对口升学考试数学模拟试卷(一)

合集下载

对口升学数学模拟试卷(一)及答案

对口升学数学模拟试卷(一)及答案

对口升学数学模拟试卷(一)一、选择题1、已知集合{1,3}A =,{0,1,2}B =,则A B 等于A 、{1}B 、{1,3}C 、{0,1,2}D 、{0,1,2,3}2、“1x > ”是“1x >”的A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分又不必要条件3、已知函数()f x 为偶函数,且(2)1f -=,则(2)f 的值为A 、-1B 、0C 、1D 、24、经过点P(0,1)且与直线2350x y -+=垂直的直线方程为A 、2330x y -+=B 、3220x y +-=C 、2320x y --=D 、3230x y +-=5、某7件产品中有2件次品,从中抽取3件进行检查,则抽到的产品中至少有1件次品的概率为A 、17B 、27C 、47D 、576、已知3sin()5πα+=,且3(,)2παπ∈,则tan α的值为 A 、34 B 、43 C 、34- D 、43- 7、不等式(2)(3)0x x -+<的解集为A 、(3,2)-B 、(2,3)-C 、(,2)(3,)-∞-+∞D 、(,3)(2,)-∞-+∞8、从班上5名同学中选取2人分别担任正、副班长,则不同的选法共有A 、40种B 、30种C 、20种D 、10种9、在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥平面ABCD ,且PA =,则PC 与平面ABCD 所成的角为A 、30︒B 、45︒C 、60︒D 、90︒10、已知椭圆22221(0)y x a b a b+=>>的长轴长是焦距的2倍,一个顶点为(3,0),则椭圆的方程为A 、221912y x +=B 、221129y x += C 、2212794y x += D 、221129y x +=或2212794y x += 二、填空题11、已知向量(1,2)a =-,(,3)b m =.若//a b ,则m =12、某单位有职工150人,其中女职工30人.若采用分层抽样的方法抽取一个样本,样本中女职工有5人,则样本容量为13、圆22(1)(2)1x y ++-=的圆心到直线3470x y +-=的距离为14、261()x x-的二项展开式中的常数项为 (用数字作答) 15、已知圆锥的底面半径为1,母线长为2,则它的体积为16、10转化为二进制数是 ;三、解答题17、已知函数()f x =(0,a >且1a ≠).(Ⅰ)求()f x 的定义域; (Ⅱ)若3()12f =-,求a 的值。

云南职业高中对口升学模拟考试数学押题卷一(含答案)

云南职业高中对口升学模拟考试数学押题卷一(含答案)

数学试题一、选择题(每小题5分,共50分)1.若复数z ,满足:12z z i +=+,则z 的虚部为( ) A. 2i B. 1 C. 2 D. i2.设全集U 是实数集R ,{}234M x x x =-≥,13log (2)0N x x ⎧⎫=+≥⎨⎬⎩⎭,则M N ⋂=( )A.32x x ⎧⎫≤-⎨⎬⎩⎭B. {}1x x ≤- C. 312x x ⎧⎫-≤≤-⎨⎬⎩⎭ D. 322x x ⎧⎫-<≤-⎨⎬⎩⎭3. 设a R ∈,则“2a =-”是“直线l 1:1:210l ax y +-=与2:(1)20l x a y +++= 直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4. 阅读如图所示的程序框图,运行相应的程序,输出的结果k =( ) A.4 B.5 C.6 D.75. 设a 、b 是两条不同的直线,α、β是两个不同的平面,则 下列命题正确的是( ) A .若//,//,a b a α则//b αB .若,//,a αβα⊥则a β⊥C .若,,a αββ⊥⊥则//a αD .若,,,a b a b αβ⊥⊥⊥则αβ⊥6. 已知双曲线22221 (,0)x ya b a b-=>的一条渐近线与圆8)322=+-y x (相交于N M ,两点,且4=MN ,则此双曲线的离心率为( )A 5B 53C 35D .57. 一个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48B .17C .17D .808. 已知锐角βα,满足: 51cos sin =-ββ,3tan tan 3tan tan =⋅++βαβα,则cos α=( )开始 2nn = 否 n =3n +1n 为偶数k =k +1 结束n =5,k =0 是输出k n =1? 否是ABCD9.用分期付款方式(贷款的月利率为1%)购买总价为25万元的汽车,购买当天首付15万元,此后可采用以下方式支付贷款:以后每月的这一天都支付相同数目的还款,20个月还完,则每月应还款约( )元(201.01 1.22≈)A .5545B .5546C .5547D .554810. 已知函数()x f y =是定义在R 上的增函数,函数()1-=x f y 的图象关于点()0,1对称。

福建职业高中数学对口升学高考复习模拟试题一(含答案)

福建职业高中数学对口升学高考复习模拟试题一(含答案)

数学试题第Ⅰ卷(选择题共60分)一、选择题(共12小题,每小题5分,只有一个选项正确,请把答案填在答题卡上) 1.下列图形中不一定是平面图形的是( )A. 三角形B. 四边相等的四边形C. 梯形D.平行四边形 2.若直线经过(0,1),4)A B 两点,则直线AB 的倾斜角为( )A .30oB .45oC .60oD .120o3.已知函数x x f x23)(+=的零点所在的一个区间是( )A .(-2,-1)B .(-1, 0)C .(0, 1)D .(1, 2) 4.以)2,1(-为圆心,5为半径的圆的方程为( )A .04222=+-+y x y x B .04222=+++y x y x C .04222=-++y x y x D .04222=--+y x y x5.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( ) A .π9 B .π10 C .π11 D .π126. ABC ∆的斜二侧直观图如图所示,则ABC ∆的面积为( )A .1B .2 C.2D7.若不论m 取何实数,直线:120l mx y m +-+=恒过一定点,则该定点的坐标为( )A .(2,1)-B . (2,1)-C .(2,1)--D .(2,1) 8.列函数中不能..用二分法求零点的是( ) A .13)(+=x x fB .3)(x x f =C .2)(x x f =D .x x f ln )(=9.过点)2,1(-且与原点的距离最大的直线方程是( )..A. 052=+-y xB. 052=-+y xC. 073=-+y xD.053=-+y x10.已知0x 是函数1()21xf x x=+-的一个零点.若()()10201,,,x x x x ∈∈+∞,则 ( ) A .()()120,0f x f x << B .()()120,0f x f x <>C .()()120,0f x f x ><D .()()120,0f x f x >>11.设m n 、是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m α⊥,//n α,则m n ⊥ ②若//αβ,//βγ,m α⊥,则m γ⊥ ③若//m α,//m β,n αβ⋂=,则//m n ④若αγ⊥,βγ⊥,m αβ⋂=,则m γ⊥正视图俯视图侧视图222第16题图DCABAB CD正确命题的个数是( ) A .1 B .2C .3D .412.若圆222)5()3(r y x =++-上有且只有两个点到直线234=-y x 的距离为1,则半径r 的取值范围是( ) A.)6,4( B.)6,4[ C.]6,4( D.]6,4[第Ⅱ卷(非选择题共90分)二、填空题(共4小题,每小题4分,请把答案写在答题卡上..........) 13.已知一个球的表面积为264cm π,则这个球的体积为 3cm 。

河北职高对口升学数学高考复习模拟试题一(含答案)01

河北职高对口升学数学高考复习模拟试题一(含答案)01

数学试题一、选择题:(共15题,每题4分,共60分)1、若34sin (cos )55z i θθ=-+-是纯虚数,则tan()4πθ-的值为( ) A .7- B .17-C .7D .-7或-17 2、命题“若21x <,则11x -<<”的逆否命题是( )A .若21x ≥,则11x x ≥≤-,或B .若11x -<<,则21x <C .若11-<>x x ,或,则12>xD .若11x x ≥≤-,或,则21x ≥3、“12x -<成立”是“01x x <-成立”的( ). A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件4、在△ABC 中,已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,则△ABC 的形状为 ( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形5、直线1()y kx k R =+∈ 与椭圆2215x y m+=恒有公共点,则m 的取值范围是( )(A )[1,5)∪(5,+∞(B )(0,5) (C) [)+∞,1 (D) (1,5)6、执行右面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]7、从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则a <b的概率为( )A.45 B.35C.25 D.158、函数()sin f x x x =+在区间[)0,+∞内( )A .没有零点B .有且仅有1个零点C .有且仅有2个零点D .有且仅有3个零点9、一个几何体的三视图如图,其侧视图是一个等边三角 形,则这个几何体的体积为( )A.()433π+ B.()836π+ C.()833π+ D.()43π+7 8 99 4 4 6 4 7 3 10、如图1是2013年某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和众数依次为( ) A . 85,84B . 84,85C . 86,84D . 84,86 11、函数)0)(sin()(>+=ωϕωx x f 的图象如图所示,为了得到函数)6cos(πω+=x y 的图象,只需将)(x f y =的图象( ) A .向右平移3π个单位B .向左平移3π个单位C .向右平移6π个单位D .向左平移6π个单位 12、已知△ABC 为等边三角形,=2AB ,设点P,Q 满足=AP AB λ,=(1)AQ AC λ-,R λ∈,若3=2BQ CP ⋅-,则=λ( )A .12B .122±C .1102D .3222-± 13、函数()y f x =是定义在R 上的增函数,且函数满足)()(x f x f -=-,若任意的()()2,10x R f ax f ax ∈++>不等式恒成立,则a 的取值范围为( )A. ()0,4B. [)0,4C. ()4,0-D. (]4,0- 14、已知点P (x ,y )在直线x +2y =3上移动,当y x 42+取最小值时,过点P (x ,y )引圆C :⎝⎛⎭⎫x -122+⎝⎛⎭⎫y +142=12的切线,则此切线长等于( )A. 12 B. 32 C. 62 D. 32 15、若点(1,0)A 和点(4,0)B 到直线l 的距离依次为1和2,则这样的直线有( )A .1条B .2条C .3条D .4条二、填空题:(共5题,每题4分,共20分)16、 设y x ,均为正实数,且33122x y+=++,则xy 的最小值为 . 17、若曲线2ln y kx x =+在点()1,k 处的切线与直线210x y +-=垂直,则k =____. 18、已知直线220x y -+=过椭圆22221(0,0,)x y a b a b a b+=>>>的左焦点1F 和一个顶点B.则该椭圆的离心率____.图119、写出函数()2sin(2)3f x x π=-的单调递减区间 .20、已知m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列命题:①若α⊥β,m ∥α,则m ⊥β;②若m ⊥α,n ⊥β,且m ⊥n ,则α⊥β; ③若m ⊥β,m ∥α,则α⊥β;④若m ∥α,n ∥β,且m ∥n ,则α∥β. 其中真命题的序号是______.答案选择题:ADBDA ADBBA填空题:16.16 17. _12_18. 552。

2023年中职生对口升学数学模拟卷(含答案) (1)

2023年中职生对口升学数学模拟卷(含答案) (1)

普通高校对口招收中等职业学校毕业生考试数学模拟试题(本卷满分120分,考试时间120分钟)一、选择题(每小题4分,共48分.每小题的4个选项中,只有1个选项是符合题目要求的) 1、若集合{2,5,8},{1,3,5,7},A B AB ==则等于( )A.}5{B. }8,7,5,3,2,1{C.}8,2{D.}7,3,1{ 2、若b a >,d c >,那么( )A.d b c a ->-B.bd ac >C.c b d a ->-D.cd b a > 3、已知向量),,2(),1,1(x b a =-=→→若,1=⋅→→b a 则=x ( ) A .-1B .-12C .12D .14、函数)43(log 23+--=x x y 的定义域为( )A.]1,4[-B.)1,4(- C .),1[]4,(+∞⋃--∞ D .),1()4,(+∞⋃--∞ 5、23log 9log 4⨯=( )A .14B .12C .2D .46、在等差数列{}n a 中,已知,1684=+a a 则=+102a a ( )A .16B .18C .20D .247、已知方程b ay ax =-22,且a 、b 异号,则该方程表示 ( )A.焦点在x 轴上的椭圆B.焦点在y 轴上的椭圆C.焦点在x 轴上的双曲线D.焦点在y 轴上的双曲线 8、下列命题错误的是( )A.三种基本逻辑结构包括顺序结构、条件结构和偱环结构B.每个程序框图一定包括顺序结构C.每个程序框图一定包括条件结构D.每个程序不一定包括偱环结构 9、某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有( )A. 30种B.35种C.42种D.48种 10、将圆014222=+--+y x y x 平分的直线是( )A .01=-+y xB .03=++y xC .01=+-y xD .03=+-y x 11、设l 是直线,βα,是两个不同的平面( ) A .若l ∥α,l ∥β,则α∥βB .若l ∥α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β, l ∥α,则l ⊥β12、如题12图所示,程序框图的输出的结果S 值为( )A .2B .4C .8D .16(题12) (题16)二、填空题(每小题4分,共16分)13、已知角A 为三角形的一个内角,且53cos -=A ,则=A 2sin . 14、若9()a x x-的展开式中3x 的系数是84-,则a = .15、设函数,1cos )(3+=x x x f 若11)(=a f ,则=-)(a f .16、如题16图所示,程序框图的输出值=x .三、解答题(共56分.解答时应写出必要的文字说明、证明过程或演算步骤) 17、(本题满分8分)已知等差数列{n a }中,4a =14,前10项和18510=S .求通项公式n a .k=0,S=1k <3开始 结束是 否 k=k+1 输出S S=S ×2k已知函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π. (1)求函数()f x 的解析式; (2)设(0,)2πα∈,则()22f α=,求α的值.19、(本题满分8分)某射手在一次射击中射中10环,9环,8环的概率分别为0.24,0.28,0.19.计算这个射手在一次射击中:(1)射中10环或9环的概率; (2)不够8环的概率.20.(本题满分8分)设ABC ∆的内角C B A ,,的对边分别为,,a b c ,且=A 60,3c b =.求:(1)ac的值; (2)AC B 2sin sin sin ⋅的值.如图,正方体1111D C B A ABCD - 中,G F E 、、分别是AD AB AA ,,1的中点. (1)求证:1AC ⊥平面EFG ; (2)求异面直线EF 与1CC 所成的角.(题21)22、(本题满分12分)如图,AB 是过抛物线)0(22>=p px y 焦点F 的弦,交抛物线于B A 、两点,设),(),(2211y x B y x A 、. 求证:(1)4221p x x =;221p y y -=;(2)pFB FA 211=+.(题22)A2013年普通高校对口招收中等职业学校毕业生考试数学试题参考答案与评分参考一、选择题二、填空题 13、2524-14、1 15、9- 16、12 三、解答题17、(本题满分12分)解:由41014185a S =⎧⎨=⎩ 得 11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ ∴153a d =⎧⎨=⎩ 23+=∴n a n18、解:(1)∵函数()f x 的最大值为3,∴13,A +=即2A =∵函数图像的相邻两条对称轴之间的距离为2π, ∴最小正周期为T π=∴2ω=,故函数()f x 的解析式为sin(2)16y x π=-+(2)∵()2sin()1226f απα=-+= 即1sin()62πα-=∵02πα<<,∴663πππα-<-<∴66ππα-=,故3πα=.19、(本题满分12分)解:设=A {射中10环},=B {射中9环},=C {射中8环} (1)因为B A ,为互斥事件,则射中10环或9环的概率为:)()()(B P A P B A P +=⋃52.028.024.0=+=.(2) 因为B A ,C ,为互斥事件,则8环及8环以上的概率为:71.019.028.024.0)()()()(=++=++=⋃⋃C P B P A P C B A P .故不够8环的概率为29.071.01)(1=-=⋃⋃-C B A P20、解:(1)由余弦定理得:22222211172cos ()233293a abc b A c c c c c c =+-=+-⋅⋅⋅=⇒=…6分 (2)由正弦定理和(Ⅰ)的结论得:7331sin sin sin 2222===aca bc A C B 21、解:(1) ∵C 1B 1⊥面A 1ABB 1, A 1B ⊥AB 1 由三垂线定理得AC 1⊥A 1B∵EF//A 1B , AC 1⊥EF , 同理可证AC 1⊥GF ∵GF 与EF 是平面EFG 内的两条相交直线, ∴AC 1⊥面EFG(2)∵E ,F 分别是AA 1,AB 的中点,∴EF//A 1B ∵B 1B//C 1C∴∠A 1BB 1就是异面直线EF 与C 1C 所成的角 在RT ⊿A 1BB 1中,∠ABB=45º ∴EF 与CC 1所成的角为45º 22、解:(1)当直线AB 的斜率k 不存在,即直线AB 垂直于x 轴时,显然有:4221p x x =;221p y y -=当直线AB 的斜率k 存在,即直线AB 不垂直于x 轴时:根据题意可设直线AB 的方程为:)2(p x k y -=与px y 22=联立,消去y 得:04)2(22222=++-k p x p pk x k )0(≠k由韦达定理得:4221p x x =因为B A 、两点均在抛物线上,所以有:2221212,2px y px y ==两式相乘得:2122214)(x x p y y =,将4221p x x =代入得:4221)(p y y =所以221p y y -=.(在证明221p y y -=时,也可联立方程消去x 得:0222=--k p py ky )0(≠k ,由韦达定理得:221p y y -=).(2)∵2,221px FB p x FA +=+= ∴ 21211121p x p x FBFA +++=+2212121)(244)(4p x x p x x p x x +++++= 由题(1)得:4221p x x =,22212kppk x x +=+, 代入上式化简得:pFB FA 211=+。

中等职业学校对口升学考试数学模拟试题

中等职业学校对口升学考试数学模拟试题

中等职业学校对口升学考试数学模拟试题(一)(时间:120分钟;分数:150分)一、选择题(12小题,每题5分,共60分) 1. 已知集合{}1,2,3,4A =,集合{}2,4B =,则A B =( )(A ){}2,4 (B ){}1,3 (C ){}1,2,3,4 (D )∅ 2.圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) (A )22(2)5x y -+=(B )22(2)5x y +-=(C )22(2)(2)5x y +++= (D )22(2)5x y ++= 3.的展开式中的系数是( )(A )6 (B )12 (C )24 (D )48 4.在ABC ∆中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( ) (A )等腰直角三角形 (B )直角三角形(C )等腰三角形(D )等腰或直角三角形5.已知实系数一元二次方程01)1(2=+++++b a x a x 的两个实根为21,x x , 且 1,1021><<x x ,则a b的取值范围是( ) (A )]21,1(-- (B ))21,1(-- (C ) ]21,2(-- (D ))21,2(--6.阅读右图所示的程序框图,运行相应的程序,输出的结果是( ). (A )3 (B )11 (C )38 (D )1234)2(x x +3x第9题7.已知x 、y 的取值如下表所示:若y 与x 线性相关,且ˆ0.95y x a =+,则a =( )x0 1 3 4 y2.24.34.86.7(A )2.2 (B )2.9 (C )2.8(D )2.68.设A 、B 为直线y x =与圆221x y += 的两个交点,则||AB = ( )(A )1 (B )2 C 3 D 2 9.如下图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )(A )14 (B )13 (C )12 (D )2310.已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则 ( )(A )l 与C 相交(B )l 与C 相切(C )l 与C 相离 (D )以上三个选项均有可能11.若a ∈R ,则“1a =”是“1a =”的( )条件(A )充分而不必要 (B )必要而不充分 (C )充要 (D )既不充分又不必要12.一束光线从点)11(,-A 出发经x 轴反射,到达圆C :13-2-22=+)()(y x 上 一点的最短路程是( )(A )4(B )5(C )32-1(D )26二.填空题(6小题,每题5分,共30分)13.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3 个黑球,从袋中任取一球,颜色为黑色的概率等于 .14.已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜 率k 的取值范围是 ______________________.15.函数y =____________. 16. 若向量()1,1a =,()1,2b =-,则a b ⋅等于_____________.17. 已知函数2,0,()5,0,x x f x x x <⎧=⎨->⎩则((2))f f = . 18. 设x 、y 满足条件310x y y x y +≤⎧⎪≤-⎨⎪≥⎩,则z x y =+的最小值是 .三.解答题(6小题,共60分)19. (8分)已知不等式220ax bx +->的解集是124x x ⎧⎫-<<-⎨⎬⎩⎭,求,a b 的值;f x=R,求实数a的取值范围.20. (8分)若函数()21.(10分)用定义证明函数f(f)=−5f−3在R上是减函数.22.(10分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为6,且经过点31(,)22.求椭圆C 的方程.23.(12分)如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,,AB BC D ⊥为AC 的中点,12A A AB ==,3BC =.(1)求证:1//AB 平面1BC D ; (2) 求四棱锥11B AA C D -的体积.24.(12分)已知圆O :122=+y x ,圆C :1)4()2(22=-+-y x ,由两圆外一点),(b a P 引两圆切线PA 、PB ,切点分别为A 、B ,满足|PA|=|PB|. (Ⅰ)求实数a 、b 间满足的等量关系; (Ⅱ)求切线长|PA|的最小值;BPA模拟试题(一)参考答案一.选择题(12小题,每题5分,共60分)1.A2.D)42,42(-3.C4.C5.D6.B7.D8.B9.C 10.A 11.A 12.A二.填空题(6小题,每题5分,工30分) 13. 0.5 14.15.16.1 17.-1 18.1三.解答题(6小题,共60分)19.(8分)依题意知12,4--是方程220ax bx +-=的两个根,]1,43(12()44129(2)()4b a ab a ⎧-+-=-⎪=-⎧⎪⇒⎨⎨=-⎩⎪--=-⎪⎩20.(8分)①当0a =时,()3f x =,其定义域为R ;②当0a ≠时,依题意有20136360a a a a >⎧⇒<≤⎨∆=-≤⎩ 21.(10分)证明:设 f 1,f 2 为任意两个不相等的实数,则∆f =f (f 2)−f (f 1)=(−5f 2−3)−(−5f 1−3)=−5(f 2−f 1),Δf Δf =−5(f 2−f 1)f 2−f 1=−5<0 ,所以,函数 f (f )=−5f −3 在 R 上是减函数.22.(10分)解: 由22222221,3a b a e a b -==-=得b a = 由椭圆C 经过点31(,)22,得2291144a b+= ② 联立① ②,解得1,b a ==所以椭圆的方程是2213x y +=23.(12分)(1)证明:连接1B C ,设1B C 与1BC 相交于点O ,连接OD ,因为 四边形11BCC B 是平行四边形,C。

对口升学数学试卷

对口升学数学试卷

学大教育对口升学考试数学模拟试卷(一)一、单项选择题(每小题3分,共45分)1.已知全集{1,2,3,4,5,6,7,8},{3,4,5},{1,3,6},{2,7,8}U A B ===则集合是( ) A .A B U B .A B I C .U U C A C B U D .U U C A C B I 2.若2(2)2,(2)f x x x f =-=则( )A .0B .1-C .3D .23.已知点(,3),(5,2),(4,5),,A x B y AB x y -=u u u r且则的值为( )A .1,10x y =-=B .1,10x y ==C .1,10x y ==-D .1,10x y =-=- 4.关于余弦函数cos y x =的图象,下列说法正确的是( ) A .通过点(1,0) B .关于x 轴对称C .关于原点对称D .由正弦函数sin 2y x x π=的图象沿轴向左平移个单位而得到5.6220.5与的等比中项是( ) A .16 B .2± C .4 D .4±6.2210,C x xy y C -++=如果曲线的方程为那么下列各点在曲线上的是( ) A .(1,2)- B .(1,2)- C .(2,3)- D .(3,6)7.直线10x -+=的倾斜角是( )A .6π B .3πC .23πD .56π8.若40,,x x x x>+要使取最小值则必须等于( )A .1B .2±C .—2D .29.若圆柱的轴截面的面积为S ,则圆柱的侧面积等于( )A .S πB .2S C .2S D .2S π 10.如图,在正方体11111,ABCD A B C D AC BD -中异面直线与所成的角是( ) A .90oB .60oC .45oD .30o11.四名学生与两名老师排成一排拍照,要求两名老师必须站在一起的不同排法共有( ) A .720种 B .120种 C .240种 D .48种12.双曲线221259y x -=的渐近线方程是( ) A .53y x =±B .35y x =±C .43y x =±D .34y x =± 13.抛物线20y x +=的焦点在( )A .x 轴正半轴上B .y 轴正半轴上C .x 轴负半轴上D .y 轴负半轴上 14.若1sin cos ,sin 23x x x -==则( ) A .89 B .89- C .23 D .23-15.tan18tan121tan18tan12+-o oo o的值等于( ) A .33 B 3 C .33- D .3-二、填空题(每小题5分,共30分) 16.293π-弧度的角是第 象限的角 17.圆22230x y x y +-+=的面积等于18.到两定点A (1,2),B (2,5)距离相等的点的轨迹方程是 19.函数22y x x=--的定义域可用区间表示为20.已知角,-,y x αα=为第二象限的角且终边在直线上则角的余弦值为 21.函数3cos y x x =-的最大值、周期分别是三、解答题(共75分,解答就写出文字说明或演算步骤)22.(本题满分6分)在△ABC 中,已知2,30,a b B C ==∠=∠o 求23.(本题满分8分)计算:21233711125()log 343()227--++-24.(本题满分8分)解不等式:62(3)3(4)2xx x -<+<-25.(本题满分8分)求椭圆224936x y +=的长轴和短轴的长,离心率,焦点和顶点的坐标26.(本题满分8分)求过直线32102350x y x y ++=-+=与的交点,且平行于直线:6250l x y -+=的直线方程。

(完整word版)对口升学数学模拟试题(word文档良心出品)

(完整word版)对口升学数学模拟试题(word文档良心出品)

对口升学数学模拟试题班级姓名一、选择题(50分)1.设U={2,3,a 2+2a-3},A={|a+1|,2},U A ð={5},则 a= ( ) A .2B .-3或1C .-4D .-4或22.对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件; ④“a <5”是“a <3”的必要条件. 其中真命题的个数是( )A .1B .2C .3D .43.四个数241,,3,a a 中,若前三个数成等差数列,后三个数成等比,则( )A .29,242=-=a aB .29,242==a aC .29,242-==a aD .29,242-=-=a a4.函数1()102x f x -=-,则1(8)f -= ( ) A .1 B .-2 C .1/2 D .25.ABC ∆中,若22tan tan ba B A =,则ABC ∆形状是 ( ) A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形1.设全集是R ,M ={1,2,3,4},N ={x |x ≤1+2,x ∈R },则M ∩U N ð=( ) (A ){4} (B ){3,4} (C ){2,3,4} (D ){1,2,3,4} 2.函数y =2x -x 2lg (2x -1) +32x -1的定义域是 ( )(A )(12 ,1) (B )(1,2) (C )(12 ,2) (D )(12 ,1)∪(1,2) 3、如果函数y=f(x)的图象过点(0,1),则y=f -1(x)+2的图象必过点( ) (A ) (1,2) (B )(2,1) (C ) (0,1) (D )(2,0)4.若△ABC 中tan A 、tan B 是方程3x 2+8x -1=0的两个根,则tan C =( ) (A )2 (B )-2 (C )4 (D )-4( )1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4}则(C I A)∪(C I B)= ( ) (A){0} (B){0,1} (C){0,1,4} (D){0,1,2,3,4} 2.已知y=()x f 是奇函数,当x>0时,()x f =x(x+1),当x<0时,()x f = ( ) (A)-x (1-x ) (B)x (1-x ) (C)-x (1+x ) (D)x (1+x ) 3.若πθπ<<2,且cos ()3253sin ππθθ⎛⎫-=-+ ⎪⎝⎭,则= ( )(A)10334-- (B)10334- (C)10334+- (D)10334+ 4..已知a>b>1,那么下列不等式中成立的是 ( )(A)ba22log log < (B)ba ⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛2121 (C)0.3a <0.3b (D)b a 2.02.0log log >7.在等比数列{a n }中,a 1、a 5是方程2x 2-15x+4=0的两根,则a 1·a 3·a 5=( ) (A)22 (B)-22 (C)445(D)22± 1.已知A={1,2,a 2-3a-1},B={1,3},A =⋂B {3,1}则a 等于 ( ) A 、4-或1 B 、1-或4 C 、1- D 、4 2.不等式xx 42-≥1的解集为( )A 、{x|0<x≤2}B 、{x|x ≥2或x<0}C 、{x|x ≥4或x<0}D 、{x|x ≥4或x≤0} 3.函数1()102(01)x f x a -=-<<,则1(8)f -=() A 、1 B 、0 C 、1/2 D 、24.22cos 75cos 15cos75cos15︒+︒+︒︒等于 ( )A 、14+B C 、54 D 、345.已知)32()1(i i a z +-+=为纯虚数,a 为实数,则a 的取值为 ( ) A 、32≠≠a a 或 B 、2=a C 、32≠≠a a 且 D 、3=a1.设集合{}3,2,1=A ,则满足A B A = 的集合B 的个数是 ( )A.3B.4C.6D.82.三个数20.620.6,2,log 0.6的大小关系是 ( ) A.20.620.62log 0.6<< B.20.62log 0.60.62<< C.0.622log 0.620.6<< D.20.620.6log 0.62<<3.已知向量()1,1a =与()2,3b =-,若2ka b -与a 垂直,则实数k 等于 ( ) A.-1 B. -10 C. 2 D. 0 4.已知等比数列{a n }中,a 9=2-,则此数列前17项的积等于( ) A.216 B.-216 C.217 D.-2175.已知cos α=,且sin 0α>,则tan α为 ( ) A.2 B. -2 C.12 D.12- 8.0a >且b>0是ab>0的 ( ) A.充要条件 B. 必要而非充分条件 C.充分而非必要条件 D. 以上均不对10.已知3tan =θ,θθθ22cos 2sin sin 2-+= ( ) A.71 B.94 C.25 D.1023二 填空题11.若a x f x x lg 22)(--=为奇函数,则a=__________。

2023年河北省对口升学考试数学模拟试题(含详细答案)

2023年河北省对口升学考试数学模拟试题(含详细答案)

2023年河北省普通高等学校对口招生文化考试模拟试题数 学一、选择题(本大题共15小题,每小题3分,共45分,每小题所给出的四个选项中,只有一个符合题目要求)1.已知集合2{|1}A x x =<,且a A ∈,则a 的值可能为( ). A .2-B .-3C .0D .22.下列命题中正确的是( ). A .若a b >,则ac bc > B .若,a b c d >>,则a c b d ->- C .若0,ab a b >>,则11ab<D .若,a b c d >>,则a b cd<3. “直线l 与平面α平行”是“直线l 与平面α内无数条直线平行”的( ). A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4. 已知函数()()2212f x x a x =+-+在区间(],4-∞上是减函数,则实数a 的取值范围是( ). A .3a -B .3a -C .5aD .3a5. 下列各组函数中,表示同一函数的是( ).A .3y =和y x =B .2y =和y x =C .y 2y =D .3y =和2x y x=6. 若三点A (-2,12),B (1,3),C (m ,-6)共线,则m 的值为( ). A .3 B .4 C .-3 D .-47. 两平行直线5x +12y +3=0与10x +24y +5=0之间的距离是( ). A .213 B .113 C .126 D .5268. 函数f (x )=sin (2x -2π),x ∈R ,则f (x )是( ). A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数9. 已知等差数列{a n }的前n 项和为S n ,且a 5+a 9=50,a 4=13,则S 10=( ). A .170 B .180 C .189 D .190 10. 在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( ). A . 锐角三角形 B .直角三角形 C . 钝角三角形 D .不能确定 11. 直线1y kx =+被圆222x y +=截得的弦长为2,则k 的值为( ). A .±1 B.2±C .12D .0 12. 有5列火车停在某车站并排的5条轨道上,若火车A 不能停在第1轨道上,则5列火车的停车方法共有( ).A .96种B .24种C .120种D .12种 13.在10(x -的展开式中,x 6的系数是( ).A .-27610CB .27410C C .-9610CD .9410C14. 已知点F (2 ,0)是双曲线2233(0)x my m m -=>的一个焦点,则此双曲线的离心率为( ).A .12BC .2D .415. 已知椭圆C :22221x y a b += (a >b >0)的左、右焦点分别为F 1,F 2,离心率为3,过F 2的直线l 交C 于A ,B 两点.若△AF 1B的周长为C 的方程为( ).A . 221128x y +=B .221124x y += C . 2213x y += D . 22132x y += 二、填空题(本大题共15小题,每小题2分,共30分)16. 设函数1122,1()1log ,1x x f x x x -⎧⎪=⎨>⎪⎩,则((2))f f =________. 17. 设集合A ={1,2,4},{}2|40B x x x m =-+=.若A B = {1},则集合B 用列举法表示为________.18. 已知12315,log ,ln22a b c ===,则a ,b ,c 从大到小为________. 19. 32log 420223202213327lg 0.012sin()C 6π----+等于________. 20. 已知向量a =(1,3),a +b =(–2,6),向量a 与b 的夹角为θ,则cos θ=________. 21. 在长方体ABCD -A 1B 1C 1D 1中,若AB =AD =1,AA 1=2,则异面直线A 1C 1与B 1C 所成的角的余弦值为________.22. 要得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 2y x =的图象向____平移_____个单位.23. 双曲线25x 2-16y 2=400的两条渐近线方程为______.(用斜截式表示) 24. 如图,平行四边形ABCD 中,AB ⊥BD ,沿BD 将△ABD 折起,使平面ABD ⊥平面BCD ,连接AC ,则在四面体ABCD 的四个面中,互相垂直的平面的对数为________.24.线段AB 是平面α的斜线段,斜足为B ,点A 到平面α的距离是3AB 在α内的射影长为2,那么AB 与平面α所成的角为________.25. 一个口袋内装有大小相同的6个白球和2个黑球,从中取3个球,则共有_______种不同的取法26. 已知7270127(12)x a a x a x a x -=++++,则127...a a a +++=________.27.函数12()log (2)f x x =-的单调递增区间是________. 28. 函数y =|sin x ·cos x |的最小正周期是________. 29.方程()222log 2log 80x x --=的解集为________.30. 箱子里放有编号分别为1,2,3,4,5的5个小球,5个小球除编号外其他均相同,从中随机摸出2个小球,则摸到1号球的概率为________. 三、解答题(本大题共7个小题,共45分.要写出必要的文字说明、证明过程和演算步骤)31.(5分)已知集合22{|340A x x ax a =-->,(0)}a >,{|2}B x x =>,若B A ⊆,求实数求的取值范围.32.(6分)某商店销售一种进价50元/件的商品,经市场调查发现:该商品的每天销售量y (件)是售价x (元/件)的一次函数,其售价、销售量对应值如下表:(1)求每天销售量y (件)与售价x (元/件)的函数关系式?(2)设该商店销售商品每天获得的利润为W (元),求W 与x 之间的函数关系式,并求出当销售单价定为多少时,该商店销售这种商品每天获得的利润最大?33.(7分)已知数列{a n }为等差数列,a 7-a 2=10,且a 1,a 6,a 21依次成等比数列.(1)求数列{a n }的通项公式; (2)设11n n n b a a +=,求数列{b n }的前n 项和为S n . 34.(6分)已知函数f (x )=2a sin x cos x +2b cos 2x ,且f (0)=8,f (6π)=12. (1)求实数a ,b 的值;(2)求函数f (x )的最大值及取得最大值时x 的值.35.(7分)如图所示.已知线段PD 垂直于菱形ABCD 所在的平面,点D 为垂足.PD =2,菱形的边长为2,且ADC ∠=60O .(1)求证:平面P AC ⊥平面PBD ; (2)求二面角P -AC -D 的正切值.36.(7分)已知双曲线225x y m-=1与抛物线y 2=12x 有共同的焦点F 2,经过双曲线的左焦点F 1作倾斜角为π4的直线与双曲线相交于A ,B 两点.求: (1)直线AB 的方程和双曲线的标准方程; (2)△F 2AB 的面积. 37.(7分)一个袋中装有6个形状和大小都相同的小球,其中2个红球和4个白球.(1)若从中无放回地任取2球,求取到白球的概率;(2)若每次取1个球,有放回地取3次,求取到红球个数ξ的概率分布.2022年河北省普通高等学校对口招生文化考试模拟试题数学答案一、选择题1.C2.C3.A4.A5.A6.B7.C8.B9.D 10.C 11.D 12.A 13.D 14.C 15.D 二、填空题16.1 17. {}1,3 18. a c b >>19.-1 2021. 1010 22. 右6π 23. y =±54x 24. 3π25.56 26.-2 27. (,2)-∞28.2π 29. 1164x x ==或 30. 25 三、解答题 31.解:集合22{|340A x x ax a =-->,(0)}a >{|(4)()0x x a x a =-+>,(0)}a > {|x x a =<-或4x a >,(0)}a >,∵{|2}B x x =>,B A ⊆, ∴042a <,解得102a<. ∴实数a 的取值范围是10,2⎛⎤⎥⎝⎦.32. 解:(1)依题意设y kx b =+,则有55906570k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,所以2200y x =-+,y 与x 关系式为2200y x =-+,(2)由题意知:(50)(2200)w x x =--+,2230010000x x =-+-,22(75)1250x =--+,当销售单价定为75元时,该商店销售这种商品每天获得的利润最大,为1250元.1(23n +++b cos 2x +b 由f (0)=8,f (6)=12可得a =43,b =4; (2)f (x )=4sin2x +4cos2x +4=8sin (2x +6π)+4. 所以当2x +6π=2kπ+2π,即x =kπ+6π,k ∈Z 时,函数f (x )取最大值为12. 35. (1)证明:四边形ABCD 为菱形,AC ⊥BD PD ⊥平面ABCD ,AC ⊆平面ABCD ,PD ⊥AC BD ,PD ⊆平面PBD ,所以AC ⊥平面PBD . 因AC ⊆平面P AC ,所以平面P AC ⊥平面PBD (2)解:因AC ⊥平面PBD ,PO 、OD ⊆平面PBD 所以∠POD 为二面角P -AC -D 的平面角因PD ⊥平面ABCD ,BD ⊆平面ABCD ,所以,PD ⊥BD ﹐则△POD 为直角三角形 又四边形ABCD 是边长为2的菱形,∠ADC =60o所以,BD 为∠ADC 的平分线,且BD ⊥AC ,所以∠ODC =30°在Rt △CDO 中,OD =CD cos30︒=2在Rt △POD 中, D tan PO PD OD ∠=36. 解:(1)∵抛物线y 2=12x 的焦点(3,0)为双曲线225x y m-=1的右焦点F 2(3,0),∴m +5=9,解得m =4,∴双曲线的标准方程为2254x y -=1.∵双曲线的左焦点F 1(-3,0), 故,直线过点F 1(-3,0)且斜率k =tanπ4=1 ∴直线AB 的方程为y =x +3,即x -y +3=0.(2)由2230,1,54x y x y -+=⎧⎪⎨-=⎪⎩消去y 得x 2+30x +65=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-30, ∴|AB |=∵双曲线的左焦点F 1(3,0) ∵点F 1到直线AB 的距离d=∴S △OAB =12 |AB |·d=12⨯ 37. 解:(1)设A ={无放回地任取2个,取到白球},则P (A )= 11224426C C C C +=1415.(2)ξ的可能取值为0,1,2,3.033128(0)()()3327P C ξ==⨯⨯=; 1123124(1)()()339P C ξ==⨯⨯=2213122(2)()()339P C ξ==⨯⨯=330312(3)()()37123P C ξ===⨯⨯∴ξ的概率分布为。

2020_年对口升学考试模拟试题数学(一)

2020_年对口升学考试模拟试题数学(一)

2020/02选择题一、单项选择题(本大题共10小题,每小题3分,共30分)1.已知全集U=x x 2+x>0{},A =x y=lg x {},则C U A =A.(-∞,-2)B.0,+∞)[C.(-∞,2)D.(0,+∞)2.函数y=log 2(x 2+ax +1)定义域R ,则a 的取值范围A.[-2,2]B.(-2,2)C.(-x ,-2]∪[2,+∞)D.(-∞,-2)∪(2,+∞)3.2log 23+log 213的值为A.-1 B.0C.1 D.24.等差数列{a n },S 2=-2,a 2=2,则a 3=A.5B.6C.7D.85.下列函数在定义域上是增函数的是A.y =x -1 B.y =-ln xC.y =2-xD.y =(x-2)26.函数y =ax 3+bx +1,有f (2)=3,则f (-2)=A.2 B.1C.-1 D.-27.若x>y >1,且0<a <1,那么下列不等式正确的是A.a x >a yB.log a x >log a yC.a a >1D.x a >y a8.若a ⭢=(3,-1),b ⭢=(m ,2),且a ⭢、b ⭢是共线向量,则y 的值为A.-4B.-6C.3D.49.从60°二面角内一点,到二面角的两个面的垂线段长是4cm ,则两垂足间的距离A.8B.83√C.4D.43√10.双曲线x 216-y 29=1上一点到一焦点的距离为9,则这点到另一焦点的距离为A.16B.1或17C.17D.1非选择题二、填空题(本大题共8小题,每小题4分,共计32分)1.19()-12+sin (π-π6)+log 218=.2.函数y=3sin x cos x 的最小值为.3.函数f (2x+1)=21-3x ,则f (1)=.4.已知向量a ⭢=(3,1),b ⭢=(-2,1),且<a ⭢,b ⭢>=.5.原点到直线x cos θ-y sin θ=1的距离为_______.6.表面积为4π的一个球,内切于正方体内,则正方体的对角线长.7.若(1+ax )5展开式中x 3的系数为-80,则a =。

对口高考数学模拟试卷含答案

对口高考数学模拟试卷含答案

对口高考数学模拟试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试用时120分钟.第Ⅰ卷(选择题 共50分)参考公式:如果事件A 、B 互斥,那么柱体(棱柱、圆柱)的体积公式P (A+B )=P (A )+P (B ) h V S =柱体 如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,P (A·B)=P (A )·P(B )h 表示柱体的高一、单项选择题:(每一小题仅有一个正确答案,请将正确答案的代号填入 答题表内。

每小题5分,共计60分)1.下列关系中正确的是 ( )A. φ∈0B.a ∈{a}C.{a,b}∈{b,a}D. φ=}0{2. 不等式21≥-xx 的解集为( )A . )0,1[-B . ),1[+∞-C . ]1,(--∞D . ),0(]1,(+∞--∞Y3.对任意实数,,a b c 在下列命题中,真命题是( )A . ""ac bc >是""a b >的必要条件B . ""ac bc =是""a b =的必要条件C . ""ac bc >是""a b >的充分条件D . ""ac bc =是""a b =的充分条件4.若平面向量与向量)2,1(-=a 的夹角是o180,且53||=b ,则=( )A . )6,3(-B . )6,3(-C . )3,6(-D . )3,6(-5.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点。

若3||1=PF ,则=||2PF ( )A . 1或5B . 6C . 7D .96、原点到直线y=kx+2的距离为2,则k 的值为 ( ) A. 1 B. -1 C. ±1 D. ±77、若135sin )cos(cos )sin(=+-+αβααβα,且β是第二象限角,则βcos 的值为( ) A .1312 B .1312- C .53 D .53-8、在等差数列{a n }中,a 1+a 2+a 3+a 4+a 5=15 , a 3= ( ) A. 2 B. 3 C. 4 D. 5 9、已知函数b a x f x +=)(的图象经过点)3,1(,又其反函数)(1x f-的图象经过点)0,2(,则函数)(x f 的表达式是( )A .12)(+=x x fB .22)(+=x x fC .32)(+=x x fD .42)(+=x x f 10、已知向量与,则下列命题中正确的是 ( )A. 若||>||,则>B. 若||=||,则=C. 若=,则∥D. 若≠,则与就不是共线向量11.下列函数中为偶函数的是 ( )A .f(x)=1-x 3B.f(x)=2x-1C.f(x)=x 2+2 D.f(x)=x 312. 一商场有三个大门,商场内有两部上楼的电梯,一顾客从商场外到商场二楼购物,不同的走法共有( )A.5种B.6种C.8种D.9种市 姓名 准考证号 座位号第Ⅱ卷(非选择题 共100分)二、填空题:(本大题共4小题,每小题4分,共16分.答案填在题中横线上)11.一个圆柱的底面半径和高都与一个球的直径相等,则该圆柱与该球的体积比为____________。

职高对口升学高考数学复习模拟试题一(含答案)

职高对口升学高考数学复习模拟试题一(含答案)

数学试题一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.i 为虚数单位,则2013i =( )A.i -B.1-C. iD.1答案:C解析: 201345031i i i ⨯+==2. 若()e x f x x =,则(1)f '=( )A .0B .eC .2eD .2e解析:选C ∵f ′(x )=e x +x e x ,∴f ′(1)=2e.3. 已知双曲线2219x y m-=的一个焦点坐标是()5,0,则双曲线的渐近线方程是()A. 34y x =±B. 43y x =± C. 3y x =± D. 4y x =± 答案:B解析:知双曲线2219x y m-=的焦点在x 轴,且0,3m c >=,又一个焦点是()5,0,5,16m == 双曲线的渐近线方程为43y x =±4.下列叙述:①若两条直线平行,则它们的方向向量方向相同或相反;②若两个向量均为同一个平面的法向量,则以这两个向量为方向向量的直线一定平行; ③若一条直线的方向向量与某一个平面的法向量垂直,则该直线与这个平面平行. 其中正确的个数是 ( ) A.0个 B.1个 C.2个 D.3个 答案:B解析:①正确,②③错误.5.学校体育场南侧有4个大门,北侧有3个大门,西侧有2个大门,某学生到该体育场训练,但必须是从南或北门进入,从西门或北门出去,则他进出门的方案有( )A.7个B.12个C.24个D.35个答案:D6. 下列推理中属于归纳推理且结论正确的是( )A.设数列{}n a 的前n 项和为n S .由21n a n =-,求出2221231,2,3,S S S ===,…,推断:2n S n =B.由()cos f x x x =满足()()f x f x -=-对∀x ∈R 都成立,推断:()cos f x x x =为奇函数C.由圆222x y r +=的面积2S r π=,推断:椭圆22221(0)x y a b a b+=>>的面积S ab π=D.由()()()222123112,212,312,+>+>+>…,推断:对一切n ∈N *,()212n n +>答案:A解析:选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和等于S n =n (1+2n -1)2=n 2,选项D 中的推理属于归纳推理,但结论不正确.因此选A.7. 已知函数32()393f x x x x =--+,若函数()()g x f x m =-在[]2,5x ∈-上有3个零点,则m 的取值范围为( )A .(-24,8)B .(-24,1]C .[1,8]D .[1,8)[解析] f ′(x )=3x 2-6x -9=3(x +1)·(x -3), 令f ′(x )=0,得x =-1或x =3.当x ∈[-2,-1)时,f ′(x )>0,函数f (x )单调递增;当x ∈(-1,3)时,f ′(x )<0,函数f (x )单调递减;当x ∈(3,5]时,f ′(x )>0,函数f (x )单调递增.所以函数f (x )的极小值为f (3)=-24,极大值为f (-1)=8;而f (-2)=1,f (5)=8,函数图象大致如图所示.故要使方程g (x )=f (x )-m 在x ∈[-2,5]上有3个零点,只需函数f (x )在[-2,5]内的函数图象与直线y=m 有3个交点.故⎩⎪⎨⎪⎧m <8,m ≥1,即m ∈[1,8).[答案] D8. 抛物线22(0)y px p =>的焦点为F ,已知点,A B 为抛物线上的两个动点,且满足90AFB ∠=o.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN ABu u u u r u u u r 的最大值为A.22B.3C. 13答案:A解析:试题分析:设12,AF rBF r ==,则 2222121122121222222222121212121()221112211222r r MN r r r r r r r r AB r r r r r r r r ++++===+≤+=++++12N二、 填空题:本大题共7小题,每小题5分,共35分.9. 204sin xdx π=⎰答案:4解析:22004sin 4cos |4xdx x ππ=-=⎰10.已知01a <<,复数z 的实部为a ,虚部为1,则复数z 对应的点Z 到原点距离的取值范围是 答案:()1,2解析:∵01a <<,∴()211,2OZ a =+∈ 11. 曲线C :ln xy x=在点(1,0)处的切线方程是 . 答案:1y x =-解析:设f(x)=ln xx ,则f′(x)=1-ln x x 2.所以f′(1)=1.所以所求切线方程为y =x -1.12. 棱长均为3的三棱锥S ABC -,若空间一点P 满足(1)SP xSA ySB zSC x y z =++++=u u r u u r u u r u u u r,则SP u u r的最小值为 . 答案:6解析:∵SC z SB y SA x SP ++=)1(=++z y x ,∴,,,A B C P 四点共面,SP 的最小值即为点S 到底面ABC 的高6h =.13. 我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼-15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是 . 答案:24解析:分三步:把甲、乙捆绑为一个元素A ,有A 22种方法;A 与戊机形成三个“空”,把丙、丁两机插入空中有A 23种方法;考虑A 与戊机的排法有A 22种方法.可知共有A 22A 23A 22=24种不同的着舰方法.14. 椭圆22:143x y C +=的左、右顶点分别为12A A 、,点P 在椭圆C 上,记直线2PA 的斜率为2k ,直线1PA 的斜率为1k ,则 1k ·2k = . 答案:-34解析:椭圆的左、右顶点分别为(-2,0),(2,0),设P(x 0,y 0),则k PA1k PA2=y 0x 0+2·y 0x 0-2=y 20x 20-4,而x 204+y 23=1,即y 20=34(4-x 20),所以k PA1k PA2=-3415.函数2()ln(1)f x x a x =++有两个不同的极值点12,x x ,且12x x <,则实数a 的范围是答案:10,2⎛⎫ ⎪⎝⎭解析:()f x 定义域为(1,)-+∞()21a f x x x '=++,令()0f x '=,则201a x x +=+在(1,)-+∞内有两个不同的实数根 2(1)a x x =-+,结合图象知102a <<三、解答题:本大题共6个小题,共75分,解答题写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 设p :实数x 满足22430x ax a -+<, :q 实数x 满足31x -<.(1)若1,a =且p q ∧为真,求实数x 的取值范围;(2)若其中0a >且p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围. 解:(1). 由22430x ax a -+<得(3)()0x a x a --<当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<.……………2分 由31x -<, 得131x -<-<, 得24x <<即q 为真时实数x 的取值范围是24x <<,……………4分 若p q ∧为真,则p 真且q 真,所以实数x 的取值范围是23x <<. ……………6分(2) 由22430x ax a -+<得(3)()0x a x a --< p ⌝是q ⌝的充分不必要条件,即p ⌝⇒q ⌝,且q ⌝⇒/p ⌝, ……………8分设A ={|}x p ⌝,B ={|}x q ⌝,则AB ,又A ={|}x p ⌝={|3}x x a x a ≤≥或, B ={|}x q ⌝={x|x ≥4或x ≤2},……………10分则02a <≤,且34a ≥所以实数a 的取值范围是423a ≤≤……………12分17. (本小题满分12分)如图,在三棱柱111ABC A B C -中,侧棱垂直底面,90ACB ∠=︒,12AC BC CC ===.(1)求证:11AB BC ⊥;(2)求二面角111C AB A --的大小.解::方法一:(1)∵11,AC BC AC CC BC CC C ⊥⊥=I 且 ∴11AC C CBB ⊥平面,又111BC C CBB ⊂平面∴1111,,AC BC B C BC AC B C C ⊥⊥=I 且 ∴1111BC AB C AB AB C ⊥⊂平面,又平面1C A BC1A 1B∴11AB BC ⊥(2)取11A B 的中点为H ,在平面11A ABB 内过H 作1HQ AB ⊥于点Q ,连接1C Q 则111C H A ABB ⊥平面,∴11C H AB ⊥,而1C H HQ H =I ∴1111AB C HQ AB C Q ⊥∴⊥平面,∴1C QH ∠是二面角111C AB A --的平面角,又11623C H A AB HQ ==V ,在内,解得 ∴111tan 3,60C HC QH C QH HQ∠==∠=︒ ∴二面角111C AB A --为60°.18. (本小题满分12分)时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y (单位:千套)与销售价格x (单位:元/套)满足的关系式()2462m y x x =+--,其中26x <<,m 为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求m 的值;(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数). 解:(1)因为4x =时,21y =,代入关系式()2462m y x x =+--,得16212m +=, 解得10m =.……………………4分 (2)由(1)可知,套题每日的销售量()210462y x x =+--,……………5分 所以每日销售套题所获得的利润()()()()()223210()24610462456240278262f x x x x x x x x x x ⎡⎤=-+-=+--=-+-<<⎢⎥-⎣⎦……………………8分从而()()()()2'121122404310626f x x x x x x =-+=--<<.令()'0f x =,得103x =,且在102,3⎛⎫ ⎪⎝⎭上,0)('>x f ,函数)(x f 单调递增;在10,63⎛⎫ ⎪⎝⎭上,0)('<x f ,函数)(x f 单调递减, ……………………10分所以103x =是函数)(x f 在()2,6内的极大值点,也是最大值点,所以当103.33x =≈时,函数)(x f 取得最大值.故当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大. …………………12分19. (本小题满分13分)设数列{}n a 的前n 项和为n S (即123n n S a a a a =++++L ),且方程20n n x a x a --=有一根为n S -1,n =1,2,3…….(1)求12,a a ;(2)猜想数列{}n S 的通项公式,并用数学归纳法给出严格的证明. 解:(1)当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1, 于是(a 1-1)2-a 1(a 1-1)-a 1=0, 解得a 1=12.……………3分当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-12,于是⎝⎛⎭⎫a 2-122-a 2⎝⎛⎭⎫a 2-12-a 2=0,解得a 2=16.……………5分(2)由题设(S n -1)2-a n (S n -1)-a n =0, 即S 2n -2S n +1-a n S n =0. 当n ≥2时,a n =S n -S n -1, 代入上式得S n -1S n -2S n +1=0.① 由(1)得S 1=a 1=12,S 2=a 1+a 2=12+16=23.由①可得S 3=34.由此猜想S n =nn +1,n =1,2,3…. ……………7分下面用数学归纳法证明这个结论. (ⅰ)n =1时已知结论成立.……………8分 (ⅱ)假设n =k (k ≥1,k ∈N *)时结论成立, 即S k =k k +1,当n =k +1时,由①得S k +1=12-S k,……………10分 即S k +1=k +1k +2,故n =k +1时结论也成立.……………12分综上,由(ⅰ)(ⅱ)可知S n =nn +1对所有正整数n 都成立.……………13分20. (本小题满分13分)已知椭圆C :22221x y a b+=(0)a b >>离心率为2,且椭圆的长轴比焦距长2.(1)求椭圆C 的方程;(2)过点M (0,13-)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点T ,使得无论l 如何转动,以A B 为直径的圆恒过定点T ?若存在,求出点T 的坐标;若不存在,请说明理由.解:(1)设椭圆的焦距为2c,则由题设可知2221a c caa cb ⎧-=⎪⎪=⎨⎪⎪=+⎩,解此方程组得a 1b =. 所以椭圆C 的方程是2212x y +=. ……………………5分 (2)解法一:假设存在点T (u, v ). 若直线l 的斜率存在,设其方程为13y kx =-,将它代入椭圆方程,并整理,得22(189)12160k x kx +--=.设点A 、B 的坐标分别为1122(,),(,)A x y B x y ,则 12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩因为1122(,),(,)TA x u y v TB x u y v =--=--u u r u u r 及112211,,33y kx y kx =-=- 所以1212()()()()TA TB x u x u y v y v =--+--u u r u u rg2221212121(1)()()339v k x x u k kv x x u v =+-+++++++222222(666)4(3325)62u v k ku u v v k +--+++-=+ …………………9分 当且仅当0TA TB =u u r u u rg 恒成立时,以AB 为直径的圆恒过定点T ,所以2222618180,0,33250.u v u u v v ⎧+-=⎪=⎨⎪++-=⎩解得0, 1.u v ==此时以AB 为直径的圆恒过定点T (0,1). …………………11分 当直线l 的斜率不存在,l 与y 轴重合,以AB 为直径的圆为221x y +=也过点T (0,1). 综上可知,在坐标平面上存在一个定点T (0,1),满足条件. …………………13分解法二:若直线l 与y 轴重合,则以AB 为直径的圆是22 1.x y +=若直线l 垂直于y 轴,则以AB 为直径的圆是22116().39x y ++=……………7分由22221,116().39x y x y ⎧+=⎪⎨++=⎪⎩解得01x y =⎧⎨=⎩. 由此可知所求点T 如果存在,只能是(0,1). ………………8分事实上点T (0,1)就是所求的点. 证明如下:当直线l 的斜率不存在,即直线l 与y 轴重合时,以AB 为直径的圆为221x y +=, 过点T (0,1); 当直线l 的斜率存在,设直线方程为13y kx =-,代入椭圆方程,并整理,得22(189)12160.k x kx +--=设点A 、B 的坐标为1122(,),(,)A x y B x y ,则12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩…………………10分因为1122(,1),(,1)TA x y TB x y =-=-u u r u u r, 21212121212416()1(1)()39TA TA x x y y y y k x x k x x =+-++=+-++u u r u u r g222216161632160.189k k k k ---++==+所以TA TB ⊥u u r u u r,即以AB 为直径的圆恒过定点T (0,1).综上可知,在坐标平面上存在一个定点T (0,1)满足条件. …………………13分 21. (本小题满分13分)已知),1ln()(+=x x f bx ax x g +=221)( (1)若0=a ,1=b 时,求证:0)()(≤-x g x f 对于),1(+∞-∈x 恒成立; (2)若2=b ,且)()1()(x g x f x h --=存在单调递减区间,求a 的取值范围;(3)利用(1)的结论证明:若y x <<0,则2ln )(ln ln yx y x y y x x ++>+.解:(1)设x x x g x f x -+=-=)1ln()()()(ϕ,则.1111)('+-=-+=x xx x ϕ………………….2分Θ当0=x 时,)(x ϕ有最大值0 ∴0)(≤x ϕ恒成立。

对口升学考试数学模拟试卷(一)

对口升学考试数学模拟试卷(一)

永昌县职业中学对口升学考试数学模拟试卷(一)一、选择题:(本大题共7小题,每小题3分,共21分.)1.下列关系式中不正确的是( )A .0; B .1{2,4}; C .-1{x |x 2-1=0}; D .2{x |x >0}. 2.不等式2x>- 2的解集是( )A . {x | x >-1};B .{x | x <-1};C .{x | x >1};D .{x | <1}.3.下列函数中的奇函数是( )A .y =x -2;B .y=x1 ; C .y=2x2 ; D .y=x 2-x . 4.下列角中与30°角终边相同的角是( )A .1000°;B .-630°;C .-690°;D .-150°.5.数列8,4,2,1,…中的2是第几项 ( )A .1 ;B . 2;C . 3;D .4.6.已知点A (4,-4)、B (8,8),则直线AB 的斜率为( )A .4;B .3 ;C .2 ;D .-4.7.下列命题中不正确的是 ( ) A .不在一直线的三点确定一个平面;B .平行直线确定一个平面;C .相交直线确定一个平面 ;D .一点与一条直线确定一个平面.二、填空题:(本大题共4小题,每小题3分,共12分.)8.已知f(x) =4x-1,则f(2)= .9.已知向量a=(x ,2),b=(3,- 6),若a ()A P 222π424221,23x x x x ++++{}n a 12-6m5m 2()x x f 2-=()+∞,0A B C DB CD A 第7题图 xy墙 墙 第14题图 菜地。

2023年中职对口升学单招数学模拟试卷)

2023年中职对口升学单招数学模拟试卷)

模拟卷六一、选择题(本大题共15 小题,每小题5 分,满分75 分)【建议用时:50 分钟】1. M={ x|x< 2 } ,N={ x|x- 4 < 0 } ,则M⋂N=().A. ( -∞,4 )B. ( -∞,2)C. ( -∞, -2) ⋃(2 , +∞)D. ∅2. 不等式|x+ 2|< 4 的解集是().A. ( -2 , 1)B. ( -∞, -2) ⋃(1 , +∞)C. ( -6 ,2)D. ( -∞,6)3. 设函数f(x)= 3 ,则f(x)().A. 是偶函数B. 是奇函数C. 不具有奇偶性D. 既是奇函数又是偶函数v4 -x2的定义域为().4. 函数f(x)=A. [ -2 ,2 ]B. [ 2 , +∞)C. ( -∞,2 ]D. ( -∞, -2) ⋃(2 , +∞)5. f(x)= a x+ 1经过点(2 ,8 ),则a=().A. -2B. 2C. 3D. -36. 等差数列{ a n} 中,a2=-4,a4=-16,则S5=().A. -50B. 60C. 126D. 07. 已知f(x)=x+ 4 ,则f-1(5)=().A. -1B. 1C. 9D. -98. 函数y= 2(log2x) 的定义域是().A. (0 , 1)B. (0 , +∞)C. [ 1 , +∞)D. (1 , +∞)9. 函数y= 3sin x- 2 的最小值是().A. 1B. 5C. -5D. 210. 若sinα< 0 ,cosαsinα< 0 ,则α为().A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角11. 已知一组数据1、2、y的平均数为4 ,那么y=().A. 7B. 8C. 9D. 1012. 有20位同学,编号从1 至20 ,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为().A. 5 ,10 ,15 ,20B. 2 ,6 ,10 ,14C. 2 ,4 ,6 ,8D. 5 ,8 ,11 ,1413. 若双曲线的焦距是10 ,则a的值是().A. 3B. 9C. 9或- 9D. 3或- 314. 椭圆上任意两点间的最大距离为8 ,则h的值为().A. 32B. 16C. 8D. 415. 圆x2+y2= 4与直线3x- 4y+ 4 = 0 的关系是().A. 相离B. 相切C. 相交D. 无法确定二、填空题(本大题共5 小题,每小题5 分,满分25 分)【建议用时:20 分钟】16. 函数f(x)=x2+ 2x+ 1 的最小值是.2 217. 以双曲线的左顶点为焦点,原点为顶点的抛物线方程是.18. 数据4 ,6 ,5 ,4 ,6 的方差是.19. 若{ a n}为等比数列,a n> 0 ,S2 = 7 ,S6 = 91 ,则S4 = .20. 向量< >= 60°,||= 2 , ||= 5 ,则||= .三、解答题(本大题共4 小题,第21-23 题各12 分,第24 题14 分,满分50 分)【建议用时:50 分钟】21. 如图11–1所示,在△ABO中,已知点A(2 ,4 ),B(6 ,2).(1)求△ABO的面积;(2)若点P是x轴上的一点,且△OAP的面积与△ABO的面积相等,求点P的坐标.y ▲ABOx图11 –122. 在△ABC中,a,b,c分别是∠A, ∠B, ∠C的对边,已知b= 3 ,c= 4 ,cos A= .(1)求a的值;(2)求△ABC的面积.23. 已知等差数列{ a n}满足:a1 = 2 ,a n+ 1 = a n+ 2(n∈N*).(1)求数列{ a n} 的通项公式和前n项和S n;若b n= 求数列{ b n} 的前n项和T n./6 ,且长轴长是短轴长的两倍.24. 已知椭圆E的中心在原点,焦点在y轴上,焦距为2(1)求椭圆E的标准方程;(2)设直线l:2x-y+ b= 0 与椭圆E交于A,B两点,若定点P的坐标是(1 ,2),求当b为何值时,△PAB的面积最大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

永昌县职业中学对口升学考试数学模拟试卷(一)
一、选择题:(本大题共7小题,每小题3分,共21分.)
1.下列关系式中不正确的是( )
A .0?? ;
B .1?{2,4};
C .-1?{x |x 2-1=0};
D .2?{x |x >0}.
2.不等式2x>- 2的解集是( )
A . {x | x >-1};
B .{x | x <-1};
C .{x | x >1};
D .{x | <1}.
3.下列函数中的奇函数是( )
A .y =x -2;
B .y=x
1 ; C .y=2x
2 ; D .y=x 2-x . 4.下列角中与30°角终边相同的角是( )
A .1000°;
B .-630°;
C .-690°;
D .-150°.
5.数列8,4,2,1,…中的2是第几项 ( )
A .1 ;
B . 2;
C . 3;
D .4.
6.已知点A (4,-4)、B (8,8),则直线AB 的斜率为( )
A .4;
B .3 ;
C .2 ;
D .-4.
7.下列命题中不正确的是 ( )
A .不在一直线的三点确定一个平面;
B .平行直线确定一个平面;
C .相交直线确定一个平面 ;
D .一点与一条直线确定一个平面. 二、填空题:(本大题共4小题,每小题3分,共12分.)
8.已知f(x) =4x-1,则f(2)= .
9.已知向量
a=(x ,2),b=(3,- 6),若a ()A P 222π424221,23x x x x ++++{}n a 12-6m5m 2()x x f 2-=()+∞,0 A B C D
B 1
C 1
D 1 A 1 第7题图 墙 第14题图。

相关文档
最新文档