第1章 光辐射与光源_基本定律
应用光学公式
![应用光学公式](https://img.taocdn.com/s3/m/4d0ba13cbd64783e09122bbb.png)
n' n
② n '(
A:长为 N 的入射光线矢量 A’’:反射光线
③ n ' u ' nu
P n '2 n2 n2 cos2 I n cos I
( cos I
A ' A PN
3. 光焦度
A N ) | A|| N |
n ' n :+会聚-发散 r f n r n ' n
d ,D:通光直径,d:光轴展开长度 D
f' f 1 l' l n' n n' n 1 1 1 f' f 折合物距 折合像距 折合焦距 l' l y' fl ' y f 'l
3. 物像共轭距
sin(
min
第六章 光能
1. 辐射量与光学量
4/6 Lindt 2010.7.6
辐射能通量:W P d (瓦或尔格 /秒) V P d (瓦) 光通量 K 555 V P d (流明) P :某一波长附近具有功率 , K 555 683lm / W 最大 K (人眼敏感决定)黄光 P K 光谱光视效率 / 视见函数:V K 555 发光效率: W
7.
f ' 2 n' n' , H ,空 2 f n n ny n 1 n 1 , H , 空 n' y' n' n'
h tan U ' tan U f' 正切计算法 hi hi 1 di 1 tan U i 1 ', 令 tan U1 0, 任取h1 l ' l ' lk ' f ' 1 2 和高斯公式和li li 1 ' di 1 截距计算法 l2l3lk 令l 重复计算每一光组像距物距 1
第一章光的基本概念
![第一章光的基本概念](https://img.taocdn.com/s3/m/f268caff112de2bd960590c69ec3d5bbfd0ada20.png)
第⼀章光的基本概念第⼀章光的基本概念1.1 光的性质就⼈的视觉来说,没有光也就没有⼀切。
什么是光?光是指辐射能的⼀部分,即具有刺激视觉器官特性的辐射能。
从物理学的观点说,光是电磁波谱的⼀部分,波长范围在380~780nm(纳⽶)之间,这个范围在视觉上可能稍有些差异。
任何物体发射或反射⾜够数量合适波长的辐射能,作⽤于⼈眼睛的感受器官,就可看见该物体。
⼀般辐射能波谱的范围,可见光谱辐射能的波长在即380~780nm 之间,仅是辐射能中很⼩的⼀部分。
在室内设计中,光不仅是为满⾜⼈们视觉的功能,还是⼀个重要的美学因素。
光可以形成空间,改变空间或者破坏空间。
因此,室内照明是室内设计的重要组成部分之⼀,在设计之初就应该加以考虑。
1.2 光度量1、光通量光源在单位时间内向周围空间辐射出去的并能使⼈眼产⽣光感的能量,称为光通量。
单位为流明(lm)。
光通量=光效X功率。
2、发光强度(光强)光源在空间某⼀⽅向上单位⽴体⾓内发射的光通量与该⽴⽅体⾓的⽐值,称为光源在这⼀⽅向上发光强度,简称光强,单位为坎德拉(cd)。
3、照度照度是⽤来说明被照⾯(⼯作⾯)上被照射的程度,通常⽤其单位⾯积内所接受的光通量来表⽰,单位为勒克斯(lx)或流明每平⽅⽶(lm/m2)。
4、亮度亮度也是⽤来表⽰物体表⾯发光(或反光)强弱的物理量,被视物体发光⾯在视线⽅向上的发光强度与发光⾯在垂直于该⽅向上的投影⾯积的⽐值,称为发光⾯的表⾯亮度,单位为坎德拉每平⽅⽶(cd/m2)。
1.3 光与颜⾊1、⾊温将⼀标准⿊体加热(如⽩炽灯中的钨丝),随着温度升⾼⿊体的颜⾊开始沿着深红-浅红-橙-黄-⽩-蓝逐渐改变,当某光源发出的光的颜⾊与标准⿊体处于某温度的颜⾊相同时,我们将⿊体当时的绝对温度称为光源的⾊温,以绝对温度K 来表⽰。
基本⾊表:早霞3000k 黄昏 4000k正午5500k-5600k 其它⽩天时段 4800k(晴天时)阴天6500k左右⽩天正午的阴影和⽉夜 6700k左右⽩⾊路灯下偏紫⾊⾊温⽩炽灯⼟黄⾊聚光灯 3200k 烛光 1850k新闻灯 3200k 三基⾊⽇光灯 3200k商场⽇光灯 4500k2、显⾊性光源对物体本⾝颜⾊呈现的程度称为显⾊性,也就是颜⾊逼真的程度,显⾊性⾼的光源对颜⾊表现较好,我们所见到的颜⾊也就接近⾃然⾊,显⾊性低的光源对颜⾊再现较差,我们所见到的颜⾊偏差也较⼤,⽤显⾊指数(Ra)表⽰。
第一章-光辐射与发光源
![第一章-光辐射与发光源](https://img.taocdn.com/s3/m/0201484da9114431b90d6c85ec3a87c240288a34.png)
W/(m2·μm)
二、光度的基本物理量
• 光度单位体系是一套反映视觉亮暗特性的光 辐射计量单位。
(人眼的视觉细胞对不同频率的辐射有不同响应,辐射
度单位不能正确反映人的亮暗感觉。)
• 辐射度学的基本物理量Qe、Φe、Ie、Me、Le、Ee • 光频区光度基本物理量Qv、Φv、Iv、Mv、Lv、Ev
• 定义完全一一对应,其关系如表l—2所示。
光视 效 率
0.4
0.2
0.0 400
500
600
700
800
波 长 (nm)
• 光通量与辐射通量之间的关系
v Kme V
• 光度量与辐射度量的关系式的一般函数式
X v
Km
780 380
X
e
V
d
• 在光度学体系中,基本单位是发光强度Iv,其单位 是坎德拉cd。
• 坎德拉cd定义: • 当单色辐射光源频率为540×1012Hz,
表1-2 辐射度量和光度量之间的对应关系
辐射度物理量
光度量物理量
物理量名称
符号 定义或定义式
单位
物理量名称 符号 定义或定义式
单位
辐射能
Qe
hν
J
辐射通量
Φe
Φe=d Qe/dt
W
光量
Qv
Qv=∫Φvdt
lm·s
光通量
Φv
Φv=∫ IvdΩ
lm
辐射出射度
Me Me=dΦe/dS W/m2
光出射度
Mv Mv=dΦv/dS lm/m2
3. 绝对黑体(简称黑体):
• 在任何温度下,对任何波长的辐射能的吸收 率等于l,即αλ(T)≡l
第一章 光波与光源 光的电磁理论 激光的原理、特性和应用 发概要
![第一章 光波与光源 光的电磁理论 激光的原理、特性和应用 发概要](https://img.taocdn.com/s3/m/65e3d8cbb14e852458fb5754.png)
五、激光器的种类 种类分固体激光器、气体激光器、染料激光器。 固体激光器:以绝缘晶体或玻璃为工作物质。 少量的过渡金属离子或稀土离子掺入晶体或玻璃, 经光泵激励后产生受激辐射作用。主要有红宝石激 光器、钛宝石激光器、半导体激光器。 气体激光器:如He-Ne激光器、氩离子激光器、 CO2激光器、N2分子激光器等。 染料激光器:采用在适当的溶剂中溶入有机染 料作为激光器的工作物质。
3 受激吸收过程:在满足两能级之差的外来光子的 激励下,处在低能级的原子向高能级跃迁,c)图 受激辐射与受激吸收过程同时存在:实际物质 原子数很多,处在各个能级上的原子都有,在满足 两能级能量之差的外来光子激励时,两能级间的受 激辐射和受激吸收过程同时存在。当吸收过程占优 势时,光强减弱;当受激辐射占优势时,光强增强。
2、N2/ N1>1时,高能级E2上原子数大于低能级E1 上原子数,称粒子数反转分布,有dN21 > dN12,表 明光经介质传播的过程中受激辐射的光子数大于受 激吸收的光子数,宏观效果表现为光被放大,或称 光增益。能引起粒子数反转分布的介质称为激活介 质或增益介质。实现粒子数反转分布是产生激光的 必要条件。 设增益介质的增益系数为G,在此介质z处的光强 为I(z),经dz距离后光强改变dI,则dI=GIdz ,积分得 I ( z) I 0eGz I0为z=0处的光强
E2 E1 h
光发射的三种跃迁过程
1 自发辐射:处在高能级的原子以一定的几率自发的向低 能级跃迁,同时发出一个光子的过程,a)图; 2 受激辐射过程:在满足两能级之差的外来光子的激励下, 处在高能级的原子以一定的几率自发向低能级跃迁,同时 发出另一个与外来光子频率相同的光子,b)图; 两种辐射过程特点的比较: 自发辐射过程是随机的,发出一串串光波的相位、传播 方向、偏振态都彼此无关,辐射的光波为非相干光; 受激辐射的光波,其频率、相位、偏振状态、传播方向 均与外来的光波相同, 辐射的光波是相干光。
光学第一章总结
![光学第一章总结](https://img.taocdn.com/s3/m/8fc7cb63b5daa58da0116c175f0e7cd185251861.png)
第一章 光和光的传播§1光和光学一、光的本性光是一种波长极短、频率极高的电磁波,具有波粒二象性: 光在传播过程中,表现出波动性;光在与物质相互作用过程中表现出光的粒子性(量子性)。
二、 光源与光谱(1)热(辐射)光源 热能转变为辐射的光源。
任何温度下,任何固体或液体中原子、分子热运动能量改变时辐射出各种波长的电磁波(光波)。
光波为连续谱。
如太阳,白炽灯等。
由于物体辐射总能量及能量按波长分布都决定于温度,所以称为热辐射。
注意:1.物体由大量原子组成,热运动引起原子碰撞使原子激发而辐射电磁波。
原子的动能越大,通过碰撞引起原子激发的能量就越高,从而辐射电磁波的波长就越短。
2.任何物体在任何温度下都有热辐射,波长自远红外区连续延伸到紫外区(连续谱)。
(2)非热光源A 气体放电光源B 金属蒸气电弧光源C 固态发光体 —红宝石 蓝宝石 YAG 激光器D 同步辐射光源:高强度,宽波谱,高准直性,脉冲性,偏振性 三、热光源与非热光源的区别(1)本质上 在热光源中是原子、分子的热运动能量转化为光辐射;而非热光源是电子跃迁产生辐射。
(2)光谱上 热光源为连续谱;而非热光源是各原子独立发光,为分立的线光谱。
(3)温度上 热光源辐射的光谱与物质无关,强度与物质的表面温度有关;而非热光源与温度无关。
四、光强A.能流:单位时间内垂直通过某一面积 S 的能量.B.平均能流:能流也是周期性变化的,其在一个周期内的平均值称为平均能流。
能流(功率)单位:瓦特WC.能流密度 ( 光的强度 ) 单位时间,垂直通过单位面积的平均能量。
注意:在波动光学中常把振幅的平方所表征的光照度叫光强度。
五、 光谱W wSu =W wSu =WI S=u A 2221ωρ=2A I =光谱:非单色光的光强按波长的分布 i ~ λ.有连续光谱,线状光谱,带状光谱谱线宽度 Δλ:单位波长区间的光强,又称为谱密度。
六、光是电磁波的一部分(1)长波段表现出显著的波动性。
光电子技术(第5版)第一章 光辐射与发光光源
![光电子技术(第5版)第一章 光辐射与发光光源](https://img.taocdn.com/s3/m/2ac40961a9956bec0975f46527d3240c8447a131.png)
同的黑体的温度;
➢ 色温度并非热辐射光源本身的温度;
➢ 色温度相同的热辐射光源的连续谱也可能不相似,若规定的
波长不同,色温度往往也不相同;
➢ 非热辐射光源,色温度只能给出这个光源光色的大概情况,
一般来说,色温高代表蓝、绿光成分多些,色温低则表示橙
光电子技术(第5版)
第一章
本章内容
1.1 电磁波谱与光辐射
1.2 辐度学与光度学基本知识
1.3 热辐射基本定律
1.4 激光基本原理
1.5 典型激光器
1.6 光频电磁波的基本理论和定律
1.1.1 电磁波的性质与电磁波谱
EH k
横波特性
电场、磁场、传播方向构成右手螺旋系
偏振特性
电场、磁场分别在各自平面内振动
T 2698μm K
➢
时,
维恩公式与普朗克公式的误差小于1%。
M v (T )
0 得到
➢ 单色辐射出射度最大值对应的波长λm,由
mT 2897.9(μm K)
1.3.7 斯忒藩-玻尔兹曼定律
➢ 黑体的辐射出射度
0
0
M eb (T ) M eb (T )d
黑体:物体在任何温度下,对任何波长
的辐射能的吸收比都等于1,即αλ (T)
恒等于1。
1.3.2 基尔霍夫辐射定律
• 在同样的温度下,各种不同物体对相同波长的单色辐射
出射度与单色吸收比之比值都相等,并等于该温度下黑
体对同一波长的单色辐射出射度。
M e1 (T ) M e 2 (T )
e1 (T ) e 2 (T )
应用光学各章知识点归纳
![应用光学各章知识点归纳](https://img.taocdn.com/s3/m/30ce746af01dc281e53af056.png)
第一章 几何光学基本定律与成像概念波面:某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称波面。
光的传播即为光波波阵面的传播,与波面对应的法线束就是光束。
波前:某一瞬间波动所到达的位置。
光线的四个传播定律:1)直线传播定律:在各向同性的均匀透明介质中,光沿直线传播,相关自然现象有:日月食,小孔成像等。
2)独立传播定律:从不同的光源发出的互相独立的光线以不同方向相交于空间介质中的某点时彼此不影响,各光线独立传播。
3)反射定律:入射光线、法线和反射光线在同一平面内,入射光线和反射光线在法线的两侧,反射角等于入射角。
4)折射定律:入射光线、法线和折射光线在同一平面内;入射光线和折射光线在法线的两侧,入射角和折射角正弦之比等于折射光线所在的介质与入射光线所在的介质的折射率之比,即nn I I ''sin sin = 光路可逆:光沿着原来的反射(折射)光线的方向射到媒质表面,必定会逆着原来的入射方向反射(折射)出媒质的性质。
光程:光在介质中传播的几何路程S 和介质折射率n 的乘积。
各向同性介质:光学介质的光学性质不随方向而改变。
各向异性介质:单晶体(双折射现象)马吕斯定律:光束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与出射波面对应点之间的光程均为定值。
费马原理:光总是沿光程为极小,极大,或常量的路径传播。
全反射临界角:12arcsinn n C = 全反射条件:1)光线从光密介质向光疏介质入射。
2)入射角大于临界角。
共轴光学系统:光学系统中各个光学元件表面曲率中心在一条直线上。
物点/像点:物/像光束的交点。
实物/实像点:实际光线的汇聚点。
虚物/虚像点:由光线延长线构成的成像点。
共轭:物经过光学系统后与像的对应关系。
(A ,A’的对称性)完善成像:任何一个物点发出的全部光线,通过光学系统后,仍然聚交于同一点。
每一个物点都对应唯一的像点。
理想成像条件:物点和像点之间所有光线为等光程。
第1章 光辐射与光源_基本定律
![第1章 光辐射与光源_基本定律](https://img.taocdn.com/s3/m/621138e5551810a6f524862b.png)
1.2.1 热辐射基本定律 ——基尔霍夫定律
当辐射能入射到物体表面时,一部分能量被物体吸收, 一部分能量从物体表面反射,一部分透射。 1859年基尔霍夫指出:物体的辐射出射度M和吸收本领a 的比值M/a与物体的性质无关,都等于同一温度下绝对黑体 (a=1)的辐射出射度M0—基尔霍夫定律
M1 M 2 = = ... = M0 = f (T ) a1 a2
第1章 光辐射与光源 —热辐射基本定律
物体因温度而辐射能量的现象叫热辐射。热辐射是自然 界中普遍存在的现象,一切物体,只要其温度高于绝对零度 (-273.15°C)都将产生辐射。 黑体(或称绝对黑体) 是一个能完全吸收入射在它上面的 辐射能的理想物体,其在辐射度学中占有十分重要的地位。 黑体辐射在辐射度学中起到了基准的作用。 黑体本身也不是一个抽象的概念。现实世界中许多光源 可认为或近似认为是黑体。
1.2.2 辐亮度和基本辐亮度守恒
辐射能的传输一般是指辐射能由光源 (光源的自发射或者物体 表面反射、透射、散射辐射能)经过传输介质而投射到接收系统或探 测器上。在辐射能的传输路径上,会遇到传输介质和接收系统的折 射、反射、散射、吸收、干涉等,使辐射能在到达接收系统前,在 空间分布、波谱分布、偏振程度、相干性等方面将会发生变化。
例1: 已知太阳峰值辐射波长λm=0.48µm,日地平均距离 L=1.495×108 km,太阳半径Rs=6.955×105 km,如将太阳 和地球均近似看作黑体,求太阳和地球的表面温度。 解:太阳黑体,故λm⋅Ts=2898,即太阳的表面温度 Ts=6037.5 (K)
Φ s M s 4π Rs2 2 4 2 太阳发射的辐射强度为 = I0 = T Rs = MsR = σ s s 4π 4π 4 2 I0 T Rs σ 2 s 地球吸收太阳的辐射通量为 Φ ea= ESe= 2 π Re2= R π e L L2
工程光学第一章基本定律与概念
![工程光学第一章基本定律与概念](https://img.taocdn.com/s3/m/2ecc8fca08a1284ac850432d.png)
球面光学成像系统
3
§1-1
一、光波与光线
几何光学的基本定律
•一般除研究光与物质相互作用,须考虑光的粒子性外,其 它情况均可以将光看成是电磁波。
•可见光的波长范围:380-780nm •单色光:同一波长的光引起眼睛的感觉是同一个颜色,称 之为单色光; •复色光:由不同波长的光混合成的光称为复色光; •白光是由各种波长光混合在一起而成的一种复色光。
1 2 l l r
(二)成像放大率 y nl l
分析可见: ①α <0,表明当物体沿光轴移动时,像总是以相反的方向移动。 ②球面镜的拉赫不变量: J uyn uy uyn uy ③当物位于球面镜球心时,即l=r时。
y nl l dl nl 2 l 2 2 2 2 dl n l l u l 1 u l
u u i i 光路计算 结果为: l r 1 i u
则当l 一定时,u不论为何值,l′为定植。 表明轴上物点在近轴区内以细光束成像 是完善的。
23
细光束成的完善像为高斯像。 通过高斯像点且垂直于光轴的平面称为高斯像面。其 位置由l′决定。 这样一对构成物像关系的点称为共轭点。
产生全反射的条件:
①光线从光密介质射向光疏介质,即: n n ②入射角大于临界角,即: I I m , sin I m n n 全反射有比一般反 射更优越的性能,
它几乎无能量的损 失,因此用途广泛。 光纤就是其中的一 种。
10
11
(五)光路的可逆性原理 即光线的传播是可逆的。
12
指在近轴区,角放大率为一对共轭点光线与光轴的夹角 的比值。 u l n 1 u l n
高中物理光学复习要点
![高中物理光学复习要点](https://img.taocdn.com/s3/m/ae35fb35bc64783e0912a21614791711cc7979e5.png)
高中物理光学复习要点高三通常是各种练习、试卷纷至沓来,大量的习题令人眼花缭乱。
面对“无边题海”何去何从?通常各人方法各异而效果也相距甚远。
小编在这里整理了相关资料,希望能帮助到您。
高中物理光学复习要点一、重要概念和规律(一)、几何光学基本概念和规律1、基本规律光源:发光的物体.分两大类:点光源和扩展光源. 点光源是一种理想模型,扩展光源可看成无数点光源的集合. 光线——表示光传播方向的几何线. 光束通过一定面积的一束光线.它是通过一定截面光线的集合. 光速——光传播的速度。
光在真空中速度最大。
恒为C=3×108 m/s。
丹麦天文学家罗默第一次利用天体间的大距离测出了光速。
法国人裴索第一次在地面上用旋转齿轮法测出了光这。
实像——光源发出的光线经光学器件后,由实际光线形成的. 虚像——光源发出的光线经光学器件后,由发实际光线的延长线形成的。
本影——光直线传播时,物体后完全照射不到光的暗区. 半影——光直线传播时,物体后有部分光可以照射到的半明半暗区域.2.基本规律(1)光的直线传播规律:先在同一种均匀介质中沿直线传播。
小孔成像、影的形成、日食、月食等都是光沿直线传播的例证。
(2)光的独立传播规律:光在传播时虽屡屡相交,但互不扰乱,保持各自的规律继续传播。
(3)光的反射定律:反射线、入射线、法线共面;反射线与入射线分布于法线两侧;反射角等于入射角。
(4)光的折射定律:折射线、入射线、法线共面,折射线和入射线分居法线两侧;对确定的两种介质,入射角(i)的正弦和折射角(r)的正弦之比是一个常数.介质的折射率n=sini/sinr=c/v。
全反射条件①光从光密介质射向光疏介质;②入射角大于临界角A,sinA=1/n。
(5)光路可逆原理:光线逆着反射线或折射线方向入射,将沿着原来的入射线方向反射或折射.3.常用光学器件及其光学特性(1)平面镜:点光源发出的同心发散光束,经平面镜反射后,得到的也是同心发散光束.能在镜后形成等大的、正立的虚出,像与物对镜面对称。
光源原理1-2
![光源原理1-2](https://img.taocdn.com/s3/m/ecdf75aebb4cf7ec4bfed052.png)
K代表黑色。因为在实际应用中, 青色、品红色和黄色很难叠加形成 真正的黑色,最多不过是褐色而已。 因此才引入了K——黑色。黑色的 作用是强化暗调,加深暗部色彩。
相减混色规律
青色=白色-红色 品红=白色-绿色 黄色=白色-蓝色
相减混色规律 黄色+品红=白色-蓝色-绿色=红色 黄色+青色=白色-蓝色-红色=绿色 品红+青色=白色-绿色-红色=蓝色 黄色+青色+品红=白色-蓝色-红色
假定参加混色各色光亮度分别为L1、L2、…Ln,则 混合色光的光亮度L为:
L L1 L2 ... Ln
格拉斯曼颜色混合定律,适用于色光相加混色,不 适用于减混色。
如何获得我们想要的 各种色光呢?
四、颜色匹配
颜色匹配——通过改变参加混色的各颜色的量,使混合色 与指定颜色达到视觉上相同的过程。
色光三原色:红(red)、绿(green)、蓝(blue)
RGB 模式
1931年,国际照明委员会 (CIE)规定R~ 700nm; G~546.1nm; B~ 435.8nm 为红、绿、蓝基色光。当红、 绿、蓝三束光比例合适时,就 可以合成自然界中常见的大多 数彩色。
不是单色光
三原色选700nm/546.1nm/435.8nm单 色光是因为700nm是可见光谱的红色末 端,546.1nm和435.8nm为明显的汞谱 线,三者都能比较精确地产生出来。
- 绿色=黑色
白光穿过透明的彩色薄膜
白光
白光
?光பைடு நூலகம்
以光为笔。。。
如何定量衡量光 源的色表?
光源的色温
色温(CT——Color Temperature) 当某一光源所发出光的颜色与某一温度下 的黑体的发光颜色相同时,称此时黑体的 温度为该光源的颜色温度,简称色温Tc。
建筑物理课本重点(光学,声学)
![建筑物理课本重点(光学,声学)](https://img.taocdn.com/s3/m/9b4618ed19e8b8f67c1cb9c2.png)
第一章建筑光学基本知识1、能够引起人视觉感觉的电磁辐射波长范围为380-780nm2、光谱视效率:表示波长和波长的单色辐射,在特定光度条件下,获得相同视觉感觉时,该两个单色辐射通量之比。
3、视野范围(视场)水平面180°,垂直面130°,上方为60°,下方为70°4、普尔钦效应:在不同的光亮条件下,人眼感受性不同的现象。
5、光通量:人眼对光的感觉量公式:6、辐射通量:光源在单位时间内发射或接收的辐射能量或在某种介质中单位时间传递的辐射能量。
7、发光效率:单位辐射通量产生的光通量。
8、发光强度:光源在空间的光通量分布状况,就是光通量的空间分布密度。
公式:9、照度:在被照面单位面积上的光通量多少,表示被照面上的光通量密度。
公式:10、距离平方反比定律:计算点光源产生照度的基本公式,某表面的照度E与点光源在这方向的发光强度I成正比,与它至光源距离r的平方成反比,公式:11、亮度:视网膜上物像的照度是和发光体在视线方向的投影面积Acos α成反比,以发光体朝视线方向的发光强度成正比,公式:12、定向反射和透射定向反射:光线入射角等于反射角;入射光线、反射光线以及反射表面的法线处于同一平面。
玻璃镜、很光滑的金属表面定向透射:如材料的两个表面彼此平行,则透过材料的光线方向和入射方向保持一致。
窗玻璃13、扩散反射和透射均匀扩散材料:将入射光想均匀地向四面八方反射或透射,从各个角度看,其亮度完全想同,看不见光源形象。
氧化镁、石膏、磨砂玻璃;完全均匀扩散透射材料:乳白玻璃、白纸、半透塑料;均匀漫反射材料:将反射光均匀分布在各个方向上,与入射方向无关,砖、混凝土、石膏定向扩散材料:在定向反射(透射)方向,具有最大的亮度,而在其他方向上也有一定亮度。
光滑的纸、较粗糙的金属表面、油漆表面、釉瓷砖。
14、视度:看物体的清楚程度,影响因素:适当的亮度、物件尺寸、对比、识别时间、避免炫光第二章天然采光1、采用天然采光的原因:人眼在天然光条件下比在人工光下具有更高的视觉功效;在天然光下感到舒适和有益于身心健康。
光电技术简答题复习资料
![光电技术简答题复习资料](https://img.taocdn.com/s3/m/03381348f7ec4afe05a1df04.png)
1)光子透过入射窗口入射在光电阴极K上。
2)光电阴极电子受光子激发,离开表面发射到真空中。
3)光电子通过电子加速和电子光学系统聚焦入射到第一倍增极D1上,倍增极将发射出比入射电子数目更多的二次电子,入射电子经N级倍增极倍增后光电子就放大N次方倍。
4)经过倍增后的二次电子由阳极P收集起来,形成阳极光电流,在负载RL上产生信号电压。
是一种内光电效应,当光子产生时,能产生一个光生电动势,基于两种材料相接触形成的内建势垒,光子激发的光生载流子被内建电场扫向势垒两面三刀边,从而形成光生电动势。
18、简述光电发射效应(分金属与半导体两种情况)。
当光照射物质时,若入射光子能量hν足够大,它和物质中的电子相互作用,使电子吸收光子的能量而逸出物质表面。
74、写出光照下PN结的电流方程。
78、简述温差电偶的工作原理。
80、为了减小背景光和杂散光的影响,需对进入光电接收系统的光进行滤波。试说明对入射光进行空间滤波和光谱滤波的基本方法和作用。
一、空间滤波的基本方法和作用
(1)如果信号光的输入空间角有一定的大小,如远处的点光源,可以给接受光学系统加遮光罩、减小视场光阑、减小通光孔径的方法,压缩进入光学系统的空间立体角。
83、说明对光源选择的基本要求。
二、计算题:
4、一块半导体样品,时间常数为 ,在弱光照下停止光照0.2 后,光电子浓度衰减为原来的多少倍?
解:
6、设某种光电倍增管一共有10个倍增极,每个倍增极的二次电子发射系数均为 ,阴极灵敏度 ,阳极电流不得超过100 ,试估算入射于阴极的光通量的上限。
解:阳极电流IA满足: ,所以入射光通量
加正向偏压时内电场减弱p区空穴和n区电子向对方区域的扩散运动相对加强构成少数载流子的注入从而pn结附近产生导带电子和价带空穴的复合复合中产生的与材料性质有关的能量将以热能和光能的形式释放
光学教程(叶玉堂)第1章几何光学基础综述
![光学教程(叶玉堂)第1章几何光学基础综述](https://img.taocdn.com/s3/m/4ab045d67c1cfad6195fa77c.png)
克莱门德(公元50年)和托勒玫(公元90~168年) 研究了光的折射现象,最先测定了光通过两种介质 分界面时的入射角和折射角。 罗马的塞涅卡(公元前3~公元65年)指出充满水 的玻璃泡具有放大性能。
阿拉伯的马斯拉来、埃及的阿尔哈金(公元 965 ~ 1038年)认为光线来自被观察的物体,而光是以球 面波的形式从光源发出的,反射线与入射线共面且 入射面垂直于界面。
•沈括(1031~1095年)所著《梦溪笔谈》中, 论述了凹面镜、凸面镜成像的规律,指出测定 凹面镜焦距的原理、虹的成因。 培根(1214~1294年)提出用透镜校正视力 和用透镜组成望远镜的可能性。 阿玛蒂(1299年)发明了眼镜。 波特(1535~1561年)研究了成像暗箱。
特点:只对光有些初步认识,得出一些零碎 结论,没有形成系统理论。
沈括(1031~1095年)
培根(1214~1294年)
二、几何光学时期
这一时期建立了反射定律和折射定律,奠定了 几何光学基础。 •李普塞(1587~1619)在1608年发明了第一 架望远镜。 •延森(1588~1632)和冯特纳(1580~1656) 最早制作了复合显微镜。 •伽利略于1610年用自己制造的望远镜观察星 体,发现了木星的卫星。 • 斯涅耳和迪卡尔提出了折射定律
应用光学几何光学基础几何光学基础光学仪器的基本光学仪器的基本原理1几何光学的基本定律1几何光学的基本定律2物像基本定律2物像基本定律3球面和球面系统3球面和球面系统1理想光学系统的基本特性1理想光学系统的基本特性理想光学系统理想光学系统2理想光学系统的物像关系2理想光学系统的物像关系平面和平面系统3理想光学系统的组合3理想光学系统的组合放大镜3显微镜3显微镜望远镜11几何光学的基本定律一发光点光线和光束1发光点
第1章习题1举例说明光传播中几何光学各基本定律的现象和应用
![第1章习题1举例说明光传播中几何光学各基本定律的现象和应用](https://img.taocdn.com/s3/m/c4233df728ea81c758f578cc.png)
第1章习题1. 举例说明光传播中几何光学各基本定律的现象和应用。
(略)2. 证明光线通过二表面平行的玻璃板时,出射光线与入射光线的方向平行。
(略)3. 光线由水中射向空气,求在界面处发生全反射时的临界角。
当光线由玻璃内部射向空气时,临界角又为多少?(n水=1.333,n玻璃=1.52)(略)4. 一根没有包外层的光纤折射率为1.3,一束光线以u1为入射角从光纤的一端射入,利用全反射通过光纤,求光线能够通过光纤的最大入射角u1max。
实际应用中,为了保护光纤,在光纤的外径处加一包层,设光纤的内芯折射率为1.7,外包层的折射率为1.52,问此时光纤的最大入射角u2max为多少?解:如图所示,n0sin u= n1sin i1,i1+i2=90°,恰能发生全反射时i2=arcsin(n2/n1)u=(1)没有外包层,即n2=n0=1,u1max=43.6°(2)有外包层,u2max=35.4°5. 在上一习题中,若光纤的长度为2m,直径为20μm,设光纤平直,问以最大入射角入射的光线从光纤的另一端射出时,经历了多少次反射?解:以有外包层时的情况计算,u2max=35.4°,i1=19.9°,l1=27.6μm 2m / (2*27.6μm) = 36231,经历了36231次反射6. 一个18mm高的物体位于折射球面前180mm处,球面半径r=30mm,n=1,n’=1.52,求像的位置、大小、正倒及虚实状况。
解:如图,可以按近轴光路计算,y=18mm,l=-180mm,r=30mm,n=1,n’=1.52根据折射球面的物像关系公式:n n n n l l r''--=',l ’=129.1mm 8.5mm l ry y l r'-'-==-+,倒立的实像7. 简化眼把人眼的成像归结为一个曲率半径为5.7mm ,介质折射率为1.333的单球面折射,求这种简化眼的焦点位置和光焦度。
第一章光和光的传播
![第一章光和光的传播](https://img.taocdn.com/s3/m/b68bb63a87c24028915fc30a.png)
红 蓝
上页
下页Βιβλιοθήκη 1.波的几何描述 1.波的几何描述
§3惠更斯原理
波阵面
某时刻波到达的质点连接成面,这些质点具有相同的相位.
波前
波面
走在最前面的波阵面. 走在最前面的波阵面.
波前 波线
波线
代表波传播方向的线. 代表波传播方向的线.
波面
(a)球面波 球面波
在各向同性的介质中,波面⊥ 在各向同性的介质中,波面⊥波线
i1
C D
i2
E B,符合折射定律的光线 符合折射定律的光线ABD 由 A 到 B, 符合折射定律的光线ABD 的光程, 比任何其他由A 的光程 , 比任何其他由 A 至 B 的路 径的光程都小. 径的光程都小. B
上页 下页
(2) 等光程的例子
A
B
回转椭球凹面镜, 回转椭球凹面镜,自其一个 焦点发出, 焦点发出,经镜面反射后到 达另一焦点的光线等光程. 达另一焦点的光线等光程. 几何光学的实验定律受费马原理的 支配,前者比后者更具有概括性. 支配,前者比后者更具有概括性.
A
所用时间为 t = 1
B
c
∫ nds
A
A
2.费马原理表述为: 费马原理表述为: 费马原理表述为 光从一点传播到另一点将循着这样一条路径, 光从一点传播到另一点将循着这样一条路径, 光沿 这条路径传播所需要的时间同附近的路径比起来, 这条路径传播所需要的时间同附近的路径比起来,不是 最大,便是最小,或者相同.换句话说 换句话说, 最大,便是最小,或者相同 换句话说,光沿着所需时间 为极值的路径传播. 有极值的条件是定积分的变分 函数的微分)为零. 变分( 时间 t 有极值的条件是定积分的变分(函数的微分)为零
辐射度与光度学的基础知识
![辐射度与光度学的基础知识](https://img.taocdn.com/s3/m/b745745477232f60ddcca137.png)
Xνλ——光度量;Xeλ——辐射量; Km是常数;V(λ)光谱光视效率。 5. 明视觉和暗视觉:人眼在环境亮度不同时对 颜色的视觉效率不同。 明视觉:光亮度大于几个cd/m2 暗视觉:光亮度小于0.01cd/m2
二、光度的基本物理量
1. 光通量
单位时间内光源发出的光能量(功率)
780nm
K m
注:
1. 光度量的定义和辐射度量的定义只一字之差,‚
2. 3. 4. 5. 辐射‛——“光‛。 下角标有e、λ、ν,辐射量在与其它量同用时 标e。 从表达式可直接说出定义及物理意义 从表达式可直接说出单位 出射度和照度的表达式相同、单位也相同,注 意一个是发射,一个是接收。
三个发射量的区别和关系
是辐射量对人眼视觉的刺激值。是主观的,不管辐射量大小 ,以看到为准。光谱光视效率是评定该刺激值的参数。 基本物理量是发光强度,单位坎德拉。一个光源发出频率 为540*1012Hz的单色辐射,若在一给定方向上的辐射强度
为1/683W/sr,则该光源在该方向上的发光强度为1cd。
一、光谱光视效能和光谱光视效率
光谱光视效能(K) ,描述某一波长的单色光辐射 通量产生多少相应的单色光通量。即光视效能K定 义为同一波长下测得的光通量与辐射通量的比值, 即
Φ ——在波长λ处的光通量 Φeλ ——在波长λ处的辐射通量 单位:流明/瓦特(lm/W)。
νλ
通过对标准光度观察者的实验测定,在辐射频率
5401012Hz(波长555nm)处,K有最大值,其
黑体 在物理学中,所谓黑体,是指这样 一种物体,在任何温度下,它将入射的任 何波长的电磁波全部吸收,没有一点反射, 而在相同温度下,它所发射出的热辐射比 任何其他物体都强。 光有多种颜色组成, 黑色吸收所有颜色,不反射任何颜色,即没 有光线进入眼睛时,称之为黑色。如果一个 物体能够全部吸收而不反射投射于其上的 辐射,就称它为绝对黑体,简称为黑体。
第二章-光辐射与光源精选版
![第二章-光辐射与光源精选版](https://img.taocdn.com/s3/m/06835482b8f3f90f76c66137ee06eff9aef8498a.png)
yyty
3
§2.2 光辐射的度量
为了对光辐射进行定量描述,需要引入计量光 辐射的物理量。而对于光辐射的探测和计量,存 在着辐射度学单位和光度学单位两套不同的体系 (物理量符号标脚标“e”表示辐射度物理量,脚 标“v”表示光度物理量)。后者是考虑到人眼的 主观因素后的相应计量学科,其适用性局限于可 见光波段;前者则是对电磁辐射能量的客观计量, 适用于整个电磁波段。
单位长度内,波动重复的次数(一个波动拥有同样相位的次 数),称为波数。在光谱学中,波数即波长的倒数,量纲是[长 度]-1,单位惯常采用cm-1。
可见光 可见光是电磁波谱中人眼可以感知的部分。 390~770 nm范围的范围内;
紫外辐射 紫外辐射比紫光的波长更短,人眼不可感知,波长 范围是10~400 nm。
第二章 光辐射与光源
任何一种光电系统或光电子器件的使用和评 价都离不开特定的光辐射源[产生光辐射的物体, 即光源]与光辐射探测器,所以光辐射理论和光电 转换的原理是光电探测技术的基础。光源的描述 参量有谱特征、波长范围、辐射通量、方向性、 时间及空间稳定性,等等。本章将简要介绍光辐 射的基本概念和原理、在光电探测技术应用中比 较典型的光辐射源,以及光源调制技术;光辐射 探测的原理及相应器件的内容安排在第四章。
yyty
5
⑶ 辐射出射度 简称辐出度,从辐射源表面单位面积发射出的辐射通 量,其中单位波长间隔内的辐射出射度称光谱辐出度。辐出度的 定义式 (2.2-2)
单位:瓦特·米-2(W/m2)。 ⑷ 辐射强度 辐射强度定义为:点辐射源在给定方向上发射的在单位
立体角内的辐射通量,用Ie表示,即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=3.72 Wcm-2μm-1
(3)人体发烧到38℃时峰值辐射波长为
2898 = 9.32μm λm = 273 + 38
发烧时的峰值光谱辐射出射度为
M e ,s ,λ m = 1.309T 5 × 10 −15 =3.81Wcm-2μm-1
例 3 将 标准钨丝灯为黑体时,试计算它的峰值辐射波 长,峰值光谱辐射出射度和它的总辐射出射度。 解 标准钨丝灯的温度为TW=2856K,因此它的峰值辐射
峰值波长和温度的关系: 温度升高 向短波方向移动
例1:烧红的火钳
温度高--通红
0.6 微米 微米
0.7 8微米
3~5微米
8~14
温度低--暗红
例2:典型军事目标辐射
重要概念--灰体
某一温度下灰体的辐射具有与同温度下黑体 相似的光谱能量分布特性。
M e( λ
300K黑体 300K海水
重庆红外遥感地图
例2 红外遥感
伪彩色图: 颜色—温度
1.2.1 热辐射基本定律 -普朗克辐射定律
黑体光谱辐出度与波长、绝对温度之间关系
M eb (λ , T ) =
λ (e
5
c2 / λ T
c1
− 1)
其中, 第一辐射常数 c1=2πhc2=3.7418×10-16(W⋅m2); 第 二辐射常数c2=hc/k=1.4388×10-2 (m⋅K); k为波尔兹曼常数; c为光速。 物理意义:黑体辐射的光谱分布
例2
若可以将人体作为黑体,正常人体温的为
36.5℃,(1)试计算正常人体所发出的辐射出射 度为多少W/m2?(2)正常人体的峰值辐射波长为 多少μm?峰值光谱辐射出射度Me,s,λm为多少?(3) 人体发烧到38℃时峰值辐射波长为多少?发烧时 的峰值光谱辐射出射度Me,s,λm又为多少? 解
(1)人体正常体的绝对温度为T=36.5+273=309.5K,根
2898 2896 = = 1.015 (μm) λm = T 2856
波长为
峰值光谱辐射出射度为
M e ,s ,λ m = 1.309T 5 × 10 −15 =1.309×28565×10-15
总辐射出射度为
4
=248.7Wcm-2μm-1
−8 4 4 2
M e ,s , = σ × 2856 = 5.67 × 10 × 2856 = 3.77 × 10 W / m
ε (λ , T ) < 1
ε (λ , T )= ε < 1
灰体的光谱辐射分布与黑体的光谱辐射分布形状 相似,最大值的位置也一致--常将热辐射体按 灰体或黑体计算。
1.2.1 热辐射基本定律 ——维恩位移定律
几个黑体辐射的特征波长
M eb (λ , T ) =
λ5 ( e c2 / λT − 1)
表中哪种探 测器合适?
1.2.1 热辐射基本定律 斯蒂芬—玻尔兹曼定律
M eb = ∫ M eb (λ , T )dλ = σ • T
0
∞
4
其中, σ =5.6696×10-8 (W⋅m-2⋅K-4)称为斯蒂芬—玻尔兹曼常数。 物理意义: 黑体在单位面积单位时间内辐射的总能量与黑体 例: 黑体的全光谱辐射出射度与温度成 4 次方的关 温度T的四次方成正比。
M λ (T ) = ε λ (T ) M 0 λ (T )
基尔霍夫定律是一切物体热辐射的普遍定律: 吸收本领大 的物体,其发射本领也大, 如果物体不能发射某波长的辐射, 则也不能吸收该波长的辐射。绝对黑体对于任何波长在单位 时间,单位面积上发出或吸收的辐射能都比同温度下的其它 --强吸收体必是强发射体!!! 物体要多。 引入辐射发射率或比辐射率ελ
第1章 光辐射与光源 —热辐射基本定律
物体因温度而辐射能量的现象叫热辐射。热辐射是自然 界中普遍存在的现象,一切物体,只要其温度高于绝对零度 (-273.15°C)都将产生辐射。 黑体(或称绝对黑体) 是一个能完全吸收入射在它上面的 辐射能的理想物体,其在辐射度学中占有十分重要的地位。 黑体辐射在辐射度学中起到了基准的作用。 黑体本身也不是一个抽象的概念。现实世界中许多光源 可认为或近似认为是黑体。
基尔霍夫定律不但对所有波长的全辐射,而且对波长为λ的任 何单色辐射都是正确的,即
M 1λ M 2 λ = = ... = M 0 λ= f (λ , T ) a1λ a2 λ
1.2.1 热辐射基本定律 ——基尔霍夫定律
能够在任何温度下全部吸收所有波长辐 射的物体叫绝对黑体--简称黑体
M eb (λ , T ) = α (λ , T ) ⋅ E eb (λ , T )
据斯特藩-波尔兹曼辐射定律,正常人体所发出的辐射出射 度为
M e ,s , = σ × 309.5 = 520.3W / m
4
2
(2)由维恩位移定律,正常人体的峰值辐射波长为
2898 λm = (μm)=9.36μm T
峰值光谱辐射出射度为
M e ,s ,λ m = 1.309T 5 × 10 −15 Wcm-2μm-1
ε
0.55 0.78~0.82 0.55~0.61 0.85~0.95 0.22 0.09~0.12 0.92 0.90 0.93
材料 平滑的冰 黄土 雪 皮肤·人体 水 毛面红砖 无光黑漆 白色瓷漆 光滑玻璃 牧草
温度(°C) 20 20 -10 32 0~100 20 40~95 23 22 20
系。在红外隐身技术中,第一要素就是如何降低 武器平台的温度,以最大限度的减少向环境的红 外辐射能。
1.2.1 热辐射基本定律 ——最大辐射定律
λmT = hc / 5k = 2898(μm ⋅ K )
例:红外隐身效果评估
降低武器平台的温度 后,红外辐射的峰值 c1 M eb (λ , T ) = 5 c2 / λT 波长的辐出度将按温 λ (e − 1) 度5次方的关系向长波 方向偏离.根据降低 斯蒂芬—玻尔兹曼定律的一个特殊形式 ——黑体光谱辐射出射度峰值的表达式: 的温度数值,可以具 体计算武器平台红外 5 M ebλ m = BT 辐射的峰值是否移出 = 式中, B c1b −5 /(ec / b − 1) =1.2862×10-11(W⋅m-2⋅µm-1 ⋅ K-5)。 红外探测器的探测范 围,进而评估红外隐 物理意义:黑体最大辐射出射度与T的五 身的效果. 次方成正比
ε
0.92 0.85 0.85 0.98 0.95~0.96 0.93 0.96~0.98 0.90 0.94 0.98
例1 X国卫星监视YYY潜艇基地
海面冰封 潜艇出航 December 25, 2001 Russia Kamchatka Submarine Base
例2 红外遥感
红外遥感热像光谱辐射仪
2
比 较:
普朗克辐射定律 --光谱辐射能分布 维恩位移定律 --峰值波长 斯蒂芬-玻尔兹曼定律 --总辐射出度
黑体辐射定律的应用
例1. 便携式辐射测温仪 可用于电力系统中电接 头的温度检查······· 测温范围 PT120:-20℃~1200℃ 瞄准方式:激光瞄准、 望远镜瞄准 讨论:测温仪的工作原理 --斯蒂芬-玻尔兹曼定律 -- 测量对象的发射率
1.2.2 辐亮度和基本辐亮度守恒
辐射能的传输一般是指辐射能由光源 (光源的自发射或者物体 表面反射、透射、散射辐射能)经过传输介质而投射到接收系统或探 测器上。在辐射能的传输路径上,会遇到传输介质和接收系统的折 射、反射、散射、吸收、干涉等,使辐射能在到达接收系统前,在 空间分布、波谱分布、偏振程度、相干性等方面将会发生变化。
例1: 已知太阳峰值辐射波长λm=0.48µm,日地平均距离 L=1.495×108 km,太阳半径Rs=6.955×105 km,如将太阳 和地球均近似看作黑体,求太阳和地球的表面温度。 解:太阳黑体,故λm⋅Ts=2898,即太阳的表面温度 Ts=6037.5 (K)
Φ s M s 4π Rs2 2 4 2 太阳发射的辐射强度为 = I0 = T Rs = MsR = σ s s 4π 4π 4 2 I0 T Rs σ 2 s 地球吸收太阳的辐射通量为 Φ ea= ESe= 2 π Re2= R π e L L2
同时,地球向外的辐射通量为 = Φ ee M e= 4π Re2 σ Te4 4π Re2 达到平衡时,Φea=Φee,温度保持平衡,得到
= Te Ts
Rs 2L
= ⇒ Te 291.19K =18.19°C
例2 若可以将人体作为黑体,正常人体温的为 36.5℃,(1)试计算正常人体所发出的辐射出射 度为多少W/m2?(2)正常人体的峰值辐射波长为 多少μm?峰值光谱辐射出射度Me,s,λm为多少? (3)人体发烧到38℃时峰值辐射波长为多少?发 烧时的峰值光谱辐射出射度Me,s,λm又为 = 1
--黑体
α (λ , T ) < 1
--其他物体
1.2.1 热辐射基本定律 ——基尔霍夫定律
黑体模拟器 远处开着的窗户
例如:
绝对黑体是理想热辐射源,自然界并不存在!!
研究黑体辐射意义:--比较基准 ▲ 黑体模拟器 ▲ 近似黑体,如太阳、地球、海水······ ▲ 用黑体某些特性表征光源和辐射体
1.2.1 热辐射基本定律 ——基尔霍夫定律
当辐射能入射到物体表面时,一部分能量被物体吸收, 一部分能量从物体表面反射,一部分透射。 1859年基尔霍夫指出:物体的辐射出射度M和吸收本领a 的比值M/a与物体的性质无关,都等于同一温度下绝对黑体 (a=1)的辐射出射度M0—基尔霍夫定律
M1 M 2 = = ... = M0 = f (T ) a1 a2
1.2.2 辐亮度和基本辐亮度守恒
dA2 cos θ 2 d Ω1 = r2
dA1 cos θ1 d Ω2 = r2