利率期限结构理论讲解

合集下载

经济师中级金融复习之利率期限结构理论

经济师中级金融复习之利率期限结构理论

经济师中级金融复习之利率期限结构理论一、中级经济师金融利率期限结构理论(1)纯预期理论该理论把当前对未来的预期是决定当前利率期限结构的关键因素。

核心论点是远期利率等于市场对于未来实际利率的预期。

该理论认为,市场因素使任何期限长期债券的收益率等与当前短期债券收益率与当前预期的超过到期的长期债券收益率的未来短期债券收益率的几何平均。

如果买卖债券交易成本为零,上述假设成立的话,该理论结论是:投资者购买长期债券并持有到期所获得的收益与在同样时期内购买短期债券并滚动操作获得的收益相同。

即无论投资者采取什么样的投资策略,他都可以期望得到同样的收益率。

「例」假设1年的即期利率r1=8%,第二年的期望利率E(r2)=10%.如果债券按这样的利率结构定价,1年期零息债券的价格应为1000美元/1.08=925.93美元,2年期零息债券的价格为1000美元/(1.08×1.10)=841.75美元。

纯预期理论对收益率曲线形状的解释:市场参与者预期未来短期利率等于目前的短期利率——收益率曲线为水平线市场参与者预期未来的短期利率下降—收益率曲线向下倾斜市场参与者预期未来的短期利率上升-——收益率曲线向上倾斜(2)分隔市场理论该理论认为不同期限债券间的替代性极差,即无法替代;而且资金的供给方和需求方对特定期限又有极强的偏好。

由于不同期限债券的低替代性所以资金从一种期限债券流向另一处具有较高利率期限债券的几乎不可能。

所以,该理论认为公司及财政部债券管理决策对收益曲线的形态有重要影响。

如果当前的企业和政府主要发行长期债券,那么收益曲线相对陡些;如果当前主要发行短期债券,那么短期收益率将高于长期收益率。

(3)期限偏好理论期限偏好理论综合了期限结构其余三种理论的内容。

该理论假设借款人和贷款人对特定期限都有很强的偏好。

但是,如果不符合机构偏好的期限赚取的预期额外回报变大时,实际上它们将修正原来的偏好的期限。

期限偏好理论是以实际收益为基础的,即经济主体和机构为预期的额外收益而承担额外风险。

利率期限结构理论讲解

利率期限结构理论讲解

利率期限结构理论讲解利率期限结构理论,也称为利率结构理论或期限结构理论,是描述不同期限债券的利率之间关系的一种理论框架。

它试图解释为什么不同期限债券的利率不同,以及它们之间的关系如何变化。

利率期限结构理论是金融市场和债券投资者常用的分析工具,有助于理解债券市场的运作和预测未来的利率走势。

在利率期限结构理论中,利率分为短期利率和长期利率。

短期利率指的是短期债券的利率或即期利率,而长期利率指的是长期债券的利率。

利率期限结构曲线是以利率期限为横轴、利率为纵轴,绘制不同期限债券利率的曲线图。

利率期限结构曲线有很多形状,常见的形状包括上升型、下降型和平坦型等。

1.期望理论:该理论认为利率期限结构取决于投资者对未来利率走势的预期。

如果投资者预期未来的利率将上升,他们就要求更高的利率来补偿风险,从而使长期利率高于短期利率。

反之,如果预期未来的利率将下降,投资者就会接受较低的利率,使长期利率低于短期利率。

期望理论解释了利率期限结构曲线上升型和下降型的形状。

2.流动性偏好理论:该理论认为投资者会对长期债券的投资具有风险厌恶,因为长期债券更容易受到利率变动的影响。

因此,投资者要求较高的利率来补偿他们对风险的担忧,使长期利率高于短期利率。

流动性偏好理论解释了利率期限结构曲线上升型的形状。

3.市场分割理论:该理论认为市场上的不同债券投资者有不同的投资偏好,从而导致不同期限债券之间的利率差异。

例如,机构投资者可能更喜欢长期债券,而个人投资者则更偏好短期债券。

因此,市场分割理论认为不同期限债券的利率取决于它们所面对的不同投资者的需求和供给关系。

市场分割理论解释了利率期限结构曲线平坦型的形状。

需要注意的是,利率期限结构理论并不是完美的,它只是提供了一种解释和描述不同期限债券利率之间关系的框架。

实际上,利率期限结构受到很多因素的影响,包括货币政策、通胀预期、经济周期和市场供需等。

因此,利率期限结构的变化和预测并不总是准确,需要综合考虑多种因素进行分析。

利率期限结构理论

利率期限结构理论

传统的利率期限结构理论
短期利率的期望值可以通过远期利率基于 三种不同的理论来估计。
➢ 市场期望理论 ➢ 流动性偏好理论 ➢ 市场分割理论
未来利率期限结构
当前零息债券的价格
当前不同期限债券的到期收益率
当前利率期限结构
远期利率 未来短期利率的期望值
三种不同的假定:
(1)市场期望理论 (2)流动性偏好理论 (3)市场分割理论
三名美国经济学家提出 。
②局部均衡分析: Ho-Lee模型 创始人是两个韩国人托马斯·侯(Thomas.y.ho)和李尚宾(Sangbing Lee
市场期望理论
假设条件:
1. 投资者风险中性 ▪ 仅仅考虑(到期)收益率而不管风险。 ▪ 或是在无风险的确定性环境下。
2. 所有市场参与者都有相同的预期,金融市场 是完全竞争的;
▪ 长期债券收益要高于短期债券收益,因为 短期债券流动性高,易于变现。而长期债 券流动性差,人们购买长期债券在某种程 度上牺牲了流动性,因而要求得到补偿。
由于投资者不愿意投资长期债券,因此为了吸引投资者, 投资两年期债券的收益,应高于先投资1年期债券后, 再在下1年再投资1年期债券的收益,即
(1 y2l )2 (1 y1)(1 E(r2))
3. 在投资人的资产组合中,期限不同的债券是 完全替代的。
▪ 在上述的假定下,投资于两年到期的债券的总报 酬率,应等于首先投资于1年到期的债券,随后 再转投资于另一个1年到期的债券所获得的总报 酬率,即
(1 y2)2 (1 y1)(1 E(r2))
第1年投资(已知)
第2年投资(预期)
根据远期利率公式有 (1 y2 )2 (1 y1)(1 f2 ),则
给和需求,从而形成不同的市场,它们之间不能互相替代。根据供求 量的不同,它们的利率各不相同。

利率期限结构及其应用研究

利率期限结构及其应用研究

利率期限结构及其应用研究利率期限结构是指所有具有相同风险和信用质量的金融资产的利率和到期日之间的关系。

在金融市场中,利率期限结构的确立对于公司和个人的投资和融资决策具有重要意义,并可以预测未来的经济状况。

本文将介绍利率期限结构的基本概念、理论模型、实证研究和应用。

一、基本概念利率期限结构是金融市场上利率与到期日之间的关系,它包含了预期的未来利率、风险溢价和流动性溢价。

为了确定利率期限结构,需要考虑融资人所面临的风险,包括信用风险、市场风险和流动性风险。

此外,由于利率对于借入者和出借者都具有重要意义,因此金融市场上的资产和负债都会受到利率期限结构影响。

利率期限结构的概念可以通过图形来表示。

一般来说,利率期限结构的形状分为三种类型:正常、倒挂和平坦。

正常的利率期限结构表示长期利率高于短期利率,这是因为借入者需要为更长时间的负债支付更高的利息。

倒挂的利率期限结构表示短期利率高于长期利率,通常是因为市场对未来经济状况的担忧导致的。

平坦的利率期限结构表示长期和短期利率之间的差距很小,这表明市场对于未来的经济状况持中立态度。

二、理论模型利率期限结构的理论模型主要有两种:期望理论和风险溢价理论。

期望理论认为,长期利率等于短期利率加上预期通货膨胀率和预期实际利率,即Rt = rt + Et (π) + Et (Rt+1)。

风险溢价理论认为,长期利率等于短期利率加上一个风险溢价,即Rt = rt + rts。

其中,rts表示短期利率与长期利率之间的风险溢价,代表着市场对未来经济情况的预期。

三、实证研究许多研究表明,利率期限结构预示着未来经济状况。

根据利率期限结构的形状,可以预测通货膨胀率、资产收益率和股票市场表现等。

例如,研究表明,当利率期限结构倒挂时,通常是经济衰退的信号。

另外,一些文献认为,利率期限结构与货币政策、宏观经济环境和市场流动性等因素有关。

四、应用利率期限结构的应用主要有两个方面:市场投资和企业融资。

利率期限结构理论

利率期限结构理论

利率期限结构理论利率期限结构理论是指研究不同期限债券利率水平之间的关系的理论。

根据这一理论,不同到期期限的债券利率之间存在一定的关系,即利率期限结构。

利率期限结构理论对于理解债券市场的运作机制、预测利率变动和投资决策等都具有重要的意义。

邓南坡曲线的解释有两种主要观点,一种是预期假说,另一种是流动性偏好假说。

预期假说认为利率期限结构取决于投资者对未来利率变动的预期。

根据此假说,如果投资者预期将来的利率会上升,那么他们会要求更高的利率来补偿这一风险。

因此长期债券的收益率会高于短期债券的收益率。

相反,如果投资者预期将来的利率会下降,那么他们会买入长期债券以获取更高的利率,这会导致短期债券的收益率高于长期债券的收益率。

流动性偏好假说则认为利率期限结构取决于投资者对债券的流动性的偏好。

根据此假说,长期债券的收益率会高于短期债券的收益率,是因为长期债券相对于短期债券更具有风险和流动性风险。

投资者愿意持有具有较高流动性的短期债券,因此要求更低的利率;而对于更具风险的长期债券,投资者要求更高的利率以补偿这一风险。

利率期限结构理论对投资者具有重要意义。

通过分析利率期限结构,投资者可以了解市场对未来的预期和风险偏好,从而作出对冲风险、配置资产的决策。

例如,如果预期利率会上升,投资者可能更倾向于购买短期债券,以便在利率上升时可以重新投资;相反,如果预期利率会下降,投资者可能更倾向于购买长期债券以获取更高的利率长期收益。

总之,利率期限结构理论对于理解债券市场的运作机制、预测利率变动和投资决策具有重要的作用。

通过分析预期假说和流动性偏好假说以及其他相关因素,投资者可以更好地理解利率的形成和变动,从而制定更合理的投资策略。

利率期限结构理论也为学者和政策制定者提供了研究和管理债券市场的重要工具。

利率期限结构是什么

利率期限结构是什么

利率期限结构是什么利率期限结构是指不同期限的借贷利率之间的差异关系。

它是金融市场的一种重要现象,对经济和金融市场的运行具有重要影响。

本文将详细介绍利率期限结构的概念、形成原因以及其在金融市场中的意义。

一、利率期限结构的概念利率期限结构是一种描述不同借贷期限下利率水平和利率之间关系的工具。

在金融市场中,借款人通常可以选择不同期限的借贷方式,而不同期限的借贷利率通常是不同的。

利率期限结构的形成是由市场供求关系、风险偏好以及宏观经济环境等多种因素综合影响的结果。

二、利率期限结构的形成原因1.市场供求关系:供求关系是影响利率期限结构的重要因素之一。

当市场中借款需求大于借款供给时,长期借款的利率往往比短期借款的利率更高,从而形成正斜率的利率期限结构;相反,当借款供给大于需求时,长期借款的利率可能低于短期借款利率,形成负斜率的利率期限结构。

2.风险偏好:借款人对于风险的偏好也会影响利率期限结构。

一般来说,借款期限越长,风险越高,借款人要求的利率也越高。

因此,利率期限结构通常呈现出逐渐上升的形态。

3.宏观经济环境:宏观经济变量对利率期限结构的形成也有一定的影响。

例如,经济增长预期、通货膨胀预期、货币政策等因素都可能对利率期限结构产生影响。

三、利率期限结构的意义1.预测经济走势:利率期限结构可以作为一种预测经济走势的工具。

根据利率期限结构的形态,我们可以得出市场对未来经济走势的预期。

如果利率期限结构呈现出正斜率形态,说明市场预期未来经济将好转;反之,如果利率期限结构呈现负斜率或平坦的形态,说明市场对经济未来不太乐观。

2.引导市场定价:利率期限结构对市场定价也具有指导意义。

借款人和投资者可以根据利率期限结构来确定借贷和投资的最佳期限,从而在市场中获取更优的收益。

3.评估金融风险:利率期限结构的变动可以反映金融市场的风险环境。

例如,当利率期限结构出现倒挂,即长期利率低于短期利率时,可能预示着经济衰退和金融风险上升。

利率期限结构ppt课件

利率期限结构ppt课件

例题
• 策略一 投资于一个两年期债券
1( 1i2t)2 1
1
• 策略二 连续投资于两个一年期债券
i i 1 (1 )(1 e ) 1
t
t 1
1
套利之下,策略一和策略二的收益率趋于相等
(1i2t)2
(1
it
)(1
ie ) t 1
结论
• 简化
e
i i t
t1
i2t
2
• 一般的

e ...... e
市场分割假说对三个事实的解释
• 无法解释第一个事实和第二个事实,因为它将不同期限的债券市场看成完全分割的市场。
• 市场分割假说可以解释第三个事实,即典型的收益率曲线总是向上倾斜的。因为在现实经济 中,人们更偏好期限更短,风险较小的债券,而债券发行者一般倾向于发行长期债券以满足 经济发展之需,使得短期债券价格较高,利率较低,长期债券价格较低,利率较高,因此收 益率曲线向上倾斜。
• 利率期限结构是指债券的到期收益率与到期期限之间的关系,该结构可以用收益率曲线表示,或 者说收益率曲线表示的就是债券的利率期限结构。
三个事实
1 不同期限债券利率随时间一起波动 短期利率低,收益率曲线向上倾斜,反之则反
2
收益率曲线几乎都是向上倾斜的,表明长期利率往往高于短期利率
3
纯粹预期假说 分割市场假说 流动性升水假说
• 即典型的收益率曲线总是向上倾斜的。因为投资者偏好短期债券,故随着债券期限延长,期限补偿亦相应 增加,即便未来短期利率预期平均值保持不变,长期利率也将高于短期利率,从而使得收益率曲线总是向 上倾斜。
i i i t t1
t ( n 1)
int
n
对收益率曲线形状的解释

利率的期限结构投资学财经大学

利率的期限结构投资学财经大学

(五)短期利率和收益率曲线斜率
当下一年度短期利率 r2 大于今年得短期利 率r1时, 收益率曲线 向上倾斜。
暗示收益率预计会 上升。
当下一年得短期利率 r2 小于今年得短期利 率r1时, 收益率曲线 会下降。
暗示收益率预计会 下降。
图 15、3 短期利率和即期利率
(六)根据观察到得收益率解出 未来短期利率
(1 y2 )2 (1 r1)[1 E(r2 )]
也就是5%,利率期限结构呈现水平。 如果下一年得期望短期收益率E(r2) 就是6%,
则两年期即期利率y2将就是5、5%,利率期限 结构呈现向上。而下一年得期望短期收益率 E(r2) 如果就是4%,则两年期即期利率y2将就 是4、5%,利率期限结构呈现向下。
例15、1 附息债券得估值
使用表15、1得折现率,计算3年期, 票面利率为 10% 得附息债券(假设面值为$1000)得价值:
价值
$100 1.05
$100 1.062
$1100 1.073
价值 = $1082、17 ,又有:
1082.17
$100 1.0688
$100 1.06882
$1100 1.06883
利率的期限结构投资学财经大学
一、利率期限结构概述
利率期限结构就是不同期限债券贴现现金流得 利率结构。
通常情况下,期限短得现金流用较低得利率贴 现,即要求较低得收益率;期限长得现金流用较 高得利率贴现,即要求较高得收益率。
收益率曲线显示了收益率和期限之间得关系, 所以收益率曲线就是利率期限结构得图形表现。
收益率曲线有四种类型:
从收益率曲线四种类型中可以看到,不同期限债 券得收益率不相同。
收益率曲线在固定收益证券领域有重要得作用。

13 利率期限结构理论

13 利率期限结构理论

• 投资人要从债券投资中受益,首先要了解市 场对未来的通货膨胀或者通货紧缩的预期, 然后要作出比市场更准确地判断。 • 金融工程师可利用当前市场上不同到期日的 国债,在客户指定时间段内向其提供固定的 贷款利率。
– 方法:在金融市场上同时买入并卖出现值相同的 两款到期日不同的国债,这两款国债的到期日间 隔正好是客户指定的时间段。
P( y)

C ie
N 1
n i y
Fe
n i y
n N y
i 1
• 久期
niC i e
D ( y)
i 1
n N (C N F )e P( y)
n N y
• 测度了债券价格对利率变化的敏感性
d dy P( y) D ( y)P( y)
• 正是久期的上述特征给我们的债券投资提供 了参照,当我们判断当前的利率水平存在上 升可能,就可以集中投资于短期品种、缩短 债券久期;而当我们判断当前的利率水平有 可能下降,则拉长债券久期、加大长期债券 的投资,这就可以帮助我们在债市的上涨中 获得更高的溢价。
• 一般来说,金融市场上不应该出现这样无 风险套利的机会,如果有机构投资人通过 剥离创造出交易利润,则说明市场缺乏流 动性。 • 零息票作为一种到期一次性还本附息的债 券,承担了一定的流动性折扣,造成其价 格低于理论水平。投资机构将零息票进行 分段剥离之后,使这种交易品种具有了更 多的流动性,由此创造了一定的价值。
A
B
C
0
1
2
2.411
3
3.5953.83
4
5
6
7
剩余年限
• A区内的期限结构曲线处于上升阶段。表示 市场预期从现在起开始到1.184(=3.5952.411)年之内,中国人民银行有可能会调整 利率以应对通货膨胀。因此,1.184年的国 债(剩余年限3.595)价格较低,造成该款国 债到期实际收益率(2.80%)较高。 • C区内期限结构和A区一样,体现了市场对远 期资者对债券的期限没有偏好,其行为取决于 预期收益的变动。如果一种债券的预期收益低于 另一种债券,那么,投资者将会选择购买后者。 • 2.所有市场参与者都有相同的预期。 • 3.在投资人的资产组合中,期限不同的债券是完 全代替的。 • 4.金融市场是完全竞争的。 • 5.完全代替的债券具有相等的预期收益率。

简述利率期限结构理论

简述利率期限结构理论

简述利率期限结构理论利率期限结构理论是描述不同期限的利率之间的关系的理论模型。

这个理论对投资者和借款者在决策投资和借贷时如何选择期限提供了一种理论解释。

在金融市场中,利率期限结构理论对于决策者和政策制定者来说具有重要的意义,因为它可以影响金融市场的利率设定和资源配置。

利率期限结构理论的基本观点是,不同期限的利率(即短期利率、中期利率和长期利率)之间存在一种关系,这种关系可以被称为利率期限结构。

根据这个理论,长期债券的利率应该高于短期债券的利率,因为长期债券面临的风险和不确定性更高。

此外,利率期限结构理论还表明,短期利率和长期利率之间的差异可以被用来预测经济的未来走势。

利率期限结构理论的几个核心假设是利率的期望假设、流动性偏好假设和风险偏好假设。

首先,利率期限结构理论假设投资者有一个关于未来短期利率的预期,这个预期反映了市场参与者对未来经济发展的看法。

根据这个假设,长期利率是由短期利率的预期所决定的,如果投资者预期短期利率会上升,那么长期利率也会上升。

其次,利率期限结构理论假设投资者更倾向于持有短期债券而不是长期债券,这被称为流动性偏好。

这种偏好是由投资者对流动性的需求和风险规避的意愿所决定的,因为短期债券在未来的利率波动中更易于购买或出售。

最后,利率期限结构理论假设风险偏好是影响投资者选择债券期限的因素之一、根据这个假设,投资者更愿意购买短期债券,因为长期债券面临更多的风险和不确定性。

利率期限结构理论主要有两种解释:期望理论和流动性偏好理论。

期望理论认为,利率期限结构是由市场参与者对未来利率的期望所决定的。

如果投资者预期利率将上升,那么短期利率将高于长期利率。

流动性偏好理论则认为,投资者更喜欢购买短期债券,因为短期债券具有更高的流动性和可变性。

利率期限结构理论对金融市场和政策制定者有重要影响。

首先,理解利率期限结构的变化和因素可以帮助投资者和借款者在决策投资和借贷时选择合适的期限。

其次,利率期限结构可以提供对未来经济走势和利率变动的预测。

005.基本理论利率理论(二)

005.基本理论利率理论(二)

考点3:利率期限结构理论一、利率期限结构利率期限结构是指在某一时点上,不同期限债券的收益率与到期期限之间的关系。

1、期限结构与收益率曲线收益率曲线即不同期限的即期利率的组合所形成的曲线。

2、收益率曲线的基本类型从形状上来看,收益率曲线主要包括四种类型:3、利率期限结构的理论1)市场预期理论又称无偏预期理论,该理论认为利率期限结构完全取决于对未来即期利率的市场预期,长期债券的利率等于长期债券到期日之前各时间段内人们所预期的短期利率的平均值。

如果预期未来即期利率上升,则利率期限结构呈上升趋势;如果预期未来即期利率下降,则利率期限结构呈下降趋势。

在市场预期理论中,某一时点各种期限债券的收益率虽然不同,但是在特定时期内,市场上预计所有债券都取得相同的即期收益率,即长期债券是一组短期债券的理想替代物,长、短期债券取得相同的利率,即市场是均衡的。

【例】人们预期在未来8年中的短期利率平均水平为 9% ,那么按照市场预期理论,8年期债券的利率大致也是9%;如果预期8年后短期利率会升高,预期未来20年中短期利率平均水平为12% , 那么20年期债券的利率大致也是12%。

市场预期理论的前提假定:①投资者对债券的期限没有偏好;②期限不同的债券是完全可以替代的;③投资者的行为取决于预期收益率的变动;④完全替代的债券具有相等的预期收益率。

预期理论可以解释以下事实:①随着时间的推移,不同到期期限的债券利率有同向运动的趋势。

②如果短期利率较低,收益率曲线倾向于向上倾斜;如果短期利率较高,收益率曲线倾向于向下倾斜。

预期理论的缺陷在于无法解释这样一个事实,即收益率曲线通常是向上倾斜的。

因为根据预期理论,典型的收益率曲线应当是平坦的,而非向上倾斜的。

典型的向上倾斜的收益率曲线意味着预期未来短期利率将上升。

事实上,未来短期利率既可能上升,也可能下降。

预期理论还表明,长期利率的波动小于短期利率的波动。

3、利率期限结构的理论2)市场分割理论• 分割市场理论将不同到期期限的债券市场看作完全独立和分割开来的市场。

利率期限结构理论及模型应用浅析

利率期限结构理论及模型应用浅析

用广泛的Nelson-Siegel模型及利率是金融领域的一个核心变量,它实质上代表了资金的价格,反映了资金的供求关系。

利率期限结构是指某个时点不同期限的即期利率与到期期限的关系及变化规律。

不同期限的债券会有不同的收益率,会形成特定的利率期限结构,可以用收益率曲线来直观表达。

因其基准作用,对利率期限结构的研究和应用受到广泛的关注,利率期限是金融经济学中一个十分重要的基础性研究领域,在固定收益证券定价、利率风险管理以及货币政策制定等方面扮演着核心角色。

在宏观层面,中央银行货币政策制定与实施可从其中获得信息支持。

在微观层面上,利率期限结构是所有固收类证券定价、金融衍生品定价、资产定价的基础,也是揭示利率市场变化的总体水平和方向的基础,是投资者的基本分析工具。

此外,它还是参与者进行风险控制管理的一个重要参考指标。

尤其是国债收益率曲线反映了某一时点上国债到期收益率与到期期限之间的关系,集中反映了无违约风险利率水平,是金融市场的基准利率和投资者判断市场趋势的风向标。

国债收益率曲线包含丰富的未来利率、经济增长和通胀预期的信息,随着我国利率市场化进程的推进,加强对利率期限结构的研究有着重要的理论和现实意义,有利于更好地发挥货币政策的调控效果。

一、利率期限结构的三种理论利率的期限结构曲线,其横坐标是期限的时田琦程利率期限结构理论及模型应用浅析间长度,纵坐标是利率水平。

债券收益率曲线是其它债务工具,例如抵押贷款利率和银行贷款利率的基准,而且这些曲线形状的变动可以用来预测经济产出及其增长的变动。

收益率曲线一般具有以下三个特征:不同期限的债券收益率有同向运动的趋势;收益率曲线通常倾向于向上倾斜;短期债券收益率的波动通常要比长期债券收益率的波动大。

为了解释这些特征,研究者针对这三个特征提出了利率期限结构的三种理论:纯预期理论、市场分割理论及流动性偏好理论。

(一)纯预期理论该理论假设把当前对未来利率的预期作为决定当前利率期限结构的关键因素。

金融工程学——利率期限结构、久期及凸度

金融工程学——利率期限结构、久期及凸度

第一节 利率期限结构理论
一、利率期限结构的含义
• 利率期限结构是在某个时点上不同期限的利率所组成的一条 曲线,由于在某个时点上,零息票债券的到期收益率等于该 时期的利率,因此利率期限结构也可以表示为某个时点零息 票债券的收益率曲线。
第一节 利率期限结构理论
二、即期利率与远期利率
• 即期利率(Spot Rate)是某一给定时点上零息债券的到期收 益率。可以把即期利率想象为即期贷款合约的利率。
ft
-1,t
(1rt )t (1rt-1) )t
-1
-1
第一节 利率期限结构理论
三、传统的利率期限结构理论 (一)预期理论 (二)市场分割理论 (三)流动性偏好理论 (四)优先偏好理论
第一节 利率期限结构理论
四、现代利率期限结构理论 1.均衡模型
2.无套利模型
第一第节二节金久融期衍及生其产应品用市场
C
1 (1 y)2
T
(t2 t) Wt
t 1
其中:
Wt
ct (1 y)t
P
t表示现金流的时间;
ct 代表第t时期的现金流;
y表示债券的到期收益率;
T表示距离到期的期数;
P表示债券的市场价格。
第一节 第金三融节衍凸生度产品市场
三、凸度与债券价格波动的关系
修正久期以及凸度与债券价格变动的关系式为:
固定利率
A公司
4.0%
B公司
5.2%
浮动利率 6个月LIBOR+0.3% 6个月LIBOR+1.0%
表2.2 市场向A、B两公司提供的固定利率
第一第节二节金久融期衍及生其产应品用市场
三、久期的规律
1.只有零息债券的麦考利久期与它们的到期时间相等。 2.固定利息债券的麦考利久期小于它们的到期时间。 3.永久债券的麦考利久期等于[1+1/r]。 4.在到期时间相同的条件下,票面利率越高的债券,久期越 小。 5.在票面利率一样的条件下,到期时间越长的债券,其久期 一般也就越长。 6.在其他条件不变的情况下,债券的到期收益率越低,其久 期越长。

利率的期限结构

利率的期限结构

利率的期限结构一、利率期限结构的形式债务凭证的期限不同,利率也不同。

利率和债务凭证期限之间的关系,叫做利率的期限结构(term structure of interest rate )。

对于不同的债务凭证来说,利率期限结构可能是不同的。

概括来说,利率的期限结构有三种形式:第一种是利率不随着债务凭证期限的变化而变化。

不论债务凭证的期限是短是长,利率都保持不变。

这种利率期限结构叫做水平的期限结构(flat term structure)。

第二种是利率随着债务凭证期限的延长而提高。

债务凭证的期限越长,利率就越高。

这种利率期限结构叫做上升的期限结构(rising termstructure)。

第三种是利率随着债务凭证期限的延长而下降。

债务凭证的期限越长,利率就越低。

这种利率期限结构叫做下降的期限结构(declining term structure)。

投资者在投资侦务凭证的时候,最关心的是债务凭证的收益率。

虽然债务凭证的收益率和利率有所不同,但是它们存在着正相关的关系。

因此,在研究利率的期限结构时,实际上分析的是收益率的期限结构。

二、利率期限结构的理论解释利率的期限结构的理论有三种:市场预期理论,流动偏好理论和市场分割理论。

1.市场预期理论市场预期理论(The Market Expection Theory)是由费雪(IFisher)在18%年出版的(升值与利息》中提出来的。

希克斯(J. R. Hicks)等人对该理论的发展做出过贡献。

市场预期理论假定,债券投资者只关心如何获得最大利益,而不关心他所持有的债券的期限。

因此,不同期限的债券是可以相互替换的。

购买一张2年期限的债券(上海公积金提取)和先后购买两张1年期限的债券相比较,如果前者的收益率高于后者,投资者将选择前者;如果前者的收益率低于后者,投资者将选择后者。

市场预期理论据此提出,利率的期限结构是由人们对未来市场利率变化的预期决定的。

假设某投资者准备使用100美元进行为期2年的投资时,他可以有两种选择:第一种是购买一张2年期限的债券;第二种是先购买一张1年期限的债券,等待第一年结束时再购买一张I年期限的债券。

利率期限结构理论总结

利率期限结构理论总结

利率期限结构理论总结利率期限结构理论是金融经济学中的一个重要理论,它试图解释不同期限的利率之间的关系。

该理论的核心思想是,短期利率和长期利率之间存在一种相互关联的关系,这种关系能够反映市场参与者对未来的经济状况和货币政策预期的期望。

首先是无套利期限结构理论。

该理论认为,在不存在套利机会的情况下,债券投资者会根据长期预期收益率和短期利率来确定债券的价格与利率之间的关系。

该理论的核心是无套利条件,即认为市场是无套利的,不可能通过简单的利率套利操作获得超过市场平均收益率的回报。

无套利期限结构理论主要有三个流派,即期限偏离理论、期限结构假说和期限结构隐含义假说。

它们的共同点是都认为长期利率可以通过短期利率和预期通胀率来解释,且短期利率和长期利率之间存在一种均衡关系。

其次是期限风险溢价理论。

该理论认为,债券的利率高低取决于期限的长短和投资者对期限风险的需求。

期限风险溢价理论认为,长期债券由于期限的延长而导致的风险增加,因此需要给予额外的利率溢价。

根据这一理论,短期利率应该低于长期利率,因为短期债券的风险相对较低,而长期债券的风险相对较高。

期限风险溢价理论也可以用来解释利率上升和下降的原因,当投资者对未来的经济状况持悲观预期时,他们会购买较短期限的债券,从而导致短期利率下降,反之亦然。

最后是流动性偏好理论。

该理论认为,债券投资者更倾向于持有流动性较高的债券,因此对于具有相同期限的债券来说,流动性较高的债券会有较低的利率。

流动性偏好理论与其他两个理论不同之处在于它将投资者的行为与市场流动性结合在一起解释利率的形成。

流动性偏好理论认为,投资者愿意支付一定的流动性溢价来持有流动性较高的债券,因为这些债券在市场上更容易变现。

由于投资者的流动性偏好,较短期限的债券通常会有较高的价格和较低的利率。

总结来说,利率期限结构理论是金融经济学中的一个重要理论,它试图解释不同期限的利率之间的关系。

无套利期限结构理论、期限风险溢价理论和流动性偏好理论是该理论的三个主要观点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利率期限结构是描述债ห้องสมุดไป่ตู้到期收益率与到期日之间关系的理论框架,通过收益率曲线图形化展示。该结构反映了不同到期日的利率水平,以及市场对未来短期利率的预期。为解释收益率曲线所呈现的形态,学界提出了三大理论。首先是市场期望理论,它认为远期利率代表了市场对未来短期利率的预期,即收益率曲线反映了市场对未来利率走势的整体预期。其次是流动性偏好理论,这一理论在市场期望理论的基础上,引入了流动性溢价的概念,认为长期债券由于流动性较差,因此需要提供更高的收益率以吸引投资者。最后是市场分割理论,该理论认为不同到期日的债券市场是相互独立的,各个市场的供需关系决定了相应期限的债券收益率,收益率曲线则是各个独立市场均衡结果的反映。这三大理论从不同角度解释了利率期限结构的形成机制,为投资者提供了理解和预测市场利率走势的理论工具。
相关文档
最新文档