.3.三视图的有关计算例2 按照三视图确定制作每个密封罐所需钢板的面积 (图中尺寸单位:师生活动:的侧面展开图,然后进行面积的计算.【解】由三视图可知,密封罐的形状是正六棱柱.密封罐的高为50 mm ,底面正六边形的直径为如图,是它的展开图.由展开图可知,制作一个密封罐所需钢板的面积为6×50×50+2×6×12×50×50sin 60°=6×502×1⎛ ⎝≈27 990(mm 2).教学反思【归纳总结】1.三种图形的转化:.↔↔三视图立体图展开图2. 由三视图求立体图形的面积的方法:(1) 先根据给出的三视图确定立体图形,并确定立体图形的长、宽、高. (2) 将立体图形展开成一个平面图形 (展开图),观察它的组成部分. (3) 最后根据已知数据,求出展开图的面积.【新知应用】例3 如图是一个几何体的三视图,根据所标数据,求该几何体的表面 积和体积.师生活动:学生根据求立体图形面积的方法,独立解决,并展示.教师根据学生展示情况进行讲解:由三视图可知该几何体是由圆柱、长方体组合而成.分别计算它们的表面积和体积,然后相加即可.【解】该图形上、下部分分别是圆柱、长方体,根据图中数据得: 表面积为20×32π+30×40×2+25×40×2+25×30×2=(5 900+640π)(cm 2),体积为25×30×40+102×32π=(30 000+3 200π)(cm 3).课堂练习1.( )第1题图A.四棱锥B.四棱柱C.三棱锥D.三棱柱2. 一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为( )教学反思第2 A. 6B. 8C. 12D. 24 3. 一个物体的俯视图是圆,则该物体有可能是_______.4. 在一仓库里堆放着若干相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来.箱.第4题图5. 如图是一个由若干个棱长为1 cm 的正方体构成的几何体的三视图. (1) 请写出构成这个几何体的正方体的个数为_______; (2) 计算这个几何体的表面积为_______.第5题图6. (1) 一个几何体的主视图和左视图如图所示,请补画这个几何体的俯视图.第6(2) 一个直棱柱的主视图和俯视图如图所示.描述这个直棱柱的形状,并补画它的左视图.第6题图(2)教学反思7.如图是一个几何体的三视图,试描述这个零件的形状,并求出此三视第7题图参考答案1.D2.B3.圆柱,球4.95.(1)5 (2)20 cm 26.解:(1第6题答图(1)(2第6题答图(2)7.解:由三视图知该几何体是一个组合体,上面是一个圆锥,下面是一个圆柱.该几何体的表面积为π×22+2π×2×2+π×2×4=20 π.课堂小结学生先自主回顾本节课所学主要内容,然后师生共同总结.布置作业教材第89页复习题B 组1~2题板书设计25.2 三视图 第2课时 棱柱的三视图教学反思2.三视图的有关计算教学反思(1)三种图形的转化:三视图立体图展开图.(2)由三视图求立体图形的面积的方法:①先根据给出的三视图确定立体图形,并确定立体图形的长、宽、高.②将立体图形展开成一个平面图形(展开图),观察它的组成部分.③最后根据已知数据,求出展开图的面积.。
最新北师大版九年级数学上册《投影》教学设计(精品教案)
课题:5.1.2投影课型:新授课年级:九年级教学目标:1.经历平行投影的观察、操作、分析、抽象、概况、想象、推理、交流等过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念.2.通过丰富的实例了解平行投影和正投影的概念.3.在具体的操作活动中,初步感受在太阳光下物体影子的变化情况;认识在太阳光下物体影子的长短和方向的变化规律;能运用平行投影的基本规律解决一些简单问题.4.在具体情境中认识中心投影与平行投影的区别.教学重点与难点:重点:感受在太阳光下物体影子的变化情况,认识在太阳光下物体影子的长短和方向的变化规律.难点:能运用平行投影的基本规律解决一些简单问题.课前准备:教师准备:多媒体课件、导学案.学生准备:1.利用标杆观察不同时刻其影子的方向及长度变化情况,并完成下表,在小组内讨论交流由此得到的结论.时间影子的方向影子的长度7:409:0510:1511:3013:1515:4516:202.选择一天中任意固定时刻进行测量小棒影长实验,并记录数据,完成下面的表格,在小组内讨论交流由此得到的结论.时刻小棒长度h(cm)影子长度l(cm) h:l的值10cm15cm20cm25cm30cm3.利用实物在阳光下完成教材第129页“做一做”实验,并思考由此得到的结论.教学过程:一、美图欣赏,引入新课活动内容:请欣赏下列图片:(多媒体出示)师:我们欣赏的一幅幅美丽图片中的投影现象可以分为两类,一类是在灯光下形成的投影现象,一类是在太阳光线下形成的投影现象,你知道物体在太阳光线下形成的影子与在灯光下形成的影子有什么不同吗?处理方式:利用多媒体展示精美图片,然后通过问题:“你知道物体在太阳光线下形成的影子与在灯光下形成的影子有什么不同吗?”引入新课并板书课题.设计意图:学生在欣赏精美图片的同时,能够初步感受到生活中的影子可以分为灯光下的影子和太阳光下的影子两类,然后通过“你知道物体在太阳光线下形成的影子与在灯光下形成的影子有什么不同吗?”,引发学生的思考及参与的热情,从而引出本节课的内容.二、自主探究,合作交流活动内容1:(多媒体出示)取若干长短不等的小棒及三角形、矩形纸片,观察它们在太阳光下的影子.(1)固定投影面,改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化?(2)固定小棒或纸片,改变投影面的摆放位置和方向,它们的影子分别发生了什么变化?师:通过同学们的实验我们可以得到:改变物体的位置和方向或改变投影面的位置都会使物体影子的形状和大小发生改变.这些影子都是在太阳光线下形成的,太阳光线可以看成平行光线,平行光线所形成的投影称为平行投影.当平行光线与投影面垂直时,这种投影称为正投影.处理方式:以小组为单位,在课前完成该实验,课上找2名同学回答所提问题,然后利用多媒体进行形象的展示,从而得到如下结论:改变物体的位置和方向或改变投影面的位置都会使物体影子的形状和大小发生改变.设计意图:本环节的设置,让学生在试验活动中,积累活动经验,切实感受改变物体的位置和方向或改变投影面的位置都会使物体影子的形状和大小发生改变.活动内容2:(多媒体出示)1.利用标杆观察不同时刻其影子的方向及长度变化并完成下表,由此你得到什么结论?时间影子的方向影子的长度7:409:0510:1511:3013:1515:4516:202.选择一天中任意固定时刻进行测量小棒影长实验并记录数据,由此你得到什么结论?时刻小棒长度h(cm)影子长度l(cm) h:l的值10cm15cm20cm25cm30cm处理方式:教师课前整理太阳光成影现象调查,选择合适的学生资源多媒体展示,选2个代表小组结合实验数据,对一天中不同时刻同一物体影子的长短和方向的情况及同一时刻不同高度物体的影长进行介绍,其他小组同学进行补充,使学生明晰一天当中影子的变化方向为“西—西偏北—北—北偏东—东”,影子的长度变化为上午:“长—短”;下午“短—长”;一天变化为“长—短—长”,同一时刻物体的高度与影长的变化为:A物高:A影长=B 物高:B影长.设计意图:通过学生亲身参与,体会到太阳光成影的特点,激发学生学习平行投影的兴趣,在提高学生观察生活及与人合作能力的同时,掌握了太阳光下物体影子的方向与大小的变化规律,知道了在同一时刻,物体与影长成比例这一特点.同时学生在亲身参与的基础上,进行展示及讨论交流,让学生初步学会本节课的研究内容,在小组讨论的基础上得出两个问题的答案,进一步培养了学生探究知识的能力,体会到了自主学习的乐趣,为学生以后更好的学习新知奠定基础.活动内容3:(多媒体出示)下面的三幅图是在我国北方某地某天上午不同时刻的同一位置拍摄的.1.在三个不同时刻,同一棵树的影子长度不同,请将它们按拍摄的先后顺序进行排列,并说明你的理由.2.在同一时刻,两棵树的高度与它们的影子的长度之间有什么关系?处理方式:留给学生2分钟左右时间思考,然后找2位同学回答,其他同学做补充.设计意图:在亲身参与并获得知识的基础上,通过两个问题的设置,锻炼了学生应用知识解决问题的能力,体会到了自主学习的乐趣,为学生以后更好的学习新知奠定基础.三、例题解析,应用新知活动内容1:(多媒体出示)例题:某校墙边有甲、乙两根木杆,已知乙木杆的高度为1.5 m.1.某一时刻甲木杆在阳光下的影子如图所示,你能画出此时乙木杆的影子吗?2.当乙杆移动到什么位置时,其影子刚好不落在墙上?3.在(2)的情形下,如果测得甲、乙木杆的影子长分别为1.24m和1m,那么你能求出甲木杆的高度吗?解:(1)如图,连接DD',过点E作DD' 的平行线,交AD' 所在的直线于点E'.BE' 就是乙木杆的影子.(2)如图,平移由乙木杆、乙木杆的影子和太阳光线所构成的图形(即△BEE'),直到乙木杆影子的顶端E' 抵达墙根为止.(3)因为△ADD'∽△BEE',所以AD BEAD BE ='', 1.51.241AD =即 .所以AD=1.86(m).处理方式:在学生独立思考的基础上,借助多媒体对例题实施分步处理,第一个问题引导学生由甲图确定光线,在根据光线及物体确定影子;第二个问题找1位同学谈谈自己的看法,其他同学进行补充;第三个问题先引导学生分析解题思路,再找1位同学在黑板上进行板书,然后教师规范解题过程.设计意图:借助例题讲解得形式,让学生深入了解并运用上一环节所学的相关知识.通过问题1深化学生所学知识,发现物体、影子、光线这三者之间,确定其中的两个因素即可确定第三个因素;通过问题2,让学生学会动态看待投影问题,通过问题3,使学生能够应用所探究到的知识解决实际问题.四、挑战自我,巩固新知 活动内容:(多媒体出示)1.下图是两棵小树在同一时刻的影子,请在图中画出形成树影的光线.它们是太阳的光线还是灯光的光线?与同桌交流.2.下图的影子是在太阳光下形成的还是在灯光下形成的?画出同一时刻旗杆的影子(用线段表示),并与同桌交流这样做的理由.处理方式:学生在课本上独自处理,完成后在小组内交流,然后找2—3位同学利用实物投影仪进行全班展示,其他同学进行补充.设计意图:通过活动进一步巩固学生对平行投影和中心投影特点对比的认识,熟练确定投影类型的方法,通过活动引导学生思考投影的各种情况,学生经历实践探索,交流讨论的过程,培养了学生的动手实践能力,积累了数学活动经验,全面掌握投影现象的特点.五、课堂小结,提炼升华同学们,知识的积累、能力的提升在于及时的总结.通过这节课的学习,你有哪些收获?请结合以下问题先想一想,再分享给大家.1.什么是平行投影?2.一天中,物体影子的方向和长短变化有什么规律?3.在同一时刻,物体的影长与物体的高度有什么关系?4.如何区分中心投影和平行投影?处理方式:找2位同学结合问题谈谈自己本节课的收获及困惑.设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.六、达标检测,反馈提高通过本节课的学习,同学们的收获一定很多!收获的质量如何呢?请完成下面的达标检测题.(多媒体出示)1.下面是一天中四个不同时刻两座建筑物的影子,请将它们按时间先后顺序进行排列.2.画出图中旗杆在阳光下的影子.3.某同学的身高为1.4米,某一时刻他在阳光下的影长为1.2米,此时,与他相邻的一棵小树的影长为3.6米,则这棵树的高度为米.处理方式:学生在导学案上做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.七、布置作业,落实目标必做题:课本第132页第1、2题拓展题:在太阳光下摆弄立方块,观察立方块在底面上的影子,你得到的影子分别是几边形?与同伴交流.板书设计:§5.1 投影(2)学生展示区教师示范区:例题解:学生展示区。
北师大版九年级数学上册:5.1投影(教案)
2.案例分析:接下来,我们来看一个具体的案例。通过分析物体在不同光线下的影子,了解中心投影和平行投影的特点及实际应用。
3.重点难点解析:在讲授过程中,我会特别强调投影的分类和性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
5.投影与坐标:在坐标系中,通过投影求解点、线、面的坐标;
6.实际案例:运用投影知识解决实际生活中的问题,如太阳高度角、影子长度等。
二、核心素养目标
1.培养学生的空间观念和几何直观:通过投影的学习,使学生能够观察、分析和理解现实生活中的几何现象,提高空间想象力和几何直观能力。
2.培养学生的逻辑思维与推理能力:在探究投影性质和特征的过程中,引导学生运用逻辑推理,培养严谨的数学思维。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《投影》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否注意过影子或者建筑图纸上的图形?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索投影的奥秘。
(二)新课讲授(用时10分钟)
-投影与坐标的关联:将投影与坐标系结合,求解点、线、面的坐标,这部分内容较为抽象,学生可能难以理解和掌握。
-实际案例的分析:在解决实际问题时,学生可能会在数据分析和问题解决上遇到困难,需要引导学生运用所学知识进行分析。
举例解释:
对于空间观念的培养,可以让学生观察实际物体在不同光线下的影子,帮助他们理解投影的形成过程。在投影与坐标的关联方面,可以通过具体的练习题,如给定一个点的投影,让学生求出该点的坐标,帮助学生突破这一难点。在分析实际案例时,可以提供一些简单的实际问题,引导学生逐步分析、解决问题,培养他们的问题解决能力。
九年级数学上册 第五章 投影与视图 2 视图(第2课时)教案 (新版)北师大版
视图
视图中有哪些部分对应相等?左视图与俯视图呢?
得到两个结论:(
最后学生动手完善画出上述三棱柱的正确的三种视图。
四棱柱三种视图的画法。
先由学生想象,然后动手画出四棱柱的主视图、
于俯视图中两条虚
节
活动目的:巩固棱柱视图的画法
哪些感悟?还有哪些困惑?
视图(第二课时)
本节课关注的是学生能否利用已学过的视图知识进一步画出较复杂的三棱柱、四棱柱的视图。
其
并鼓励他们大胆走上讲台,阐述自己的观点、做法及其合理性,激发学生的学习兴趣,从而为了使学生更易理解知识,可让学生。
点的投影(二)电子教案
图3-15 重影点的投影
y z
[例题1] 已知点A的正面与侧面投影,求点A的水平投影。
a
[例题2]已知点的两面投影,求作其第三面投影。
图3-13 由两投影求第三投影
[例题3]已知点A的坐标为x=20,y=10,z=18,即 A (20 mm、 10 mm、18 mm),求作点A的三面投影图。
20 ax
Z a'
Z
a'
a"
第三节 点的投影
四、 点的投影规律
(a)
(c)
(1) 点的V面投影 a'和H面投影a的连线垂直于OX轴(aa'⊥OX)
(2) 点的V面投影a '和W面投影a"的连线垂直于OZ轴(a'a " ⊥OZ)
(3) 点的H面投影a到OX轴的距离等于点的W面投影a"到OZ轴的距离(aax=a"az)
第三节 点的投影
五、 点的坐标
如图3-11所示,点的坐标值的意义如下: A点到W面的距离Aa″=aaY=a′aZ=OaX,以坐标x标记。 A点到V面的距离Aa′=aaX=a″aZ=OaY,以坐标y标记。 A点到H面的距离Aa=a′aX=a″aY=OaZ,以坐标z标记。 由于x坐标确定空间点在投影面体系中的左右位置,y坐标确定空间点在投影面体系 中的前后位置。z坐标确定点在投影面体系中的高低位置,因此,点在空间的位置 可以用坐标x、y、z确定。
图Hale Waihona Puke -14 两点的相对位置如图3-14所示,就是B点在A点的右、前、上方。
[例题4] 已知点A在点B之前5毫米,之上9毫米,之右8毫 米,求点A的投影。
a
a
29.1投影教案设计(全国优质课一等奖)2
投影?的教学设计课题:投影课型:新授课内容:人教版九年级数学下?投影与视图?的第一课时教学目标:知识与技能:〔1〕通过观察、实验、探索、想象,了解投影、投影线、投影面、平行投影、中心投影的概念;〔2〕能够确定物体在平行光线和点光源发出的光线在某一平面上的投影。
过程与方法:〔1〕学习平行投影时,要弄清光线照射角度与影子的关系,同一照射角度下,两个物体的高度与影长成比例,与相似三角形建立联系;〔2〕通过学生自己动手实验,教师同学们归纳、概括,形成平行投影和中心投影的概念,并把所学知识应用于生活实际之中。
情感、态度与价值观:在实验、探索中获取新知,可激发学生的学习兴趣,体会到教学与生活融为一体,使学生爱学习、爱生活,敢于探索创新,在学习中产生对数学的兴趣,在探索中投入更大的热情。
教学方法:小组探究法。
教学重点难点:重点:投影、平行投影、中心投影的概念。
难点:对投影概念的准确把握,物体与投影的关系。
教学准备:多媒体、手电筒、小棒、三角形纸片教学过程:一、创设情境,导入新课你们喜欢小动物吗?今天教师为大家带来了许多活泼得意的小动物。
〔出示手影〕。
谁还愿意上来为大家表演手影?二、合作交流,自主探究1、手影的原理是什么?手影是一种投影现象,那么你认为投影需要哪几个要素?板书光源、物体、投影面〕你能大胆猜测,说说什么是投影吗?请大家翻开书P106阅读前两段。
阅读后,你有什么收获?〔1〕生活中有哪些投影现象?生活中的影子与刚刚咱们所说的投影有什么区别?小结:我们今天谈到的投影、投影面是一个平面,而生活中的影子可能不在同一个平面上。
〔2〕如果对大家所提到的投影现象进展分类,你认为应该分为几类?说说你是怎么想的?针对同学的想法,我们一起探讨一下,它们有什么不同?请大家分组进展讨论。
2、探究新知〔1〕合作交流探索中心投影和平行投影的定义活动一:取一些长短不等的小棒及三角形,用手电筒去照射这些小棒和纸片。
①固定手电筒,改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化?②固定小棒和纸片,改变手电筒的摆放位置和方向,它们的影子发生了什么变化?③由此,你能得到什么结论?小结:手电筒与物体,改变其中的一个位置和方向,影子都会发生改变。
河南省郑州市中牟县雁鸣湖镇九年级数学上册 第五章 投影与视图 1 投影(第2课时)教案 (新版)北师大版
投影
,能正确作图;
太阳光成影现象调查(提前一周布置,利用周末时间
课堂合作交流
变化为上午:“长—短”;下午“短—长”;一天变化为“长—短—
,不同高度的物体的影子的长短不相同,物高与影长某校墙边有
吗?
活动目的:借助例题讲解得形式,让学生深入了解并运用上一环节所学的相关知识.通过问题1深化学生所学知识,发现物体、影子、光线这三者之间;确定其中的两个因素即可确定第三个因素;通过问让学生学会动态看待投影问题,通过问题3,使学生能够应用所探究到的知识解决实际问题
,让学生对同一事,不断激发学生。
初中数学投影的教案
初中数学投影的教案教学目标:1. 了解投影的概念,掌握平行投影的特点。
2. 能够分析生活中常见的投影现象,并运用投影知识进行解释。
3. 培养学生的观察能力、思考能力和实践能力。
教学重点:1. 投影的概念及平行投影的特点。
2. 生活中的投影现象及运用投影知识进行分析。
教学难点:1. 投影概念的理解。
2. 平行投影特点的掌握。
教学准备:1. 教学课件或黑板。
2. 实物投影仪。
教学过程:一、导入(5分钟)1. 利用实物投影仪,展示一个物体,并将其投影到屏幕上。
2. 引导学生观察投影的特点,提问学生对投影的理解。
二、新课讲解(20分钟)1. 介绍投影的概念,解释投影是指光线照射到物体上,产生的影子。
2. 讲解平行投影的特点,如光线平行、投影均匀等。
3. 通过实例,讲解平行投影在生活中的应用,如建筑物的影子、日晷等。
4. 引导学生思考并讨论其他生活中的投影现象。
三、课堂练习(15分钟)1. 让学生分组,每组选择一个物体,利用实物投影仪进行投影实验。
2. 观察并记录物体的投影特点,分析平行投影的规律。
3. 每组汇报实验结果,分享各自的观察和分析。
四、总结与拓展(10分钟)1. 总结本节课的内容,强调投影的概念和平行投影的特点。
2. 提问学生如何运用投影知识解决实际问题。
3. 引导学生思考投影在其他学科领域的应用,如物理、艺术等。
教学反思:本节课通过实物投影仪的演示和课堂练习,让学生直观地了解了投影的概念和平行投影的特点。
通过生活中的实例,让学生认识到投影在实际应用中的重要性。
在教学过程中,要注意引导学生主动观察、思考和讨论,培养学生的观察能力、思考能力和实践能力。
同时,要关注学生的个体差异,给予不同的学生不同的指导和帮助,确保他们能够掌握投影知识。
沪科版九年级下册数学教案25.1投影(第2课时)说课稿
4.最后,结合实际应用,如建筑图纸、摄影等,让学生了解投影在现实生活中的应用,提高学生的兴趣。
(三)巩固练习
我计划设计以下巩固练习或1.课堂练习:针对投影的计算方法,设计一些典型题目,让学生当堂完成,及时巩固所学知识。
本节课主要知识点包括:投影的定义、分类(中心投影、平行投影)、性质、应用等。通过本节课的学习,使学生能够理解投影的概念,掌握不同类型投影的特点及计算方法,并能在实际问题中运用投影知识。
(二)教学目标
知识与技能目标:掌握投影的定义及分类,理解中心投影与平行投影的区别和联系;掌握投影的计算方法,能够运用投影知识解决实际问题。
沪科版九年级下册数学教案25.1投影(第2课时)说课稿
一、教材分析
(一)内容概述
本节课选自沪科版九年级下册数学教材第25章“投影”部分,是学生在学习了平面几何、立体几何的基础上,进一步探讨几何知识在实际生活中的应用。投影作为本章的核心概念,在整个课程体系中具有承上启下的作用,既巩固了先前所学几何知识,又为后续学习解析几何打下基础。
1.师生互动:在课堂提问环节,针对学生的回答进行引导、追问,帮助学生深入思考,提高课堂参与度。
2.生生互动:分组讨论、合作探究,让学生在小组内分享观点、互相学习,培养学生的合作精神。
3.小组竞赛:设置一些有关投影的竞赛题目,鼓励各小组积极竞争,提高学生的学习积极性。
4.课堂小结:邀请学生上台总结所学知识,表扬优秀学生,激发学生的学习热情。
1.左侧:列出本节课的主要知识点,如投影的定义、分类、性质等,以提纲形式展示,便于学生梳理知识结构。
2.中间:展示投影的计算方法和实际应用案例,采用图示和步骤描述,直观易懂。
高中数学投影教案及反思
高中数学投影教案及反思
主题:高中数学投影
目标:学生能够理解投影的概念,掌握投影的计算方法,能够解决相关应用问题。
教学内容:
1. 什么是投影
2. 投影的计算方法
3. 投影在几何中的应用
4. 综合练习
教学过程:
1. 引入:通过展示一个实际生活中的例子,引发学生对投影的兴趣。
2. 讲解投影的概念和计算方法,让学生掌握基本知识。
3. 给学生一些简单的计算练习,帮助他们巩固所学知识。
4. 引导学生应用所学知识解决几何问题,培养他们的分析和解决问题的能力。
5. 总结课程内容,强化学生对投影的理解和掌握。
反思:
这堂课我觉得还是比较成功的。
通过生动的例子和简洁清晰的讲解,学生们对投影的概念有了较深刻的理解。
但是在练习环节中,有些学生仍然存在一定的困难,可能是因为他们对相关概念的理解还不够透彻。
下次我可以在讲解的同时更多地进行实例分析,让学生更快地掌握投影的计算方法。
另外,我觉得在教学过程中更多地引导学生自主思考和探索也是很重要的。
虽然我在课堂上给予了一定的引导,但是下次可以在问题提出后多留一些思考时间,让学生更好地吸收所学知识。
总的来说,这堂课还是有一定收获的。
我会继续努力改进教学方法,使学生更好地理解和掌握数学知识。
《投影教案》第二课时教学设计
《投影教案》第二课时教学设计
《投影教案》第二课时教学设计
一、教学目标:
1、了解正投影的概念;
2、能根据正投影的性质画出简单的平面图形的正投影
3、培养动手实践能力,发展空间想象能力。
二、教学重、难点
教学重点:正投影的含义及能根据正投影的性质画出简单的平面图形的正投影
教学难点:归纳正投影的'性质,正确画出简单平面图形的正投影
三、教学过程:
(一)复习引入新课
下图表示一块三角尺在光线照射下形成投影,其中哪个是平行投影哪个是中心投影?图(2) (3)的投影线与投影面的位置关系有什么区别?
解:结论:图(1)中的投影线集中于一点,形成中心投影;图(2) (3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面〔即投影线正对着投影面)。
指出:在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影。
(二)合作学习,探究新知
1、如图,把一根直的细铁丝(记为安线段AB)放在三个不同位置:
(1)铁丝平行于投影面;
(2)铁丝倾斜于投影面,
(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点)。
下载全文。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
投影教案(第二课时)
一、教学目标:
1、了解正投影的概念;
2、能根据正投影的性质画出简单的平面图形的正投影
3、培养动手实践能力,发展空间想象能力。
二、教学重、难点
教学重点:正投影的含义及能根据正投影的性质画出简单的平面图形的正投影教学难点:归纳正投影的性质,正确画出简单平面图形的正投影
三、教学过程:
(一)复习引入新课
下图表示一块三角尺在光线照射下形成投影,其中哪个是平行投影哪个是中心投影?图(2) (3)的投影线与投影面的位置关系有什么区别?
解:结论:图(1)中的投影线集中于一点,形成中心投影;图(2) (3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面〔即投影线正对着投影面)。
指出:在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影。
(二)合作学习,探究新知
1、如图,把一根直的细铁丝(记为安线段AB)放在三个不同位置:
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。
(1)铁丝平行于投影面;
(2)铁丝倾斜于投影面,
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
”于是看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点)。
第 1 页。