第二章自动变速器的结构和工作原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章自动变速器的结构和工作原理

第一节液力变矩器的基本原理简介

液力变矩器是一种液力传动装置,它以液体为工作介质来进行能量转换。它的能量输入部件称为泵轮,以“B”表示;它和发动机的输出轴相连,并将发动机输出的机械能转换为工作介质的动能。能量输出部件为涡轮,以“T”表示;它将液体的动能又还原为机械能输出。

一、液力偶合器的工作原理

如图2-1所示为液力偶合器原理图。泵轮2固定在发动机曲轴上,为能量输入端,涡轮4固定在输出轴5上,为输出端。泵轮和涡轮之间有2-4mm的间隙,整个偶合器充满了液体工作介质。

1-发动机曲轴,2-泵轮,3-偶合器壳体,4-涡轮,5-偶合器输出轴

图2-1 液力偶合器

1、泵轮的运动

⑴发动机启动后,曲轴1旋转并带动泵轮2同步旋转。充满在泵轮叶片间的工作液体随着泵轮同步旋转,这是工作液体绕传动轴的牵连运动。

⑵在离心惯性力的作用下,工作液体在绕传动轴坐牵连运动的同时,它沿叶片间的通道从内缘向外缘流动,这是流体和叶片间的相对运动,并于泵轮的外缘流入涡轮。

2、涡轮的运动

工作液体流入涡轮后,把从泵轮处获得的能量(动量)传递给涡轮,使涡轮旋转。从涡轮外缘(涡轮入口)流入的液体,既随涡轮旋转作牵连运动,又从外缘向内缘(涡轮出口)流动,这是涡轮叶片和流体的相对运动,最后,流体经涡轮内缘又流回泵轮。

二、液力偶合器和液力变矩器的能量转换原理

1、液力偶合器的能量转换

流体在偶合器(变矩器)内的循环流动是一个相当复杂的三维流动,流体与工作叶片间

的相互作用也相当复杂。因此,分析这类问题时,在流体力学方面作了一系列假定后,一般用一元流束理论来描述。对于专业性较强的一些描述方式和术语,由于篇幅有限,不作介绍,请读者参考有关著作。

当发动机转速(即为泵轮转速)不变时,下述效率公式(1-2)中的分母是一个常数;随着涡轮转速的升高,传动比变大,效率也高。反之,随着涡轮转速的降低,偶合器的效率也随之下降。需要指出的是,从理论上讲,当n1=n2时i=0,效率最高。这只有在涡轮轴上没有负载时才可能出现。而实际是,当n1=n2,偶合器的泵轮和涡轮之间没有速度差;泵轮里的液体随泵轮作旋转运动产生的离心惯性力和涡轮里的液体随涡轮运动产生的离心惯性力大小相等而方向相反;偶合器内的液体不流动,也没有环流,偶合器也就失去了能量传递的作用。

2、变矩器的能量传递原理(见图2-2)

液力变矩器与液力偶合器在结构上的最大区别就是液力变矩器比液力偶合器多加装了一个固定的流体导向装置——导轮。图2-2所示为最简单的液力变矩器的结构简图。它由泵轮

1、涡轮2和导轮3等三个基本组件组成。

当泵轮1由发动机驱动旋转时,工作液体泵轮的外端出口b 甩出(R2即表示泵轮叶片出口在中间旋转曲面上的半径)而进入涡轮,然后自涡轮的C 端(R3表示涡轮叶片出口在中间旋转曲面的半径)流出而进入导轮,再经导轮a 端流入泵轮而形成环流。

偶合器的传动比偶合器的效率

则液力偶合器的效率为,则:,输出扭矩为入扭矩为根据动量矩定理,设输:i :)

21()11(12120

0ηη-===-=i n n n M n M M M M M i i o i

1泵轮,2-涡轮,3-导轮

图2-2 变矩器结构图

图2-3 叶栅展开图

把变矩器的公式(1-8)和偶合器的公式(1-11)进行比较,我们可以看出,变矩器涡轮轴上的输出力矩和泵轮轴上的力矩并不是偶合器中的等量关系,而是多了一个导轮对流体的

作用力矩M3。这是导轮在变矩器中对变扭所起的关键作用。

泵轮出口处的牵连速度为:U B2(U B2 = R2ω1),相对速度为:W B2

泵轮出口处的绝对速度为:V B2 = U B2 + W B2

涡轮出口处的牵连速度为:U T2(U T2 = R3ω2),相对速度为:W T2

涡轮出口处的绝对速度为:V T2 = U T2 + W T2

泵轮的出口速度即涡轮的进口速度,涡轮的出口速度即导轮的进口速度,

所以可得如下公式: V B2 = V T1 V T2 = V D1 V D2 = V B1

泵轮对流体的作用力矩为: M1 = ρQ(V B2·R2 - V B1·R1) (1-4)

涡轮对流体的作用力矩为: M2 = ρQ(V T2·R3 - V T1·R2) (1-5)

导轮对流体的作用力矩为: M3 = ρQ(V D2·R1 - V D1·R3) (1-6)

把以上三式相加: M1 + M2 + M3 = 0 (1-7)

即: M1 + M3 = -M2 (1-8)如果删去导轮力矩,则可得到偶合器的力矩方程为:

M1 + M2 = 0 或M1 = -M2 (1-11)(1)变矩原理(见图2-4)

涡轮转速为零或较低(相当于起步或重载低速时),涡轮出口的绝对速度(即导轮的进口速度)和导轮的出口速度相反,涡轮轴上的输出力矩大于泵轮轴上的力矩。

当涡轮转速逐渐升高,即涡轮的牵连速度逐渐增加时,涡轮出口绝对速度逐渐减小,方向逐渐改变;当涡轮的转速增加到一定程度以后(导轮进出口绝对速度的方向相同),流体作用于涡轮的力矩(涡轮的输出力矩)小于泵轮作用于流体的作用力矩(泵轮的输入力矩)。

A 起步时

B 车速较高时

1 由泵轮冲向涡轮的液流方向;

2 由涡轮冲向导轮的液流方向;3由导轮冲向泵轮的液流方向。

图2-4 导轮流体方向的变化图

3.单向离合器和锁止离合器的应用

涡轮转速升高以后,由涡轮流出流体的绝对速度的方向改变,使这些流体冲击导轮叶片

的背部而引起了导轮流进泵轮的流体的方向改变而使流体对泵轮产生了一个阻滞泵轮运动的力矩。要改变这种状况,关键是改变导轮流出流体绝对速度方向的改变。

⑴单向离合器的作用

当涡轮的转速不高,导轮力矩M3≥0时,由于涡轮出口流体力图使导轮反转(指和泵轮转向相反),此时单向离合器反向锁止,导轮被固定不动。最终使涡轮的输出力矩大于泵轮力矩。

当涡轮转速再升高,涡轮出口流体开始冲击导轮叶片背部,导轮力矩M3<0时,导轮旋转,导轮出口流体的绝对速度改变,使导轮输出力矩保持在M3=0状态(即偶合状态)。

⑵锁止离合器的作用

当涡轮转速达到一定值以后,它就只能工作在耦合器的工作状态,成为一个耦合器。当汽车处于高速轻载时,其效率必然很低。当汽车高速轻载时,把变矩器的泵轮和涡轮直接锁止在一起形成机械传动,充分发挥机械传动效率高的特点,汽车在良好路面行驶时,通过锁止装置把泵轮和涡轮锁止在一起,使汽车高速行驶时的效率大为提高。

第二节油泵

液压系统的动力源主要是油泵。在自动变速器中的电液控制系统中所用的油泵大致有三种类型。一种是齿轮泵,一种是转子泵,第三种是叶片泵。

一、齿轮式油泵的结构和原理

在自动变速器中所用的齿轮泵一般是内啮合齿轮泵。图2-5是日本丰田汽车公司常用的齿轮泵的另部件分解图。这种泵主要由泵体、从动论(齿圈)、主动轮和导轮轴组成。由于从动论是一个齿圈且较大,而主动轮是一个较小地外齿轮,所以,在主、从动齿轮之间的空隙用一个月牙型隔板把这个容腔分为两部分(见图2-5)。其中一腔是进油腔(或称吸油腔),另一腔是压油腔(或称排油腔)。

图2-5 内啮合齿轮泵

相关文档
最新文档