二向应力状态分析解析法和图解法(实用干货)

合集下载

二向应力状态分析——解析法

二向应力状态分析——解析法

对应力σ、τ和角度α的正负号,作这样的规定:正应力σ以拉应力为正,压应力为负;切应力τ以对单元体内的任一点作顺时针转向时为正,反时针转向时为负(这种规定与第八章中对剪力所作的规定是一致的);角度α以从x轴出发量到截面的外法线n是反时针转时为正,顺时针转时为负。

按照上述正负号的规定可以判断,在图10-6中的是正值,τx是正值,τy是负值,α是正值。

当杆件处于静力平衡状态时,从其中截取出来的任一单元体也必然处于静力平衡状态,因此,也可以采用截面法来计算单元体任一斜截面上的应力。

取bef为脱离体如图10-6c所示。

对于斜截面ef上的未知应力
[例7—2] 试计算图10-8a所示的矩形截面简支梁,在点k处α= - 30的斜截面上的应力的大小和方向。

二向应力状态分析—图解法

二向应力状态分析—图解法
§7–4 二向应力状态分析—图解法
x
2
y
x
2
y
cos 2
x
sin
2
x
2
y
sin
2
x
cos 2
1、 莫尔圆的概念
(
x
y 2
)2
2
(x
y )2 2
2 x
(
x
y 2
)2
2
(x
y 2
)2
2x
当斜截面随方位角 变化时, 其上的应力 , 在 - 直角坐标系内的轨迹是一个圆 。
圆心的坐标为(the coordinates of MOHR circle’s center)
y
xm
900
t
450
k
D
y
xm
900
t
450
k
D
y
3
τ max
x
τ max
k
450
1
解: 从圆筒表面 k 点处取出单元体, 其各面上的应力分量如图 所示
可求得
y 1 max 80MPa
x 3 max 80MPa
z 0
k点处的线应变 x , y 为
y
x
1 E
(x
y )
1 E
(max
z
x
二、纯剪的本构关系
xy
xy
G
i 0 ( i x,y,z ) yz zx 0
y
xy
z
x
三、复杂状态下的本构关系
y
依叠加原理,得
y
z
z
x
xy
x
x
x
E
y
E

《材料力学 第2版》_顾晓勤第09章第2节 二向应力状态分析

《材料力学 第2版》_顾晓勤第09章第2节 二向应力状态分析

第 2 节 二向应力状态分析 第九章 复杂应力状态和强度理论
最大主应力和最小主应力的计算式
max m in
x
y
2
x
2
y
2
2 x
确定 max 和 min 所在平面的方法
1)若x>y,则所求的两个角度0 和 90º+0 中, 绝对值较小的一个确定max 所在的平面;
2)若x <y,则所求的两个角度0 和 90º+0 中, 绝对值较小的一个确定min 所在的平面;
2

2sin cos sin 2 对以上二式进行整理得到:
x
y
2
x
y
2
cos2
x
sin 2
x
y
2
sin 2
x
cos2
第 2 节 二向应力状态分析 第九章 复杂应力状态和强度理论
x
y
2
x
y
2
cos2
x
sin 2
x
y
2
sin 2
x
cos2
利用上述两式可以求得 de 斜截面上的正应力和切
设 de 斜截面面积为 dA,则 ae 面的面积为 dAsin , ad面的面积为 dAcos 。取 t 和 n 为参考轴,建立棱
柱体 ade 的受力平衡方程如下:
dA ( xdAcos ) sin ( xdAcos ) cos ( ydAsin ) cos ( ydAsin ) sin 0
y
2
2 x
105 MPa
第 2 节 二向应力状态分析 第九章 复杂应力状态和强度理论
0
1 2
arctan(
2 x x

二向应力状态分析

二向应力状态分析

CAsin2+DAcos2
y
y yx
xy x
n

x x xy

B1 B O 2
G1' ,E
D(x, xy)
2 2
CL A
A1 1
yx y
D’ (y, yx) G2 "
OL LC + CL
OC + CG cos 2 + 2
y

x ' y ' x´
x q
x'
x y dA yx
y
平面应力状态的解析法
Fy 0
- dA + (dAcos q) sin q
x'y'
x
+ (dAcos q) cos q
xy
- (dAsin q) sin q
yx
- (dAsin q) cos q 0
y

max x
x
0 max
m in

B1 B O 2
G1' ,E
D(x, 2 xy)
20 A1 C F A 1
D’ (y, yx) G2 "
从应力圆中还可看出:应力圆上对应于G1G2两点,剪应力最大, 由此可得到,最大、最小剪应力分别为:
maxKR
低碳钢拉伸时,其上任意一点都是单向应力状态。
x

x + y 2
+x -y cos2
2
-x sin2

x
2
+yx
2
co2s

x -y sin2
2
+x c o2s

应力分析

应力分析
第九章
§9.1 §9.2 §9.3 §9.4 §9.5 §9.6 §9.7 §9.8 §9.9
应力分析 强度理论
应力状态概述 二向和三向应力状态的实例 二向应力状态分析--解析法 二向应力状态分析--图解法 三向应力状态 广义胡克定律 复杂应力状态的变形比能 强度理论概述 四种常用强度理论
1
§9.1 应力状态概述
已知如图,设ef 面积为dA
F
n
0
dA ( xy dAcos ) sin ( x dAcos ) cos ( yx dAsin ) cos ( y dAsin ) sin 0
F 0
dA ( xy dAcos ) cos ( x dAcos ) sin ( yx dAsin ) sin ( y dAsin ) cos 0
为二向应力状态
7
㈡三向应力状态的实例 如滚珠轴承、火车车轮与钢轨的接触点
例:A3钢制成的锅炉,t=10mm,内径D=1m,
p=3Mpa,求锅炉壁内任意点处的三个主应力。
解:
pD 3 10 6 1 75 MPa 2 4t 4 110
'
pD 2 ' 150 MPa 2t
+
z
E
1 [ x ( y z )] E 1 y [ y ( x z )] E 1 z [ z ( x y )] E
x
xy
xy
G
, yz
yz
G
, xz
广义胡克定律 xz G
2
⒊平行于σ2的斜截面上的应力
只有σ1、σ3对该斜截面上的应力产生影响

二向应力

二向应力
2
(a)当 (a)当σx>σy时,
− 2τ xy 2α0 = arctg σ −σ y x
此时, 2α = 2α0 +180° 得到 σmin (主应力) 主应力)
σmin
σx +σ y = − 2
σx −σ y 2
2 +τ xy
f
t
t

∑n = 0

可得
σα dA − (σxdAcosα)cosα + (τ xdAcosα)sin α −
(σ ydAsin α)sin α + (τ ydAsin α) cosα = 0
σα = σ x cos2 α +σ y sin 2 α − 2τ x sin α cosα
1 cos2 α = (1+ cos 2α) 2 1 2 sin α = (1− cos 2α) 2
α1 = ±45°
具体是正负可由力的合成定理直接判断. 具体是正负可由力的合成定理直接判断.
(1)最小主应力及作用平面 由
σx +σy σx −σy σα = cos 2α −τ xy sin2α + 2 2
作三角变换得
σx +σ y σα = + 2

σx −σ y 2
二、主应力和主平面 主平面: 主平面 一点处剪应力等于零的平面称为主平面 主应力: 主应力 主平面上的正应力称为主应力 说明: 一点处必定存在这样的一个单元体, 说明 一点处必定存在这样的一个单元体 三个相互垂直 的面均为主平面, 三个互相垂直的主应力分别记为 σ1 ,σ2 , σ3 的面均为主平面 且规定按代数值大小的顺序来排列 即 且规定按代数值大小的顺序来排列, 值大小的顺序来排列

应力状态概述二向和三向应力状态的实例二向

应力状态概述二向和三向应力状态的实例二向

解:(1)易知 30
x 40MPa y 20MPa
xy 10MPa

1 2 (xy ) 1 2 (xy )c2 o s xs2 in 2 .4 M 6
1 2(x y)si2 n xco 2 s1.6 3M 6 Pa
Ox


2 xy

材料力学 第七章 应力和应变分析 1; 20; 3 tg202xxyy 045
m mianx( x 2y) 2x2y tg212xxyy010
破坏分析
低:碳 s 2 钢 M 40 ;s P 2 aM 00Pa低碳钢

材料力学 第七章 应力和应变分析
二、极值应力
令 :d d 0 xys2 in 0 2xc y o 20 s 0
由此的两个驻点:
01、
(0
1

)和
2




:tg20
2xy x y
m m a in xx2 y± ( x2 y) 2x 2 y
xy)
且转向一致。
两半径夹角2 ;
O
B( y ,yx)
材料力学 第七章 应力和应变分析
四、在应力圆上标出极值应力
a
max
x
2a1
A(x , xy)
OC
32
2a0
1 a
B( y , yx)
min

1 3
OC

R半径


x

2
y


x

2
y)2
014 ,即极值剪应力面成与 450主面

应力和应变状态分析PPT课件

应力和应变状态分析PPT课件

0.469MPa
第7页/共62页
C 1.04MPa(压) C 0.469MPa
⑶ 作出点的应力状态图
x 1.04MPa y 0 xy 0.469MPa
40o
x
y
2
x
2
y
cos 2
xy
sin 2
1.04 1.04 cos 80o 0.469 sin 80o
2
2
1.07MPa
0
tan 20
2 xy x
y
代入平面应力状态下任意斜截面上应力表达式
max min
x
y
2
(
x
2
y
)2
2 xy
第9页/共62页
x
2
y
sin
20
xy
cos 20
0
0 0
σmax 、σmin 作用面上τ = 0,即α0截面为主平面, σmax、σmin为主应力。
max min
x
y
2
(
x
2
CE sin20 cos 2 CE cos 20 sin2
(CDsin20)cos 2 (CDcos 20)sin2
x
2
y
sin 2
xy
cos 2
第23页/共62页
2. 确定主应力的大小及主平面的方位 A1、B1点对应的横坐标分别表示对应主平面上的主应力。
⑴ A1、B1点对应正应力的极值
x
y
2
x
y
2
cos 2
xy sin 2
63.7 63.7 cos 240o (76.4) sin 240o 22
50.3MPa
x

工程力学第2节 二向应力状态分析

工程力学第2节 二向应力状态分析

例12-1 已知构件内某点处的应力单元体如图所示,
试求斜截面上的正应力 和切应力 。
解:按正负号规定则有:
x 60 MPa x 120 MPa y 80 MPa 300
代入公式得:


x
y
2
x
y
2
cos2
x
sin 2
78.9MPa
低碳钢试件扭转破坏是被剪断的,且其抗剪能力
低于其抗拉能力。
铸铁试件扭转破坏是被拉断的,且其抗拉能力低 于其抗剪能力。
例12-3 图示单元体,x=100MPa,x= –20MPa,
y=30MPa。试求:1) = 40º的斜截面上的 和 ; 2)确定A点处的max、max和它们所在的位置。


x
y
2
sin 2
x
cos2

121MPa
二、主应力和极限切应力
1、主应力和主平面


x
y
2
x
y
2
cos2
x
sin 2


x
y
2
sin 2
x
cos2
将公式 对 求一阶导数、并令其为0:
d d


x

2
y
(2 sin
由切应力互等定理有x=y,并利用三角关系:
sin2 1 cos2 、 cos2 1 cos2 及
2
2
ቤተ መጻሕፍቲ ባይዱ
2sin cos sin 2 对以上二式进行整理得到:


x
y
2

x
y
2

第二十讲 应力状态解析法、图解法 (之一)

第二十讲     应力状态解析法、图解法 (之一)

PP
MM
TT
AA
((bb)) ττyy
σσ11
AA ττσσxx11
((dd))
始单元体如图(c)、(d)所示:
FFNN
σσxx
ττyy AA
σσxx ττxx
AA 3333..9(9(3c3cO)O)
σσ==4488..77((ee))
x
P A
4
(0.05
20 103 2 0.002)2
0.052
x
y 2
x
y 2
cos2
x
sin 2
x
y 2
sin 2
x
cos2
方向:
tan 20
2 x x y
2 (60) 40 0
3 0
35.78o
(3)最大切应力
大小:
max min
max
min 2
83.25 (43.25) 2
63.3MPa
45o 45o
40 40 cos 90o (60) sin 90o 80MPa 22
1 y
σx x
若x<y,0 对应不为零的较小主应力
3 0 x y 0, x 0
x
y
0,
x
0
σ
x
3
y
3
A x σx tan 20 0
y 1
tan 20 0
x
1 y
1
σx
0
x 3
1
σx
x
y 3
x
x y 0, x 0
σ0 x tan 20 0
3 y
x y 0,x 0 σx x
50
20

第十五讲: 第十章组合变形-强度理论

第十五讲: 第十章组合变形-强度理论
50 150
FN F M F 350 75103
425F 103 N.m
50 150
A 15000 2 mm z0 75mm z1 125mm
(2)立柱横截面的内力 FN F M 425103 F N.m
t . max
Mz 0 FN Iy A
一、
斜 弯 曲
平面弯曲
斜弯曲
t ,max M y max M z max c ,max Wy Wz
D1点: t ,max [ t ] D2点: c,max [ c ]
强度条件:
挠度:
f f y2 f z2
fz
fz Iz tan tan fy Iy
2
3
2
3
结论: 代表单元体任意斜 截面上应力的点, 必定在三个应力圆 圆周上或圆内。
五、 广义胡克定律
1. 基本变形时的胡克定律
1)轴向拉压胡克定律
y x
x E x
横向变形
x
y x
2)纯剪切胡克定律
x
E

G
广义胡克定律
2、三向应力状态的广义胡克定律-叠加法
* z
(切应力强度条件)
max [ ]
max
max [ ] 满足 max [ ]
是否强度就没有问题了?
max
强度理论的概念
强度理论:人们根据大量的破坏现象,通过判断推 理、概括,提出了种种关于破坏原因的假说,找出
引起破坏的主要因素,经过实践检验,不断完善,
在一定范围与实际相符合,上升为理论。 为了建立复杂应力状态下的强度条件,而提出 的关于材料破坏原因的假设及计算方法。

复杂应力状态分析2应力圆法

复杂应力状态分析2应力圆法

O
px A
OBC的面积为mdA
pz C
(A) OCA的面积为ndA
3
OAB的面积为ldA
z
2 1
x
y B
py
1 O
pz C
(B)平衡方程
X 0 px dA 1 mdA 0
2
Y 0 p y dA 3 ndA 0
px
Ax
Z 0 pz dA 2 ndA 0
(C)
p2
则E 点坐标: E(52.3,-18.7)
50
σ2
20 σ1
D′(50,20)
30 x A
C
σ1
σ2 0
20
B
3、主应力及主单元体
D(30,-20)
C(40,0) r 22.4 o 31.7o B点: 1 40 22.4 62.4(MPa)
A点: 2 40 22.4 17.6(MPa) 3 0
( n
2
3 )2
2
2 n
(
2
3
)2
2
(
n
3
2
1
)2
2 n
(
3
2
1
)2
(
n
1
2
2
)2
2 n
(
1
2
2
)2
结论:
σ3 σ2
σ1
任意斜截面上的应力,都落在图示阴影部分内,既阴影部 分内每一个点与一个截面上的应力相对应。
三、一点处应力状态中的 最大剪应力
max
1
3
2
★与二向应力状态中最大剪应力的区别:
与x轴的夹角为a,则
推论:
1
2

二向应力状态分析的解析法

二向应力状态分析的解析法

二向应力状态分析的解析法二向应力状态分析的解析法[知识回顾]基本变形下的强度条件:(板书)FNmax1、拉压 ,,,[,]maxA 正应力强度条件Mmax2、弯曲 ,,,[,]maxW*FSsz ,,,[,]maxbIz3、扭转剪应力强度条件T,,,[,]max Wt[教学导入]特点:以上强度条件考虑了危险点上只有正应力或只有剪应力的情况,即单向应力状态;当考虑的点上既有正应力又有剪应力时,就不能用单向应力状态理论来建立强度条件,需要用强度理论来建立强度条件[新课教学]材料力学教案力学教研室于月民二向应力状态分析的解析法一、应力状态的概述(一)一点处的应力状态(ppt)1、不同截面上,各点的应力不同F2F ,,,,12AA2、横截面上正应力分析和切应力分析的结果表明:同一横截面上,不同点的应力各不相同,此即应力的点的概念。

3、F横截面上: ,,,,0AF22,,cos,,,cos,,斜截面上: A,F,,sin2,,sin2,, 2A2同一点在不同方位截面上,它的应力也是各不相同的,此即应力的面的概念。

点的应力状态:(State of the Stresses of a Given Point)通过受力构件内某一点的不同方向面上的应力的集合,称之为这一点的应力状态1材料力学教案力学教研室于月民 (二)点的应力状态的表示(板书)1、单元体:围绕所考查的点,取三方向上尺寸无穷小的正六面体。

特点:1、各面上应力均匀分布2、相互平行的面上应力值相等如:轴向拉伸杆中过A取单元体,1)横、纵取F左右二面是杆横截面的一部分: ,,xA,,0上下和前后面都平行轴线:2)若与横纵成α角截取四个侧面与轴线即不平行也不垂直是斜截面,其上有正应力和剪应力2,,,cos,,x,x ,,sin2,,2由此可见:单元体的应力状态实质上代表一个点的应力状态,研究研究过一点的不同截面上应力变化情况,就是应力分析的内容。

取单元体的方位不同,表示出的形态不同,但二者等价。

二向应力状态分析图解法ppt课件

二向应力状态分析图解法ppt课件

3 1
u
1 2E
2 1
2 2
2 3
2
1
2
3
2
1
3
1 20( )2200( ) 2E
1 2
E
G
E
21
因此, 该圆筒变形后的厚度并无变化, 仍然为 t =10mm .
P1
P2
A
y x
P2 z
b z
a
l
b=50mm h=100mm
A
P2 A
20KN
(拉伸)
A
3FS 2A
30MPa
(负)
§7–9 复杂应力状态的应变能密度
一、应变能密度计算公式
1 、 单轴应力状态下, 物体内所积蓄的比能为
2
v
1
平行于3的方向面-其上之应力与3无关, 于是由1 、 2可作出应力圆.
y
1
max
2
3
z
x
3
2
图a
1
图b
(1)弹性理论证明,图 a 单元体内任意一点任意截面 上的应力都对应着图 b 的应力圆上或阴影区内的一点
(2)整个单元体内的最大剪应力为
max
1
2
3
最大正应力和最大剪应力
从三向应力圆中可以看出,最大正应力,最小 正应力及最大剪应力分别为
2
a1 1
a2 3
a3
五、体积应变与应力分量间的关系
V dx dy dz
V1 dx(1 1 )dy(1 2 )dz(1 3 ) dx dy dz(1 1 2 3 )
体积应变:
V1 V V
1 2 3
代入本构关系,得到体积应变与应力 分量间的关系:

材料力学--第2讲

材料力学--第2讲

所以:上述的9个应力分量就变成了6个应力分量
4、应力状态分类

三向应力状态:亦称空间应力状态,是最一般最复杂的; 二向应力状态:单元体只有两对面上承受应力并且作用线均在同一 平面内,另外一对面上没有任何应力,亦称平面应力状态;

单向应力状态:当平面应力状态中切应力为0,且只在一个方向上 有正应力作用时,称为——


而过一点各方向截面上应力矢量的集合称为该点的应
力状态。
2.3 一点的应力状态 切应力互等定律

1、单元体:(对连续均匀介质用极限的概念)来要描述构件上 一点a,就围绕a取一微小的六面体,当三个垂直的棱边趋近于0 时的极性时,即点a,称此微小六面体为——; 用截面外法线方向来命名截面,x面是指该截面的外法线法线沿x 轴,或者说该截面垂直于x轴;

斜面ABC上总应力矢量pn在x,y,在, 三个方向分量为:
pnx,pny,pnz,四面体处于平衡状态,在x轴方向则有:

斜面ABC上正应力
为总应力矢量pn在法线N上的投影,即是
pn的三个分量pnx,pny,pnz,在法线N上的投影的代数和:

2、主应力与主方向
过点O的斜面A*B*C*就是主平面,其方向余弦l* 、 m* 、 n*就是一 个主方向。因为主平面无切应力,则A*B*C*面上的全应力就是正 应力分量。该面上的全应力在坐标轴上的投影为:
△P
p称为总应力或全应力。
应力求法
常用的表示方法是把p分解为两个分量:
垂直于截面的分量:正应力,用σ表示 沿截面的切向分量:切应力,用τ表示
正应力或法向应力σ : 剪应力或切应力τ :
总结:

K点的总应力p与截面方向有关。过K点在另外方向取 一截面,可定义另外一个不同的总应力矢量。过K点 可以有无限多个不同方向的截面,相应可得无限多个 不同的总应力矢量。 仅有一个方向截面的应力矢量,不能全面描述一点的 应力特性。

材料力学 (13)

材料力学 (13)

E
D
/ MPa
C
/ MPa
O
31º A
60º
D
H(9.02 ,-58.3)
例1:一点处的应力状态如图所示。已知 x 60MPa, xy 30MPa, y 40MPa 。试求:(1) = -30º斜截 面上的应力;(2)主应力、主平面;(3)画主单元体。 (3)画出主单元体如下图所示。
3 E
1 15.5º
E
D
/ MPa
C
/ MPa
O
20
D
例2:已知分别与水平面成 ±30º的两相交斜截面上的应力
如图所示。试用应力圆求该点的主应力,并画出主单元体。
解:作出单元体对应的应力圆 ① 建立σ- 坐标平面;
② 确定点 D(2 p, 3 p)和 E(2 p, 3 p); ③ 连接 DE,确定圆心C?
(1) 确定 = -30º斜面上的应力
将CD 顺钟向转60º,可得 9.02MPa, 58.3MPa
(2)主应力、主平面
E
max
A
15.5
min
B
10 58.3 48.3MPa,
02
180 31 2
B
105.5
故主应力为: 1 68.3MPa, 2 0, 3 48.3MPa
图解法分析二向应力状态
一、应力圆的概念
x
y
2
x
y
2
cos 2
xy
sin 2
x
y
2
sin 2
xy
cos 2
消去上面两公式中的参数 α,可得
(
x
y 2
)2
2
(
x
y 2
)2

二向应力状态分析--解析法和图解法

二向应力状态分析--解析法和图解法

多轴加载情况下处理方法
多轴加载定义
多轴加载是指物体在多个方向上同时受到外力的作用,导致物体 内部产生复杂的应力状态。
坐标变换法
通过坐标变换法可以将多轴加载情况下的应力状态转换到主应力 空间中进行分析,从而简化问题。
数值计算法
对于复杂的多轴加载情况,可以采用数值计算法求解应力张量和 主应力,以获得更精确的结果。
图形表示在工程中应用
01 02
复杂应力状态分析
在实际工程中,构件往往处于复杂的应力状态下。通过图解法,特别是 Mohr圆的应用,可以方便地确定构件的危险点和安全裕度,为工程设 计提供重要参考。
强度校核
在结构设计中,需要对关键构件进行强度校核。图解法可以直观地展示 受力构件的应力分布和大小,从而判断其是否满足强度要求。
VS
图解法适用范围
适用于简单的应力状态分析或者对精确度 要求不高的情况。例如,在初步设计阶段 或者课堂教学过程中,可以采用图解法进 行快速的应力状态分析和演示。
实例验证两种方法一致性
• 以某一具体实例为例,分别采用解析 法和图解法进行应力状态分析。通过 比较两种方法得到的结果,可以验证 两种方法的一致性和准确性。具体实 例可以根据实际情况选择,例如可以 选择一个简单的杆件结构或者一个复 杂的板壳结构进行分析。
优缺点分析
• 对数学知识要求低:相对于解析法,图解法对数 学知识的要求较低。
优缺点分析
精确度相对较低
由于绘图和测量过程中可能存在误差,因此图解法的精 确度相对较低。
适用范围有限
对于某些复杂的应力状态,图解法可能无法适用或者难 以得到准确结果。
适用范围讨论
解析法适用范围
适用于各种复杂的应力状态分析,特别 是需要高精度计算的情况。例如,在航 空航天、桥梁建筑等领域,对结构的安 全性要求极高,需要采用解析法进行精 确的分析和计算。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10MPa 3 0 0 30
x x 2 y x- 2 yco s2 - xysin2
b
30
0
20MPa 1 0 - 3 0 1 0 3 0 c o s6 0- 2 0 s in 6 0
3 0
2
2
30MPa
-17.32M Pa
x- 2ysin2xycos2
30
10 230sin6020cos60 27.32M Pa
三 面内最大切应力
不同方向面上的切应力亦随着坐标的旋转而变 化,因而切应力亦存在极值
x- 2ysin2 xcy os2
对α求一次导数,并令其等于零;
d d (x- y)co - s2 2 xsyi n 0 2
由此得出另一特征角,用α1表示
tan21=x2-τxy y
tan21=x2-τxy y
2 求正应力的极值面
x 2yx- 2yco- s2 xsyi n2
上式对α 求一次导数,并令其等于零
d d - (x- y)si n - 2 2 xc y o s02
表解明出∶的正角应度力的极ta值n2面= 与主-平x2-τ面xy重y 合角;度taαn与2α0= 0 完全-重x2合-τx。y y
y xy
x
1 主应力计算 正应力的两个极值就是
xyx-630M 0MPP,aa, y -40MP,a
两个主应力
y
公式
xy
max
x
2
y
(x -y)2 2xy
2
68.3MPa
x
min
x
2
y
-
(x -y)2 2xy
2
排序??
-48.3MPa
1 6 .3 M 8 P 2 0 a , ,3 - 4 .3 M 8 Pa
注意:方向角的定义
y 外法线
n
x
以及正负号规定
问题 已知原始单元体互相垂直面上的应力
y
y yx
x
xy x
x
求任意斜截面上的应力 (斜截面的 位y 置??)
解决问题的方法 平衡 的思想
2、单元体的局部平衡
y
y yx
n+
x
xy
x
x
x
xy
y
yx
y
2、单元体的局部平衡
Fn 0
????
二向应力状态分析解析法 和图解法
此课件下载后可自行编辑修改 关注我 每天分享干货
§7-3 二向应力状态分析??---
主应力(计算)、主平面(位置确 定!)
思路 ----分析任意斜截面上的应力 一 任意斜截面上的应力 要求: 1 掌握解决问题的思想 要求: 2 考研的同学理解记忆公式
y
yx
x
xy
yx
xy y
即又一次证明了切应力的互等定理
二 主平面、主应力与主应力方向 1 切应力为零的面为主平面?? 2 主应力
主平面上的正应力 ??
3 主应力方向 ------主平面的法线方向
要求 掌握主应力计算!!牢记公式,并进行 排序!
二 主平面、主应力与主应力方向
x x 2 - 2 y y s ix n - 2 2 y c xcyo o - ss2 x 2syi n2
-2τxy
x -y
0 090O
max
min
xy
2
(x-y
2
)2
2 xy
''' 0
max
min
(x -y
2
)2 x2y
例题2:一点处的应力状态如图。
已知 x 60MP,a xy -30MPa,
y -40MP,a
1 主应力大小 2 (面内)最大切应力 3 主平面位置 4 绘出主(应力)单元体
1 切应力为零的面为主平面
0x- 2ysi n 0 2 xc y o 0s2 0
tan20=
-2τxy
x -y
0 090O
该式确定了两个相互垂直的主平面的位置
对于平面应力状态, 平行于xy坐标面的平 面,其上既没有正应 力,也没有切应力作 用,前后面是一个主 平面。
σ于零
x
y
各量的含义 1) 左右面上的正应力 上下面上的正应力 2 ) 左 右 面 上 的 切 应力
1 方向角与应力分量的正负号规定
x' y'
正应力正负规定 拉应力为正压应力为负
切应力正负号规定
xy
使微元或其局部顺时针方向转动为正;
反之为负
yx
方向角的正负号规定
由 x正向转到截面外法线
逆时针 为正 反之为负
3、平面应力状态任意方向面上的正应力 与切应力
x 2yx- 2yco- s2 xsyi n2
x- 2ysin2 xcy osy 2
y yx
x
xy x
x
y
例题1求斜面ab上的正应力和切应力
y
解:x 1 0 M P a, y - 3 0 M P a
20MPa
a
x y 2 0 M P a , y x - 2 0 M P a , 30
思考 900 ? 900 ??
x
yx
用 斜截面截取,此截面上的应力为
y
xy
2
- x 2 xy- - y x- 2 sy i2 c no 2 - sxx y cs yoi2 2 n s
900xy
x
即单元体两个相互垂直面上
的正应力之和是一个常数
-900
正应力的极值就是主应力;
3 平面应力状态的三个主应力
tan20=
-2τxy
x -y
x 2yx- 2yco 0 s- 2 xs yi n 0 2
max
min
xy
2
(x
-y
2
)2
2 xy
''' 0
将三个主应力代数值由大到小顺序排列;
12 3 就是所谓的应力状态的不变性
主应力是一点应力状态的最终度量
得到α 的极值
x- 2ysin12xc y os12
max
min
(x -y
2
)2 x2y
特别指出:
上述切应力极值仅对垂直于xy坐标面的方向面而言, 因而称为面内最大切应力与面内最小切应力
二者不一定是过一点的所有方向面中切应力的最
大和最小值 切记!
主平面 主应力 面内最大(小)切应力总结
tan20=
2 面内最大切应力
y xy
x
xyx-630M 0MPP,aa, y -40MP,a
max
(x -y)22xy
2
3400
3 主平面的位置
y xy
x
代入 表达式可知
x 60MP,a y -40MP,a
x
n
x y dA
yx
t
y
dA + 0 - x (dA cos) cos xy(dAcos) sin - y (dAsin) sin yx (dAsin) cos 0
平衡方程
Ft 0
x
n
x y dA
yx
t
y
dA -x (dAcos) sin -xy (dAcos) cos
yx (dAsin) sin y (dAsin) cos 0
相关文档
最新文档