2021年大学物理综合练习册答案(南航)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*欧阳光明*创编 2021.03.07
《大学物理》综合练习(一)参
考答案
欧阳光明(2021.03.07)
一、选择题
1.D ;2.D ;3.C ;4.C ;5.C ;6.C ;7.B ;8.A ;9.D ;10.D 。
二
、
填充
题
1.m /s 2-;s 2;m 3;m 5。
2.j t i t
)3
1
2()1(32+++;
j t i 22+。
3.
v h
l h 2
2
-。
4.2m/s 8.4;2m/s 4.230。
5
.
m
t kv mv t v +=
00)(;
x m
k e v x v -
=0)(。
6.J 18-。
7.rg v π16320;3
4。
8.R
GMm
6-。
9.θsin 2gl ;θsin 3mg ;
θsin 2g ;θcos g 。
10.j mv 2-;j R
mv
π22-。
11.v M
m m
V +-。
12.m 3.0。
13.100
r r v ;20212121mv mv -。
三、计算题
1.(1) j t i t r
)1(342++=;j t i t v 346+=;j t i a 2126+=。
*欧阳光明*创编 2021.03.07
(2) j t i t r r r 42
013+=-=∆。
(3) 19
2
+=x y 。
2.(1) ⎰
-=+
=t
t t a v v 02
01d ,3003
1
3d t t t v x x t
-+=+=⎰。
(2) 0=v 时s 1=t ,该时刻2m/s 2-=a ,m 3
2
3=x 。
(3) 0=t 时m 30=x ,0=v 时(相应s 1=t )m 3
231=x ,
m 3
2
01=
-=∆x x x 。
3.(1) ⎪⎩⎪
⎨⎧==-=-332
2211a m g m a m g m T a m T g m μμ 解得 ⎪⎪⎩
⎪⎪⎨⎧=====+-=232322121m/s 96.12.0m/s 88.56.0g g m m a g g m m m m a μμ
(2) 2m 相对于3m 的加速度g a a a 4.03=-=',且2
2
1t a s '=
,3m 移动距离2
332
1t a s =
,因而m 20.04.04.02.033=⨯=
'=g g s a a s 。
4.切向:t v m kv d d =-,两边积分⎰
⎰-=t
v v t m k v v 0d d 0,得t m k
e v v -=0。
法向:t m k t m k e T e l v m l v m T 202202--===,其中l
v m T 20
0=为初始时刻绳
中张力。
5.利用机械能守恒和牛顿定律 ⎪⎪⎩
⎪⎪⎨⎧=-+-++=l v m mg T mgl mv mv 2
2
20)cos()]cos(1[2
121θπθπ 从以上两式中消去v ,得)cos 32(θ+=mg T
0=T 时,9413132cos 1
'︒=⎪⎭
⎫
⎝⎛-=-θ。
01
v
6.⎪⎩⎪
⎨⎧==-+=21
22211122211110sin sin cos cos m
m v m v m v m v m v m θθθθ
解得 ︒==-303
3
tan 1
2θ m/s 32.173102==v
由于
2
2
221121212121v m v m v m +=,即 22212v v v +=,系统机械能守恒,所以是弹性碰撞。
7.(1) ⎩⎨⎧==-a
m T a m T g m B AB A AB A ,消去AB T 得 g g m m m a B A A 21=+=
又 2
21at l =
,得 m 4.05
4
.022=⨯==a l t (2) 系统动量不守恒,因为在拉紧过程中滑轮对绳有冲击力。
(3) 绳拉紧时A 、B 的速率 m/s 24.05.022=⨯⨯==g al v 设绳拉紧时间为τ,忽略重力的作用,由动量定理得
⎪⎩⎪
⎨⎧=-=--=-τ
τττ
BC C
BC AB B B AB A A T V m T T v m V m T v m V m 解得 m/s 33.1232=⨯=+++=
v m m m m m V C B A B A 8.设两球碰撞后共同速率为1v ,由动量守恒定律得
02121)(v m v m m =+ (1)
碰撞后系统机械能守恒
202212121)(2
1
)(21)(21l l k v m m v m m -++=+ (2) 系统对O 点的角动量守恒
αsin )()(211021lv m m v l m m +=+ (3)
由以上三个方程解得
○ B
2
v
2
120222
12
02)(m m l l k m m m v m v +-+-
=
, 2022
2
1200
01
)(sin l l k m m m v l v l -+-
=-α
9.设卫星质量为m ,地球质量为M ,由角动量守恒定律和机械能守恒定律,得
2211r mv r mv =, 2
221212121r mM
G mv r mM G
mv -=- 从以上两式解得
)(22112
1r r r GMr v +=
,)
(22121
2r r r GMr v +=
又2
R
mM
G
mg =,2gR GM =,代入上式,得 )(221121r r r gr R
v +=,)
(22121
2r r r gr R v +=
《大学物理》综合练习(二)参考答案
一、选择题
1.C ;2.C ;3.B ;4.C ;5.B ;6.C ;7.D ;8.①E ,②C 。
二、填充题
1.m N 1098.32⋅⨯。
2.rad/s 1095.42⨯。
3.m /s 42.5。
4.⎪⎪⎭
⎫ ⎝⎛-1222
h gt mR 。
5.L 33
;L g 3。
6.L
g 2cos 3θ
;
L
g θ
sin 3; θsin 3Lg ;2cos 3θ
g a t =
;θsin 3g a n =;θcos 4
1mg F t =;θsin 2
5
mg F n =;
1sin 994
1
222+=
+=θmg F F F n t ;
θ
θβsin 10cos arctan arctan
==n t F F 。
三、计算题
1. 设1T 、2T 分别为物体m 与滑轮间、球壳与滑轮间绳的张力,J 为球壳绕竖直轴的转动惯量,a 为物体m 的加速度大小,方向竖直向下。
由转动定律和牛顿第二定律,得
球壳: R
a
MR R a J
J R T 2232===α (1) 滑轮: r
a
J J r T T 00021)(==-α (2)
物体: ma T mg =-1 (3) 由(1)~(3)式解得:2
032
r J M m mg
a ++=
,ah v 2=2
032
2r
J M m mgh
++= 2. 钢棒绕其转轴的转动惯量
2
2
22
221m Kg 53.122.106.122.14.6121221212⋅=⎪⎭
⎫ ⎝⎛⨯⨯+⨯⨯=
⎪
⎭⎫
⎝⎛⨯+=+=l m Ml J J J
(1) 由动能定理得轴摩擦力所做的总功A
J 1060.42
142
0⨯-=-=∆=ωJ E A k
(2) 恒定力矩的功 n M M A πθ2==,故在s 32内转过的转数
(rev)9.62439
253.120.321060.4224=⨯⨯⨯⨯⨯===ππαππJ A M A n
(3) 当摩擦力矩不恒定时,只有力矩作功可以计算,无需任何附加条件,且
J 1060.44⨯-=A
3.(1) 由转动定律 ωωK t J -=d d ,积分 ⎰⎰
-=2/0
00d d ωωωωt
t J K ,得
2ln K
J
t =
(2) 由动能定理 202
2
08
32122112ωωωJ J J E E A k k -=-⎪⎭⎫ ⎝⎛=-= 4.取杆自由悬挂时的质心所在位置为势能零点,杆对离其一端4/l 的水平
轴的转动惯量为
22
24874121ml l m ml J =⎪⎭
⎫ ⎝⎛+=
系统在整个运动过程中机械能守恒,故有
2
212
0l mg J =ω,l g 7340=ω,0ωω> 5.(1) 碰撞过程不计摩擦力的影响,系统对O 点的角动量守恒
02
122210234330sin 2ωωωl m l m l m J v m l
≈⎪⎪⎭
⎫ ⎝⎛+==︒ 23325
.040002.03
230sin 2
120=⨯⨯⨯=⨯
︒=
l m v lm ωrad/s
(2) 在距O 点r 处取一长为r d 质元,摩擦力大小为
r l g m mg f d d d 1μμ==,f d 对O 点的力矩 r r l
g
m f r M d d d 1μ-=-=,
则整个细杆所受的摩擦力对O 点的力矩为
⎰⎰
-=-==l l gl m r r l g m M M 00112
d d μμ
由动能定理 2
022
121ωωθJ J M -=
rad 68.08.92.03232
32121220120212
0=⨯⨯==-
⨯
-=-=g l gl m l m M J μωμωωθ
6.系统对通过其中心的水平轴的角动量守恒
vl m J ul m '-='ω
即 ωω2
3
1)(ml J l v u m ==+' (1)
因小球和细杆作弹性碰撞,系统机械能守恒
2222
1
2121ωJ v m u m +'=' (2) 由(1)和(2)式解得
m
m m m u v '+'-=
3)
3(,l m m u m )3(6'+'=ω
7.(1) 在距圆心r 处取一宽度为r d 的圆环,其上所受的阻力大小为f d ,则
r kr r r kr s kv f d 4d 4d d 2πωπω===
圆盘所受的空气阻力矩为
⎰⎰
⎰
-=-
=-
==R
R
kR r kr f r M M 0
43d 4d d πωπω
(2) 由转动定律
θ
ω
ω
θθωωπωd d d d d d d d 4J t J t J
kR M ===-= 积分
⎰
⎰
-
=θ
ωωπθ0040
d d kR J
得 2
040
240221
kR m kR mR kR J πωπωπωθ=== 2
2042kR
m n πωπθ
==
《大学物理》综合练习(三)参考答案
一、选择题
1. D ;2.A ;3.B ;4.A ;5.B ;6.B ;7.C ;8.A ;9.C ;
10.B ;11.E ;
12.D ;13.A ;14.A 、B 、D ;15.B 、C 。
二、填充题
1.p v 、v 、
2v ; 2.1:1、3:5; 3.
p
d kT 2
2π、正比、
T
p
d km 216π、
平方根成反比; 4.4、4; 5.Ⅱ、0v 、)1(A N -; 6.(1)单位体积中速率在v v v d +→区间内的分子数,(2)速率小于1v 的分子数,(3)速率大于0v 的所有分子的平均速率;
7.(1)等压,(2)等容,(3)等温,(4)等容; 8.%29、%71; 9.绝热过程、等压过程; 10.⎪⎪⎭⎫
⎝⎛-+--12
1211ln
V V a b V b V RT ; 11.2
1
ln 11T V p S =
∆、0=∆S 。
三、计算题
1.(1)0v v =时有a kv v Nf ==00)(,0
v a
k =
∴。
由归一化条件 N av av =+002
1 得 0
32v N
a =。
(2)025.12d )(0
v a v v Nf N v v =
=∆⎰
,3
N N =∆。
(3)N a v v N a v v v Nv a v v v vf v v v v 611d d d )(2020
=+⎪⎪⎭
⎫
⎝⎛=
=
⎰
⎰
⎰
∞
,09
11
v v =∴。
2. 证明:p
v v p kT
mv v e v v v e
kT m v f p 1424)(2
2
2
222
/3⋅
⎪⎪⎭
⎫
⎝⎛=
⋅⎪⎭
⎫
⎝⎛=⎪⎪⎭
⎫ ⎝⎛--πππ
e
v v f p p π4
)(=
,其中 m
kT
v p 2=。
在v v v p p ∆+~区间内的分子数为
kT m
e
v
N e
v v
N v v Nf N p p 244)(ππ∆⋅=
∆⋅=
∆=∆,T
N 1∝∆∴。
3.(1))(2
)(211221212V p V p i
T T R i E E E -=-=-=∆ (2)))((2
1
2112p p V V A +-=
(3)))((2
1
)(221121122p p V V V p V p i A E Q +-+-=+∆=
)(2
1
)(21)(2122111221122V p V p V p V p V p V p i -+-+-=
⎪⎪⎭⎫ ⎝⎛-+-+=
121
211112221
)(21p p V V V p V p V p i 1212p p V V = ,)(2
1)(21121122T T R i V p V p i Q -+=-+=∴
R i T T Q C 2
112+=-=
,5=i ,R C 3=∴ 4.(1)用热力学第一定律证明
反证法:如图,设等温线A 与绝热线B 相交于1、2两点,由于1、2在等温线上,内能相等21E E =。
又1、2在绝热线上,
0=Q 。
根据E A Q ∆+=,而21→过程
中系统对外做功不为零,所以21E E ≠,即0≠∆E ,因此绝热线和等温线不能相交于两点。
(2)用热力学第二定律证明
如上图作121−→−−→−B A 循环,此过程对外作有用功(所围面积),但
该循环只在等温过程中吸热,而没有其它影响,即违反热力学第二定律,因此绝热线和等温线不能相交于两点。
5.(1)p
a
V =
,22
V a p =∴,系统对外界做功为
⎪⎪⎭⎫ ⎝⎛-==
=
⎰
⎰
21
22211d d 2
1
2
1
V V a V V a V p A V V V V (2)12
112
1222
22
112212<===V V V V a V V a V p V p T T ,即温度降低。
6.(1)b a →等温膨胀过程吸热,c b →等容过程放热。
(2)2V V c =,1
2
1
1-⎪⎪⎭
⎫ ⎝⎛=γV
V T T c
(3)12
1
21121112
ln 1111ln )(111V V V V V V RT M M T T C M M Q Q Q Q mol C V mol ab
bc -⎪⎪⎭⎫ ⎝⎛-⋅
--=--=-=-
=γγη
7.致冷系数 2.1222
2682252732122==-=-==
T T T A Q W 卡 J 1022.118.12100042⨯=⨯==∴卡AW Q (从室外吸收的热量) 传给室内的热量 J 1032.110)1.022.1(4421⨯=⨯+=+=A Q Q 8.对ABO 过程,外界做功J 3011-==Q A ; 对ODC 过程,对外做功J 7022==Q A ; OA BO Q Q Q +=1 ,CO OD Q Q Q +=2
CA BD Q Q Q Q +=+∴21,J 14021=-+=CA BD Q Q Q Q 9.C 0︒水至C 100︒水:设想该过程为一个可逆的等压过程
kJ/K 30.1273
373ln 18.41ln
d d 1)(d 122
1
=⨯⨯===⎪⎪⎭
⎫ ⎝⎛==
-⎰
⎰
⎰
T T MC T
T
MC
T C M M
T T
Q S S T T B A
B
A p mol p
A B
C 100︒水至C 100︒水蒸汽:设想该过程为一个可逆的等温过程
*欧阳光明*创编 2021.03.07
*欧阳光明*创编 2021.03.07 kJ/K 34.7)()(kJ/K 04.637322531)(d =-+-=-=∆=⨯===
-⎰
A B B C A C AC C B T B C S S S S S S S T M T Q S S λ。