安徽省近五年中考数学试题分析看今

合集下载

2024年安徽中考数学试卷分析报告

2024年安徽中考数学试卷分析报告

2024年安徽中考数学试卷分析报告背景介绍2024年安徽中考是一项重要的学术考试,旨在评估学生对数学知识的掌握程度和解决实际问题的能力。

本文将对2024年安徽中考数学试卷进行详细分析,以便了解试卷的难度和涵盖的知识点。

试卷概况2024年安徽中考数学试卷总共包括五个部分:选择题、填空题、计算题、应用题和解答题。

试卷共有10道选择题、5道填空题、3道计算题、2道应用题和1道解答题。

选择题选择题是试卷的开篇,它们涵盖了各个知识点。

其中有些题目需要进行计算,有些题目则需要进行推理判断。

本次选择题的难度适中,题目设计紧密结合实际生活场景,具有一定的启发式教育意义。

填空题填空题测试学生对数学知识点的掌握和运算能力。

本次填空题的难度相对较高,需要学生对各种运算规则和概念有深入的理解。

题目中涉及了分数、代数方程、几何等多个知识点。

计算题计算题是考察学生运算计算能力的重要部分。

本次计算题的难度适中,考察了学生对四则运算、面积和体积计算、比例计算等知识点的掌握情况。

题目设置简洁清晰,容易理解和编写计算步骤。

应用题应用题是考察学生将数学知识应用于实际问题解决能力的重要环节。

本次应用题设计灵活多样,围绕实际生活中的购物、出行等场景展开。

题目设置具体,情境鲜明,要求学生进行数据分析和问题解答。

解答题解答题是试卷的最后一部分,旨在考察学生的数学思维和解题能力。

本次解答题涉及了方程求解和概率统计等知识点,设置了较为复杂的问题,并要求学生进行推理和论证。

知识点覆盖2024年安徽中考数学试卷涵盖了多个数学知识点,包括但不限于以下内容:•数与式•分数•代数方程•几何知识(面积、体积、相似三角形等)•概率与统计试卷中针对每个知识点都设置了相应的题目,旨在全面评估学生对这些知识点的掌握情况。

试卷的题目设计紧密结合实际生活场景,体现了数学在日常生活中的重要性,有利于激发学生对数学的兴趣。

难度分析整体而言,2024年安徽中考数学试卷的难度适中。

沪科版_2021年安徽省中考数学试题评析

沪科版_2021年安徽省中考数学试题评析

安徽省2021年中考数学试题评析注重能力稳中求新2021年安徽中考数学试题延续了近五年的命题风格,考查全面,难易适中,既有利于检测出全体考生的基础知识,也满足了后续学校对考生能力的选拔需求。

充分体现了安徽省“以稳为主,稳中求变”的命题指导思想,是一份值得肯定的好试卷。

一、试卷结构和难度分析试卷选材较前两年有所变化,但没有超出《安徽省2021年中考(数学)纲要》的要求,试题设置有一定的梯度和灵活度,较2021年难度有所增加,尤其几何题对学生的思维水平较前四年要求提高。

整张试卷中“数与代数”约占50%,“空间与图形”约占40%,“统计与概率”约占10%。

均接近于前几年中考各部分所占比例的平均值。

试题考查的重点突出,并保持适当的梯度:方程及其应用、整式的化简、圆、解直角三角形、图形变换、概率统计以及函数等重点知识都以不同的形式呈现,部分知识之间呈现出一定的综合和跨越。

考生做题时较容易上手,即使是难题也有似曾相识的感觉,试题考查的效度较高。

二、试卷考查重点分析1、试题注重学生数学实际应用能力的考查。

全卷考查学生数学实际应用的有六道试题(第5 、11 、12 、18 、20、21题),约占总分的1/3 。

这些题目涉及工农业、信息产业、交通、环境保护、正确决策等方面,具有时代气息。

这些问题都要求学生能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。

2、试题具有一定创新性与操作性,全面考查学生的探究能力。

试卷第8、14、18、21、22、23题等都具有探究性,需要学生通过“观察、思考、猜测、推理”等思维活动分析并解决问题。

其中第22题是一个“新概念题”,题目定义了一个“同簇二次函数”的概念,然后以这个概念展开两个问题,题目很新颖,其中第(2)问学生感觉有些难度,需要较好的计算能力和丰富的解题经验。

第23题(压轴题)要求学生能将多边形问题转化为三角形问题进行研究,体现了“化归”的数学思想;同时要求学生能够合理运用图形变换,正确添加辅助线,体现出学生的创新思维。

安徽省近五年中考数学试题分析看今

安徽省近五年中考数学试题分析看今

xx近五年 xx 数学试题剖析看今后的方向数与代数部分:(一)数与式综观最近几年来中考“数与式”部分的试题,再结《标准》的要求,2018 年对于“数与式”考察还会主要为基础性题目集中在基础知识与基本技术方面。

但陪伴着最近几年来试题不停革故鼎新,以“数与式”内容为依靠,增强数学理解能力的考察也更加突显。

如以新定义看法为载体的开放题,侧重考察数学理解能力,这种能力在最近几年来的中考题中其实许多见,如 2017 年内蒙古呼伦贝尔卷第 5 题等,此外,依靠于“数与式”的有关知识,考察研究规律的能力,即合情推理、归纳归纳能力,已经成为一种趋向,如 2017 年安徽卷第 16 题。

别的,以几何图形为载体,联合“数与式”的基础知识、考察图形察看能力和逻辑推理能力。

这类试题的表现形式是把“数与式”部分内容与图形联合,增大了思虑量,拥有必定的难度。

这类形式值得大家进一步关注。

如 2015 年安徽卷第 18 题、 2016 安徽卷第 17 题等。

(二)方程(组)与不等式(组)第一,关讲解方程(组)与不等式(组)的基本技术。

综观历年中考题,都是针对解方程(组)与不等式(组)这一基本技术编制的试题,其解法的是课程标准中要求掌握的。

所以,有原因确信,在 2018 年的中考取,对解方程(组)与不等式(组)的试题依旧出现。

其次,最近几年来环绕学生的创新意识,中考试题在开放性增强的同时侧重考察了学生思想的谨慎性与灵巧性,所以,要侧重学生对数学事实的真实理解。

最后,关注数学模型思想,考察数学应意图识和能力,所以,以当地热门话题为背景,表现“问题情境—成立模型 ---求解 ---解说与应用”这一过程的试题在 2018 年的中考试题中依旧会出现,应当惹起关注。

(三)函数1 / 6第一,关注函数看法及表达方式,此类问题仍在 2018 年考试中有所表现。

其次 ,关注函数与方程、不等式之间的关系。

利用函数思想及函数模型解决有关问题也会是考察要点。

2024年安徽省中考数学试卷(附答案解析)

2024年安徽省中考数学试卷(附答案解析)

2024年安徽省中考数学试卷(附答案解析)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)﹣5的绝对值是()A.5B.﹣5C.D.﹣【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选:A.2.(4分)据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为()A.0.944×107B.9.44×106C.9.44×107D.94.4×106【解答】解:944万=9440000=9.44×106,故选:B.3.(4分)某几何体的三视图如图所示,则该几何体为()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:根据三视图进行观察,下半部分是圆柱,上半部分是圆锥,故选:D.4.(4分)下列计算正确的是()A.a3+a3=a6B.a6÷a3=a2C.(﹣a)2=a2D.=a【分析】利用合并同类项法则,同底数幂除法法则,幂的乘方,二次根式逐项判断即可.【解答】解:A、a3+a3=2a3,故A选项错误;B、a6÷a3=a3,故B选项错误;C、(﹣a)2=a2,故C选项正确;D、,故D选项错误;故选:C.5.(4分)若扇形AOB的半径为6,∠AOB=120°,则的长为()A.2πB.3πC.4πD.6π【分析】利用弧长计算公式计算即可.【解答】解:=,故选:C.【点评】本题考查了弧长的计算,掌握弧长计算公式是解题的关键.6.(4分)已知反比例函数y=(k≠0)与一次函数y=2﹣x的图象的一个交点的横坐标为3,则k的值为()A.﹣3B.﹣1C.1D.3【分析】将x=3代入一次函数中,求得y=﹣1,再将(3,﹣1)代入反比例函数中,求得k的值.【解答】解:将x=3代入y=2﹣x中,得:y=﹣1,将(3,﹣1)代入y=中,得:k=﹣3,故选:A.【点评】本题考查了反比例函数与一次函数的交点问题,将交点横坐标代入解析式中是解题的关键.7.(4分)如图,在Rt△ABC中,AC=BC=2,点D在AB的延长线上,且CD=AB,则BD的长是()A.B.C.2﹣2D.【分析】由等腰直角三角形的性质可得AB=2,AH=BH=CH=,由勾股定理可求DH的长,即可求解.【解答】解:如图,过点C作CH⊥AB于H,∵AC=BC=2,∠ACB=90°,CH⊥AB,∴AB=2,AH=BH=CH=,∵CD=AB=2,∴DH===,∴DB=﹣,故选:B.【点评】本题考查了等腰直角三角形的性质,勾股定理,掌握等腰直角三角形的性质是解题的关键.8.(4分)已知实数a,b满足a﹣b+1=0,0<a+b+1<1,则下列判断正确的是()A.﹣<a<0B.<b<1C.﹣2<2a+4b<1D.﹣1<4a+2b<0【分析】由a﹣b+1=0得出b=a+1,代入0<a+b+1<1可得﹣1<a<﹣,再求0<b<,分别代入选项判断即可.【解答】解:∵a﹣b+1=0,∴b=a+1,∵0<a+b+1<1,∴0<a+a+1+1<1,即0<2a+2<1∴﹣1<a<﹣,故选项A错误,不合题意.∵b=a+1,﹣1<a<﹣,∴0<b<,故选项B错误,不合题意.由﹣1<a<﹣得,﹣2<2a<﹣1,﹣4<4a<﹣2,由0<b<得,0<4b<2,0<2b<1,∴﹣2<2a+4b<1,故选项C正确,符合题意.∴﹣4<4a+2b<﹣1,选项D错误,不合题意.故选:C.【点评】本题主要考查了解一元一次不等式,掌握解一元一次不等式是解题关键.9.(4分)在凸五边形ABCDE中,AB=AE,BC=DE,F是CD的中点.下列条件中,不能推出AF与CD一定垂直的是()A.∠ABC=∠AED B.∠BAF=∠EAF C.∠BCF=∠EDF D.∠ABD=∠AEC【分析】将每个选项的条件分别作为已知条件,结合题干,通过证三角形全等,再看能否证明AF⊥CD 即可【解答】选项A:连接AC、AD,∵AB=AE,∠ABC=∠AED,BC=DE,∴△ABC≌△AED(SAS),∴AC=AD,∵F是AD的中点,∴AF⊥CD,所以选项A不合题意;选项B:连接BF、EF,∵AB=AE,∠BAF=∠EAF,AF=AF,∴△ABF≌△AEF(SAS),∴∠AFB=∠AFE,BF=EF,∴△BFC≌△EFD(SSS),∴∠BFC=∠EFD,∴∠BFC+∠AFB=∠EFD+∠AFE,即∠AFC=∠AFD=90°,∴AF⊥CD,所以选项B不合题意;选项C:思路与选项B大致相同,先证△BFC≌△EFD(SAS),再证△ABF≌△AEF(SSS),∴∠BFC+∠AFB=∠EFD+∠AFE,即∠AFC=∠AFD=90°,∴AF⊥CD,所以选项C不合题意;选项D的条件无法证出全等,故证不出AF⊥CD,所以选项D符合题意.故答案选:D.【点评】本题主要考查全等三角形的判定和性质,熟练掌握全等三角形的相关知识是解题关键.10.(4分)如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=2,BD是边AC上的高.点E,F分别在边AB,BC上(不与端点重合),且DE⊥DF.设AE=x,四边形DEBF的面积为y,则y关于x的函数图象为()A.B.C.D.【分析】过D作DH⊥AB于H,求出AC==2,BD==;可得CD==AE•DH=x×==,AD=AC﹣CD=,故DH==,从而S△ADEx,S△BDE=BE•DE=(4﹣x)×=﹣x;证明△BDE∽△CDF,可得=()2==S△BDE=(﹣x)=﹣x,从而y=S△ABC﹣S△ADE﹣S△CDF=﹣x+,观,故S△CDF察各选项可知,A符合题意.【解答】解:过D作DH⊥AB于H,如图:∵∠ABC=90°,AB=4,BC=2,∴AC==2,∵BD是边AC上的高,∴BD===;∴CD ==,AD =AC ﹣CD =,∴DH ===,∴S △ADE =AE •DH =x ×=x ,S △BDE =BE •DE =(4﹣x )×=﹣x ;∵∠BDE =90°﹣∠BDF =∠CDF ,∠DBE =90°﹣∠CBD =∠C ,∴△BDE ∽△CDF ,∴=()2=()2=,∴S △CDF =S △BDE =(﹣x )=﹣x ,∴y =S △ABC ﹣S △ADE ﹣S △CDF =×2×4﹣x ﹣(﹣x )=﹣x +,∵﹣<0,∴y 随x 的增大而减小,且y 与x 的函数图象为线段(不含端点),观察各选项图象可知,A 符合题意;故选:A .【点评】本题考查动点问题的函数图象,涉及相似三角形判定与性质,勾股定理及应用,面积法等,解题的关键是求出y 与x 的函数关系式.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)若分式有意义,则实数x 的取值范围是.【分析】根据分式分母不为0进行计算即可.【解答】解:∵分式有意义,∴x ﹣4≠0,∴x ≠4,故答案为:x ≠4.12.(5分)我国古代数学家张衡将圆周率取值为,祖冲之给出圆周率的一种分数形式的近似值为.比较大小:(填“>”或“<”).【解答】解:()2=10,()2=,∵10,∴,故答案为:>.13.(5分)不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是.【分析】先画出树状图,再根据树状图求概率.【解答】解:由图可知,共有12种可能的结果,其中2个红球的结果出现2次,∴P=,故答案为:.14.(5分)如图,现有正方形纸片ABCD,点E,F分别在边AB,BC上.沿垂直于EF的直线折叠得到折痕MN,点B,C分别落在正方形所在平面内的点B′,C′处,然后还原.(1)若点N在边CD上,且∠BEF=α,则∠C′NM=(用含α的式子表示);(2)再沿垂直于MN的直线折叠得到折痕GH,点G,H分别在边CD,AD上,点D落在正方形所在平面内的点D′处,然后还原.若点D′在线段B′C′上,且四边形EFGH是正方形,AE=4,EB=8,MN与GH的交点为P,则PH的长为3.【解答】解:(1)∵MN⊥EF,∠BEF=α,∴∠EMN=90°﹣α,∵CD∥AB,∴∠CNM=∠EMN=90°﹣α,∴∠C′NM=∠CNM=90°﹣α.故答案为:90°﹣α.(2)如图,设PH与NC'交于点G',∵四边形ABCD和四边形EFGH是正方形,∴∠A=∠D=∠GHE=90°,GH=EH,∴∠AHE+∠GHD=∠AHE+∠AEH=90°∴∠GHD=∠AEH,∴△EAH≌△HDG(AAS)同理可证△EAH≌△HDG≌△GCF≌△FBE,∴DH=CG=AE=4,DG=EB=8,∴GH==4,∵MN⊥GH,且∠C′NM=∠CNM,∴MN垂直平分GG',即PG=PG'=GG',且NG=NG',∵四边形CBMN沿MN折叠,∴CN=C'N,∴CN﹣NG=C'N﹣NG',即C'G'=CG=4,∵△GDH沿GH折叠得到△GD'H,∴GD'=GD=8,∵∠HC'G'=∠HD'G=90°,∴C'G'∥D'G,∴==,∴HG'=GG'=HG=2,又∵PG'=GG'=,∴PH=PG'+HG'=3.故答案为:3.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:x2﹣2x=3.【分析】利用因式分解解方程.【解答】解:x2﹣2x=3,x2﹣2x﹣3=0,(x﹣3)(x+1)=0,∴x1=3,x2=﹣1.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy,格点(网格线的交点)A,B,C,D的坐标分别为(7,8),(2,8),(10,4),(5,4).(1)以点D为旋转中心,将△ABC旋转180°得到△A1B1C1,画出△A1B1C1;(2)直接写出以B,C1,B1,C为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E,使得射线AE平分∠BAC,写出点E的坐标.【解答】解:(1)如图,画出△A1B1C1;(2)以B,C1,B1,C为顶点的四边形的面积=10×8﹣2××2×4﹣2××4×8=40;(3)如图,点E即为所求(答案不唯一),点E的坐标(6,6).四、(本大题共2小题,每小题8分,满分16分)17.(8分)乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地,采用新技术种植A ,B 两种农作物.种植这两种农作物每公顷所需人数和投入资金如下表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A 48B39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元,问A ,B 这两种农作物的种植面积各多少公顷?【解答】解:设A 种农作物的种植面积是x 公顷,B 种农作物的种植面积是y 公顷,根据题意得:,解得:.答:A 种农作物的种植面积是3公顷,B 种农作物的种植面积是4公顷.18.(8分)数学兴趣小组开展探究活动,研究了“正整数N 能否表示为x 2﹣y 2(x ,y 均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果1=12﹣023=22﹣125=32﹣227=42﹣329=52﹣42…4=22﹣028=32﹣1212=42﹣2216=52﹣3220=62﹣42…一般结论2n ﹣1=n 2﹣(n ﹣1)24n =按上表规律,完成下列问题:(ⅰ)24=()2﹣()2;(ⅱ)4n =;(2)兴趣小组还猜测:像2,6,10,14,…这些形如4n ﹣2(n 为正整数)的正整数N 不能表示为x 2﹣y 2(x ,y 均为自然数).师生一起研讨,分析过程如下:假设4n ﹣2=x 2﹣y 2,其中x ,y 均为自然数.分下列三种情形分析:①若x,y均为偶数,设x=2k,y=2m,其中k,m均为自然数,则x2﹣y2=(2k)2﹣(2m)2=4(k2﹣m2)为4的倍数.而4n﹣2不是4的倍数,矛盾.故x,y不可能均为偶数.②若x,y均为奇数,设x=2k+1,y=2m+1,其中k,m均为自然数,则x2﹣y2=(2k+1)2﹣(2m+1)2=为4的倍数.而4n﹣2不是4的倍数,矛盾.故x,y不可能均为奇数.③若x,y一个是奇数一个是偶数,则x2﹣y2为奇数.而4n﹣2是偶数,矛盾.故x,y不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【分析】(1)(i)由所给数据可推出24=4×6=(6+1)2﹣(6﹣1)2=72﹣52;(ii)结合第一问推导数据发现规律:4n=4•n=(n+1)2﹣(n﹣1)2;(2)利用平方差公式因式分解即可得到答案.【解答】解:(1)(i)4=4×1=(1+1)2﹣(1﹣1)2,8=4×2=(2+1)2﹣(2﹣1)2,12=4×3=(3+1)2﹣(3﹣1)2,20=4×5=(5+1)2﹣(5﹣1)2,24=4×6=(6+1)2﹣(6﹣1)2=72﹣52,......4n=4•n=(n+1)2﹣(n﹣1)2.故答案为:7,5;(ii)由(1)推导的规律可知4n=4•n=(n+1)2﹣(n﹣1)2.故答案为:(n+1)2﹣(n﹣1)2.(3)(2k+1)2﹣(2m+1)2=(2k+1+2m+1)(2k+1﹣2m﹣1)=4(k2﹣m2+k﹣m).故答案为:4(k2﹣m2+k﹣m).五、(本大题共2小题,每小题10分,满分20分)19.(10分)科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B处发出,经水面点E折射到池底点A处.已知BE与水平线的夹角α=36.9°,点B到水面的距离BC=1.20m,点A处水深为1.20m,到池壁的水平距离AD=2.50m.点B,C,D在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求的值(精确到0.1).参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.【分析】根据题意得出,∠CEB=α=36.9°,EH=1.20m,从而求出CE,AH,AE的长,分别求出sinβ和sinγ的值,得出结果.【解答】解:过点E作EH⊥AD于点H,由题意可知,∠CEB=α=36.9°,EH=1.20m,∴(m),AH=AD﹣CE=2.50﹣1.60=0.90(m),∴=1.50(m),∴,∵=cosα=0.80,∴.【点评】本题考查了解直角三角形的应用,理解题意得出线段长度是解题的关键.20.(10分)如图,⊙O是△ABC的外接圆,D是直径AB上一点,∠ACD的平分线交AB于点E,交⊙O 于另一点F,FA=FE.(1)求证:CD⊥AB;(2)设FM⊥AB,垂足为M,若OM=OE=1,求AC的长.【分析】(1)证明∠CEB+∠DCE=∠BCE+∠ACE=∠ACB=90°,即可得到∠CDE=90°,由此得出CD⊥AB;(2)求出AB和BC的长,即可求出AC的长.【解答】(1)证明:∵FA=FE,∴∠FAE=∠AEF,∵∠FAE与∠BCE都是所对的圆周角,∴∠FAE=∠BCE,∵∠AEF=∠CEB,∴∠CEB=∠BCE,∵CE平分∠ACD,∴∠ACE=∠DCE∵AB是直径,∴∠ACB=90°,∴∠CEB+∠DCE=∠BCE+∠ACE=∠ACB=90°,∴∠CDE=90°,∴CD⊥AB;(2)解:由(1)知,∠BEC=∠BCE,∴BE=BC,∵AF=EF,FM⊥AB,∴MA=ME=2,AE=4,∴圆的半径OA=OB=AE﹣OE=3,∴BC=BE=OB﹣OE=2,在△ABC中,AB=6,BC=2,∠ACB=90°,∴.【点评】本题考查了圆周角定理,勾股定理,垂径定理等,掌握定理并综合运用是解题的关键.六、(本题满分12分)21.(12分)综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x(单位:cm)表示.将所收集的样本数据进行如下分组:组别A B C D Ex 3.5≤x<4.5 4.5≤x<5.5 5.5≤x<6.5 6.5≤x<7.57.5≤x≤8.5整理样本数据,并绘制甲、乙两园样本数据的频数分布直方图,部分信息如下:任务1求图1中a的值.【数据分析与运用】任务2A,B,C,D,E五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3下列结论一定正确的是(填正确结论的序号).①两园样本数据的中位数均在C组;②两园样本数据的众数均在C组;③两园样本数据的最大数与最小数的差相等.任务4结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.【分析】(1)用200分别减去其它各组的频数可得a的值;(2)根据加权平均数公式计算即可;(3)分别根据中位数、众数和极差的定义解答即可;(4)根据统计图数据判断即可.【解答】解:(1)由题意得,a=200﹣(15+70+50+25)=40;(2)(15×4+50×5+70×6+50×7+15×8)=6,故乙园样本数据的平均数为6;(3)由统计图可知,两园样本数据的中位数均在C组,故①正确;甲园的众数在B组,乙园的众数在C组,故②结论错误;两园样本数据的最大数与最小数的差不一定相等,故③结论错误;故答案为:①;(4)乙园的柑橘品质更优,理由如下:由样本数据频数分布直方图可得,乙园一级柑橘所占比例大于甲园,因此可以认为乙园的柑橘品质更优.【点评】本题考查频数分布直方图,样本估计总体,频数分布表,加权平均数、中位数、众数以及极差,解题的关键是读懂图象信息,属于中考常考题型.七、(本题满分12分)22.(12分)如图1,▱ABCD的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且AM=CN.点E,F分别是BD与AN,CM的交点.(1)求证:OE=OF;(2)连接BM交AC于点H,连接HE,HF.(ⅰ)如图2,若HE∥AB,求证:HF∥AD;(ⅱ)如图3,若▱ABCD为菱形,且MD=2AM,∠EHF=60°,求的值.【分析】(1)证明△AOE≌△COF(ASA),即可得到OE=OF;(2)(i)证明△HOF∽△AOD,即可得到HF∥AD;(ii)先求出OA=2OH,OB=5OE,即可得到的值.【解答】(1)证明:∵▱ABCD,∴AD∥BC,OA=OC,∴AM∥CN,∵AM=CN,∴四边形AMCN是平行四边形,∴AN∥CM,∴∠OAE=∠OCF,在△AOE与△COF中,,∴△AOE≌△COF(ASA),∴OE=OF;(2)(i)证明:∵HE∥AB,∴,∵OB=OD,OE=OF,∴,∵∠HOF=∠AOD,∴△HOF∽△AOD,∴∠OHF=∠OAD,∴HF∥AD;(ii)解:∵▱ABCD为菱形,∴AC⊥BD,∵OE=OF,∠EHF=60°,∴∠EHO=∠FHO=30°,∴,∵AM∥BC,MD=2AM,∴=,即HC=3AH,∴OA+OH=3(OA﹣OH),∴OA=2OH,∵BN∥AD,MD=2AM,AM=CN,∴,即3BE=2ED,∴3(OB﹣OE)=2(OB+OE),∴OB=5OE,∴,∴的值是.【点评】本题考查了平行四边形的性质与判定,相似三角形的性质与判定,全等三角形的性质与判定等,综合运用性质与判定方法是解题的关键.八、(本题满分14分)23.(14分)已知抛物线y=﹣x2+bx(b为常数)的顶点横坐标比抛物线y=﹣x2+2x的顶点横坐标大1.(1)求b的值;(2)点A(x1,y1)在抛物线y=﹣x2+2x上,点B(x1+t,y1+h)在抛物线y=﹣x2+bx上.(ⅰ)若h=3t,且x1≥0,t>0,求h的值;(ⅱ)若x1=t﹣1,求h的最大值.【分析】(1)求出抛物线y=﹣x2+bx的顶点横坐标为,y=﹣x2+2x的顶点横坐标为1,根据题意列方程,即可求出b的值;(2)先求出h=﹣t2﹣2x1t+2x1+4t,(i)列方程即可求出h的值;(ii)求出h关于t的方程,配顶点式求出h最大值.【解答】解:(1)∵抛物线y=﹣x2+bx的顶点横坐标为,y=﹣x2+2x的顶点横坐标为1,∴,∴b=4;(2)∵点A(x1,y1)在抛物线y=﹣x2+2x上,∴,∵B(x1+t,y1+h)在抛物线y=﹣x2+4x上,∴,t),∴h=﹣t2﹣2x1t+2x1+4t,(i)∵h=3t,∴3t=﹣t2﹣2x1t+2x1+4t,∴t(t+2x1)=t+2x1,∵x1≥0,t>0,∴t+2x1>0,∴t=1,∴h=3;(ii)将x1=t﹣1代入h=﹣t2﹣2x1t+2x1+4t,∴h=﹣3t2+8t﹣2,,∵﹣3<0,∴当,即时,h取最大值.。

2024年安徽省数学中考试题正式版含答案解析

2024年安徽省数学中考试题正式版含答案解析

绝密★启用前2024年安徽省数学中考试题学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.−5的绝对值是( )A. 5B. −5C. 15D. −152.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为( )A. 0.944×107B. 9.44×106C. 9.44×107D. 94.4×1063.某几何体的三视图如图所示,则该几何体为( )A. B. C. D.4.下列计算正确的是( )A. a3+a5=a6B. a6÷a3=a2C. (−a)2=a2D. √ a2=a5.若扇形AOB的半径为6,∠AOB=120∘,则AB⏜的长为( )A. 2πB. 3πC. 4πD. 6π6.已知反比例函数y=kx(k≠0)与一次函数y=2−x的图象的一个交点的横坐标为3,则k的值为( )A. −3B. −1C. 1D. 37.如图,在Rt△ABC中,AC=BC=2,点D在AB的延长线上,且CD=AB,则BD的长是( )A. √ 10−√ 2B. √ 6−√ 2C. 2√ 2−2D. 2√ 2−√ 68.已知实数a,b满足a−b+1=0,0<a+b+1<1,则下列判断正确的是( )A. −12<a<0 B. 12<b<1C. −2<2a+4b<1D. −1<4a+2b<09.在凸五边形ABCDE中,AB=AE,BC=DE,F是CD的中点.下列条件中,不能..推出AF与CD一定垂直的是( )A. ∠ABC=∠AEDB. ∠BAF=∠EAFC. ∠BCF=∠EDFD. ∠ABD=∠AEC10.如图,在Rt▵ABC中,∠ABC=90∘,AB=4,BC=2,BD是边AC上的高.点E,F分别在边AB,BC上(不与端点重合),且DE⊥DF.设AE=x,四边形DEBF的面积为y,则y关于x的函数图象为( )A. B. C. D.第II卷(非选择题)二、填空题:本题共4小题,每小题5分,共20分。

2024年安徽省中考真题数学试卷含答案解析

2024年安徽省中考真题数学试卷含答案解析

安徽省2024年中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣5的绝对值是()A .5B .﹣5C .15-D .15【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为()A .70.94410⨯B .69.4410⨯C .79.4410⨯D .694.410⨯【答案】B【分析】本题考查了科学记数法,先把944万转化为9440000,再根据科学记数法:10n a ⨯(110a ≤<,n 为整数),先确定a 的值,然后根据小数点移动的数位确定n 的值即可,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:944万694400009.4410==⨯,故选:B .3.某几何体的三视图如图所示,则该几何体为()A .B .C .D .【答案】D【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D 选项.故选:D .4.下列计算正确的是()A .356a a a +=B .632a a a ÷=C .()22a a -=Da=5.若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为()A .2πB .3πC .4πD .6π6.已知反比例函数()0ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为()A .3-B .1-C .1D .3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可7.如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是()A B C .2D .8.已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是()A .12a -<<B .112b <<C .2241a b -<+<D .1420a b -<+<【答案】C∴442a -<<-,021b <<,∴4421a b -<+<-,选项D 错误,不符合题意;故选:C9.在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A .ABC AED ∠=∠B .BAF EAF ∠=∠C .BCF EDF ∠=∠D .ABD AEC∠=∠【答案】D【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,然后根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A 、连结AC AD 、,∵ABC AED ∠=∠,AB AE =,BC DE =,∴()SAS ACB ADE ≌,∴AC AD=又∵点F 为CD 的中点∴AF CD ⊥,故不符合题意;B 、连结BF EF 、,∵AB AE =,BAF EAF ∠=∠,AF AF =,∴()SAS ABF AEF ≌,∴BF EF =,AFB AFE ∠=∠又∵点F 为CD 的中点,∴CF DF =,∵BC DE =,∴()SSS CBF DEF ≌,∴CFB DFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;C 、连结BF EF 、,∵点F 为CD 的中点,∴CF DF =,∵BCF EDF ∠=∠,BC DE =,∴()SAS CBF DEF ≌,∴BF EF =,CFB DFE ∠=∠,∵AB AE =,AF AF =,∴()SAS ABF AEF ≌,∴AFB AFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;D 、ABD AEC ∠=∠,无法得出相应结论,符合题意;故选:D.10.如图,在RtABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为()A .B .C .D .∵90ABC ∠=︒,AB =∴22AC AB BC =+=∵BD 是边AC 上的高.二、填空题11.若代数式14-x 有意义,则实数x 的取值范围是.【答案】4x ≠【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.12.,祖冲之给出圆周率的一种分数形式的近似值为227(填“>”或“<”).13.不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是.由树状图可得,共有12种等结果,其中恰为∴恰为2个红球的概率为21126=,故答案为:1.14.如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为.∵MN EF ⊥,∴CC FE '∥,∴12∠=∠,∵四边形ABCD 是正方形,∴90B BCD ∠=∠=︒,∴343290∠+∠=∠+∠=︒,∵四边形ABCD 是正方形,四边形∴90A B C D ∠=∠=∠=∠=∴567690∠+∠=∠+∠=︒,∴57∠=∠,三、解答题15.解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16.如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.(2)连接1BB ,1CC ,∵点B 与1B ,点C 与1C 分别关于点∴1DB DB =,1DC DC =,∴四边形11BC B C 是平行四边形,∴122104S CC B ==⨯⨯⨯= (3)∵根据网格信息可得出5AB =∴ABC 是等腰三角形,∴AE 也是线段BC 的垂直平分线,∵B ,C 的坐标分别为,()2,8,(10,4∴点21084,22E ++⎛⎫ ⎪⎝⎭,即()6,6E .(答案不唯一)17.乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?【答案】A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.【分析】本题考查了二元一次方程组的应用,设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,由题意可得,43248960x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩,答:设A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.18.数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-L L一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m -+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.19.科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).20.如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.【答案】(1)见详解21.综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别A B C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤<7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1求图1中a 的值.【数据分析与运用】任务2A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.Y的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且22.如图1,ABCDAM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.23.已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22y x x =-+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22y x x =-+上,点()11,B x t y h ++在抛物线2y x bx =-+上.(ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =-,求h 的最大值.。

安徽省近五年中考数学试题分析

安徽省近五年中考数学试题分析

安徽省近五年中考数学试题分析安徽省中考数学试题总体上坚持稳中求变,变中求新,下面结合近5年我省中考数学试题,试谈我的管窥之见.一、试卷形式和内容时间120分钟,总分150分.考试内容为数与代数、空间与图形、统计与概率三个部分,数与代数约占50%、空间与图形约占38%、统计与概率约占12%.10道选择题,4题填空,9个大题共23题.(一)考点分析1.数与代数(1)数与式本部分属于基础题,约占20分,主要考概念与计算.实数、数轴、相反数、绝对值、倒数、算术平方根这些概念要很好掌握.科学记数法除2009年没考外,其余四年每年都考;化简求值2010年、2011年连续两年都在15题中出现;因式分解几乎年年都考,2009年第12题,2010年第15题,2011年第11题,2012年第4题,2013年第12题中均考了因式分解,对于数与式不要钻偏题、怪题.(2)方程与不等式安徽卷对方程的考查多以列方程解应用题形式出现,除了2012年的12题直接是解方程,2009年第19题,2010年第19题,2011年16题,2013年的第7题都是考列方程解应用题.而对不等式的考查则会以直接考解不等式(组)题型为主,如2010年第12题,或者考查不等式(组)与数轴相结合,如2013年第5题。

当然方程与不等式有时在函数题里也有所体现.(3)函数中考对函数的考查属重头戏,2009年考了23分,2010年考了28分,2011年考了30分,2012年考了30分,2013年考了38分.一次函数是初中学习的第一个函数,其基础性和重要性不言而喻,各地中考对一次函数都十分关注,既有客观题,也有解答题.反比例函数多以填空、选择、简答题为主.对反比例函数的复习难度不宜过大,要注意反比例函数的增减性.二次函数常以压轴题形式出现,重点考查函数图象和性质、确定函数解析式和求函数的最值.一般都是一题客观题一题解答题,题型较稳定,客观题重在考图象和性质,主观题作为区分度题,重在考确定函数解析式和求函数的最值,放在后三题中.2.空间与图形(1)平行线的性质和判定多以选择填空为主,难度不大.(2)三角形的边角关系多以基础题为主.解直角三角形问题,近几年考查的都是涉及测量的应用问题,难度不大,如2009年13题;2010年16题;2011年第19题,2012年的19题,2013年的19题年年都考,要引起重视.全等和相似三角形也是考查的重头戏,多以解答题形式出现.题号偏后,其难度和重要性都比较大,估计2014年将延续下去。

安徽省近五年中考数学试题分析报告

安徽省近五年中考数学试题分析报告

安徽省近六年中考数学试题分析2013年中考数学辅导讲座安徽省中考数学试题总体上坚持稳中求变,变中求新,下面结合近6年我省中考数学试题,试谈我的管窥之见.一、试卷形式和内容时间120分钟,总分150分.考试内容为数与代数、空间与图形、统计与概率三个部分,数与代数约占50%、空间与图形约占38%、统计与概率约占12%.10道选择题,4题填空,9个大题共23题.涉及知识点188个,其中数与代数60个;空间与图形108个;统计与概率20个.了解、理解、掌握层次的知识点186个,运用层次的知识点2个.二、考点透视(一)近六年三种题型的考点分布:1.选择题题号年份1 2 3 4 5 6 7 8 9 102007 相反数幂的运算科学记数法统计中心对称轴对称化简求值平行线中的计算弧长计算函数图象与圆有关的计算2008 绝对值因式分解科学记数法与圆有关的计算分式方程三视图反比例函数概率计算统计图三角形中的计算文档2009 乘方运算平行线中的计算幂的运算方程应用三视图概率计算增长率一次函数图象与圆有关的计算与圆有关的计算2010 正负数概念整式乘除平行线中的计算科学记数法三视图统计图、统计量二次函数与圆有关的计算操作探究确定函数图象2011 数的大小比较科学记数法三视图估算概率三角形中的计算与圆有关的计算一元二次方程解法动点问题确定函数图象2012 有理数的计算三视图幂的运算因式分解一元二次方程应用分式化简有关面积计算概率计算确定函数图象与三角形有关的计算2.填空题题号年份11 12 13 142007 估算三角形外角和统计三视图2008 算术平方根平行线性质弧长计算二次函数文档2009 扇形统计图因式分解解直角三角形二次函数2010 实数运算不等式组与圆有关的计算等腰三角形2011 因式分解幂的运算与圆有关的计算定义新运算2012 科学计数法统计与圆有关的计算矩形3.解答题题号年份三四五六七八1516171819202122232007一元一次不等式网格中的图形变换概率计算列方程解应用题(增长率)解直角三角形三角形中的求证、计算题规律探究四边形与全等三角形二次函数开放题文档2008一元一次不等式组解直角三角形列方程解应用题(增长率)网格中的图形变换概率计算四边形与相似三角形二次函数等腰三角形中的动点问题函数与方程应用2009特殊角三角函数计算与圆有关的几何证明算式规律探究网格中的图形变换列方程解应用题操作探究统计相似三角形中的计算、证明二次函数应用2010化简求值解直角三角形求反比例函数解析式网格中的图形变换列方程解应用题(增长率)特殊四边形与全等三角形概率计算二次函数应用平面几何开放题2011化简求值列方程解应用题网格中的图形变换规律探究解直角三角形统计一次函数与反比例函数动态几何(三角形旋转)几何与二次函数综合2012 整式计算解一元二次方程规律探究网格中的图形变换解直角三角形概率计算一次函数应用相似三角形的计算与证明二次函数应用(二)考点分析1.数与代数(1)数与式文档本部分属于基础题,约占20分,主要考概念与计算.实数、数轴、相反数、绝对值、倒数、算术平方根这些概念要很好掌握.从上表可以看出:科学记数法除2009年没考外,其余五年每年都考;化简求值2010年、2011年连续两年都在15题中出现;因式分解几乎年年都考,2008年第2题,2009年第12题,2010年第15题,2011年第11题,2012年第4题中均考了因式分解,对于数与式不要钻偏题、怪题.(2)方程与不等式安徽卷对方程的考查多以列方程解应用题形式出现.近六年也是年年都考.如2007年18题,2008年第17题,2009年第19题,2010年第19题,2011年16题,2012年第5题都是考列方程解应用题.而对不等式的考查则以直接考解不等式(组)题型为主,如2008年第15题和2010年第12题均直接考解不等式组,六年均未出现过列不等式组的应用问题.当然方程与不等式有时在函数题里也有所体现.(3)函数中考对函数的考查属重头戏,2008年考了35分,2009年考了23分,2010年考了28分,2011年考了30分,2012年考了30分.一次函数是初中学习的第一个函数,其基础性和重要性不言而喻,各地中考对一次函数都十分关注,既有客观题,也有解答题.连续三年都考了从函数(分段函数)图象中获取信息解决问题的题目,如2008年23题,2009年23题,2010年第10题,2012年第21题.反比例函数多以填空、选择、简答题为主.如2008年第7题,2009年未考反比例函数,2010年第17题,2011年21题.对反比例函数的复习难度不宜过大,要注意反比例函数的增减性.二次函数常以压轴题形式出现,重点考查函数图象和性质、确定函数解析式和求函数的最值.如2007年第23题,2008年第14题和21题,2009年第14题和23文档题,2010年第7题和22题,2011年第23题,2012年第23题都考查了二次函数,一般都是一题客观题一题解答题,题型较稳定,客观题重在考图象和性质,主观题作为区分度题,重在考确定函数解析式和求函数的最值,放在后三题中.2.空间与图形(1)平行线的性质和判定三年都有考查,多以选择填空为主,难度不大.如2007年第7题,2008年第12题,2009年第2题,2010年第3题.(2)三角形的边角性质多以基础题为主.解直角三角形问题,近几年考查的都是涉及测量的应用问题,难度不大,如2007年第19题;2008年第16题;2009年13题;2010年16题;2011年第19题;2012年第19题,年年都考,要引起重视.全等和相似三角形也是考查的重头戏,多以解答题形式出现.如2008年第20题考相似、22题与全等有关;2009年第22题考相似;2010年第20题考全等、第23题考相似;2011年第22题考相似、23题考全等;2012年第22题考相似.从题号偏后也可看其难度和重要性,估计2013年将延续下去,一题全等、一题相似的可能性非常大.(3)四边形多以特殊四边形为主,每年都考,有时综合在三角形中进行考查.如2007年第10题;2008年第20题;2009年第19、20题;2010年第20题;2011年第6、9、10、23题;2012年第7、13、14、22题.(4)三视图近六年每年都考,主要以填空、选择题形式出现.如2007年第14题;2008年第6题;2009年第5题;2010年第5题;2011年第3题;2012年第2题,千万不可忽视.(5)圆多以客观题为主,题型相对稳定,分值未超过10分,基本是以圆的基本性质为主,如垂径定理,圆心角、圆周角、弧、弦关系,五年都未涉及直线与圆的关系、圆与圆的关系、圆的切线.除2009年16题考了证明题外,其它四年题文档型均为选择题或填空题,没考解答题,题目主要是求与圆有关的角、弧长、弦长等.但今年考纲关于圆的要求有所提高,其中掌握层次中就列了5项:圆的性质;切线与过切点的半径之间的关系;切线的判定;弧长及扇形面积的计算;圆锥的侧面积和全面积的计算.这些变化要引起我们注意.3.统计与概率从六年中考来看,本考点每年2至3题,客观题和解答题各一题.要提高对统计与概率的重视,因为这部分知识与生活息息相关,在生活中应用较为广泛.统计2008年考的是折线统计图,2009年考的是条形统计图,2010年考的是折线统计图,2011年考的又是条形统计图,轮换着考.2012年则考的是频数分布表与频数分布直方图。

安徽近五年中考数学试卷分析

安徽近五年中考数学试卷分析
无理数估算
统计表分析
一元一次不等式
6
4
求角
根据题意列方程
根据题意列方程
无理数估算
求角
7
4
统计与概率
统计图表分析
统计表分析
代数式求值
一元二次方程应用
8
4
增长率
计算三角形边长
几何推理
三角形折叠问题
概率+物理
9
4
函数图像与性质
函数图像信息分析
特殊平行四边形中的计算
图形动点与函数图像关系
平面几何、反比例函数
14
5
几何折叠
几何图形推理
代数式推理
几何图形推理
几何折叠
15
8
实数运算
实数运算
分式化简在求值
实数运算
三角函数、绝对值、有理数
16
8
实际问题解方程
解方程
解不等式
等式的规律探究
二次函数解析式
17
8
解直角三角形的应用
尺规作图(轴对称和图形平移)
尺规作图(轴对称和图形平移)
尺规作图(图形平移、做相似图形)
作图、图形变换
18
8
尺规作图(轴对称和图形平移)
图形规律探究
解直角三角形的应用
解直角三角形的应用
规律、正六边形、平移、点的坐标
19
10
查找规律
解直角三角形的应用
概率
与圆相关的计算(求半径、弦长)
解直角三角形的应用
20
10
圆和四边形的结合计算
反比例函数和几何综合
与圆相关的计算(求线段长度、线段最值)
方程与不等式解决实际问题)
分式应用

安徽中考数学试题解析及答案

安徽中考数学试题解析及答案

安徽中考数学试题解析及答案一、选择题1. 已知正方形ABCD的边长为4cm,点E是边BC的中点,连线AE交对角线BD于点F,则三角形AEF的面积为()。

A. 4B. 2C. 3D. 1解析:首先画出正方形ABCD,并标出已知条件。

由于点E是边BC的中点,所以连接AE得到的线段为1/2的边长。

根据三角形的面积公式S = 1/2 * 底 * 高,可以得知三角形AEF的面积为1/2 * (1/2 * 4) * 4 = 4。

因此,答案选项为A。

2. 若a是一个不等于0的实数,下列哪个不等式的解集与不等式2x + a < 8相同?A. x > 4 - aB. x < 4-aC. x > 4 + aD. x < 4 + a解析:要找到与不等式2x + a < 8相同解集的不等式,需要将不等式进行等价变形。

首先将2x + a < 8两边同时减去a,得到2x < 8 - a。

然后将不等式两边同时除以2,得到x < (8 - a) / 2,即x < 4 - a / 2。

由此可知,选项B的不等式解集与原不等式相同。

二、填空题1. 一条绳子长2m,每当小明走一步,绳子的一半长的距离,从一开始,小明走了n步,那么此时绳子的长度为()m。

2. 一辆汽车以每小时60km的速度行驶,行驶了3小时后,行驶的距离为()km。

解析:1. 绳子的长度每次行走后减半,即长度为2 * (1/2)^n,其中n为小明走的步数。

因此,当走了n步时,绳子的长度为2 * (1/2)^n m。

2. 小时速度为60km,行驶3小时的距离为60km/h * 3h = 180km。

三、解答题1. 题目:如果log₂(x + 2) = 3,那么x的值等于多少?解析:根据题目所给的等式,可以得到2³ = x + 2。

解这个方程,得到x = 8 - 2 = 6。

因此,x的值等于6。

2. 题目:小明的父亲今年33岁,小明去年的年龄是父亲现在年龄的1/3,那么小明今年几岁?解析:设小明今年的年龄为x岁,则根据题意可以得到方程x + 1 =(33 - 1) / 3。

安徽数学中考近年试卷真题

安徽数学中考近年试卷真题

安徽数学中考近年试卷真题安徽数学中考试卷真题是安徽省中考数学科目的历年考试题目的集合,这些真题对于即将参加中考的学生来说具有极高的参考价值。

它们不仅能够帮助学生了解历年中考的题型和难度,还能帮助学生检验自己的学习效果,进行针对性的复习。

# 试卷结构分析安徽数学中考试卷通常由选择题、填空题、解答题等部分组成,涵盖了代数、几何、统计与概率等多个数学领域。

试卷的题型设计旨在考察学生的基础知识掌握程度、逻辑推理能力、空间想象能力以及解决实际问题的能力。

# 近年试卷特点1. 题型稳定:近年来,安徽数学中考试卷的题型基本保持稳定,选择题、填空题和解答题的分布比例相对固定。

2. 难度适中:试卷难度适中,既考察学生对基础知识的掌握,也有一定的拓展性问题,考察学生的综合运用能力。

3. 注重基础:试卷中的基础题占比较大,强调学生对数学基础知识的掌握。

4. 联系实际:部分题目会与实际生活或生产实践相结合,考察学生将数学知识应用于实际问题的能力。

# 真题示例以下是一些安徽数学中考真题的示例,供参考:- 选择题:若一个数的平方根等于它本身,则这个数是()A. 1B. -1C. 0D. 1或-1- 填空题:若一个直角三角形的两条直角边分别为3和4,则其斜边的长度为______。

- 解答题:某工厂生产一种产品,已知其成本函数为C(x) = 1000 + 50x,其中x为生产数量。

若该产品的销售价格为每件200元,求该工厂生产多少件产品时,可以获得最大利润,并求出最大利润。

# 复习建议1. 系统复习:按照数学知识体系进行系统复习,确保对每个知识点都有深入理解。

2. 做真题:通过做历年的真题,熟悉考试题型和答题技巧。

3. 查漏补缺:在做题过程中发现自己的不足,针对性地进行复习。

4. 模拟考试:定期进行模拟考试,以适应考试的节奏和氛围。

5. 总结经验:在每次模拟考试后,总结经验教训,不断提高答题效率和准确率。

# 结语安徽数学中考真题是宝贵的学习资源,希望每位学生都能够充分利用这些真题,提高自己的数学水平,为中考取得优异成绩打下坚实的基础。

安徽省近五年中考数学试题分析看今

安徽省近五年中考数学试题分析看今

xx近五年xx数学试题分析看今后的方向数与代数部分:(一)数与式综观近年来中考“数与式”部分的试题,再结《标准》的要求,2018年关于“数与式”考查还会主要为基础性题目集中在基础知识与基本技能方面。

但伴随着近年来试题不断推陈出新,以“数与式”内容为依托,加强数学理解能力的考查也越发凸显。

如以新定义概念为载体的开放题,着重考查数学理解能力,这种能力在近年来的中考题中并不少见,如2017年内蒙古呼伦贝尔卷第5题等,另外,依托于“数与式”的有关知识,考查探索规律的能力,即合情推理、归纳概括能力,已经成为一种趋势,如2017年安徽卷第16题。

此外,以几何图形为载体,结合“数与式”的基础知识、考查图形观察能力和逻辑推理能力。

这种试题的呈现形式是把“数与式”部分内容与图形结合,增大了思考量,具有一定的难度。

这种形式值得大家进一步关注。

如2015年安徽卷第18题、2016安徽卷第17题等。

(二)方程(组)与不等式(组)首先,关注解方程(组)与不等式(组)的基本技能。

综观历年中考题,都是针对解方程(组)与不等式(组)这一基本技能编制的试题,其解法的是课程标准中要求掌握的。

因此,有理由确信,在2018年的中考中,对解方程(组)与不等式(组)的试题依然出现。

其次,近年来围绕学生的创新意识,中考试题在开放性增强的同时注重考查了学生思维的严谨性与灵活性,因此,要注重学生对数学事实的真正理解。

最后,关注数学模型思想,考查数学应用意识和能力,因此,以当地热点话题为背景,体现“问题情境—建立模型---求解---解释与应用”这一过程的试题在2018年的中考试题中依然会出现,应该引起关注。

(三)函数首先,关注函数概念及表达方式,此类问题仍在2018年考试中有所体现。

其次,关注函数与方程、不等式之间的关系。

利用函数思想及函数模型解决相关问题也会是考查重点。

近些年试题开放性、灵活性、综合性是一种命题趋势。

在2018年考试中数形结合的思想仍会是重点考查内容。

安徽省2024-2025年中考数学试题分类解析专题5:数量和位置变化

安徽省2024-2025年中考数学试题分类解析专题5:数量和位置变化

2024-2025年安徽省中考数学试题分类解析汇编(12专题)专题5:数量和位置改变锦元数学工作室编辑一、选择题1. (2024安徽省4分)函数xy1x=-中自变量x的取值范围是【】A:x≠0 B:x≠1 C:x>1 D:x<1且x≠0【答案】B。

【考点】函数自变量的取值范围,分式有意义的条件。

【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,依据二分式分母不为0的条件,要使x1x-在实数范围内有意义,必需1x0x1-≠⇒≠。

故选B。

2. (2024安徽省4分)点P(m,1)在其次象限内,则点Q(-m,0)在【】A:x轴正半轴上 B:x轴负半轴上 C:y轴正半轴上 D:y轴负半轴上【答案】A。

【考点】平面直角坐标系中各象限点的特征。

【分析】依据平面直角坐标系中各象限点的特征,推断其所在象限,四个象限的符号特征分别是:第一象限(+,+);其次象限(-,+);第三象限(-,-);第四象限(+,-)。

因此,∵点P(m,1)是其次象限内,∴m<0。

∴-m>0。

∴点Q(-m,0)在x轴正半轴上。

故选A。

3.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过P作EF∥AC,与平行四边形的两条边分别交于点E,F。

设BP=x,EF=y,则能反映y与x之间关系的图象为【】A: B:C:D:【答案】A。

【考点】一次函数的图象和应用,平行四边形的性质,平行线分线段成比例。

【分析】图象是函数关系的直观表现,因此须先求出函数关系式。

分两段求:当P在BO上和P在OD上,分别求出两函数解析式,依据函数解析式的性质即可得出函数图象:设AC与BD交于O点。

当P在BO上时,∵EF∥AC,∴EF BPAC BO=,即y x43=。

∴4y x3 =。

当P在OD上时,有DP EFDO AC=,即6x y34-=。

∴4y x+83=-。

∴符合上述条件的图象是A。

故选A。

4. (2024安徽省4分)购某种三年期国债x元,到期后可得本息和y元,已知y=kx,则这种国债的年利率为【】.(A)k (B) k3(c)k-1 (D)k13-【答案】D。

2024年安徽中考数学试卷分析报告

2024年安徽中考数学试卷分析报告

2024年安徽中考数学试卷分析报告引言2024年安徽中考数学试卷是对学生数学水平的全面考查,题目涵盖了数学的各个重要知识点和技能要求。

本篇报告将从试卷整体难度、各大题型分析和学生反馈等方面对试卷进行详细解析。

试卷整体难度2024年安徽中考数学试卷整体难度适中,考察了学生基础知识的掌握和运用能力。

试题难度均匀分布,部分题目对学生的思维能力和解决问题的能力有一定的挑战,对于学会灵活运用知识的学生来说,是一个较好的考察。

各大题型分析1.选择题选择题在数学试卷中占比较大,旨在考查学生对基础知识的掌握和运用能力。

本次数学试卷的选择题设置合理,包含了代数、几何、概率与统计等多个知识点。

选项设置巧妙,能有效考察学生对知识的理解程度。

2.填空题填空题在试卷中起到了巩固和运用基本知识的作用。

填空题涉及了数学中的公式推导、运算规则等方面知识,题目分布均匀,既考查了学生的记忆能力,也考察了学生的运算能力。

3.解答题解答题是对学生综合运用数学知识的考察。

本次试卷的解答题分布合理,涵盖了数学中的代数、几何、函数等多个知识点。

解答题目的要求明确,对学生的应用能力和解题思路提出较高的要求。

学生反馈对于试卷的难易程度,学生们普遍认为整体难度适中。

选择题部分,学生们普遍觉得题目不算太难,但也有一些需要一定的思考。

填空题方面,学生们表示相对容易,但也有个别题目需要注意细节。

解答题部分,学生们普遍认为题目的难度适中,对于一些需要较多的计算和推理的题目,学生们表示稍有困难。

学生们对于试卷整体的设计感到满意,认为试卷既考察了基本知识的掌握,又考查了解题的能力和思维的灵活运用。

同时,学生们也提出了一些建议,希望未来的数学试卷能更注重实际应用和问题解决能力的考察。

结论2024年安徽中考数学试卷整体难度适中,合理考查了学生对数学知识的掌握与运用能力。

各大题型的设计合理,能有效考察学生的思维能力和解决问题的能力。

学生反馈总体良好,对试卷整体设计表示满意。

2024年中考数学试卷分析报告安徽

2024年中考数学试卷分析报告安徽

2024年中考数学试卷分析报告安徽一、试卷整体难度分析2024年中考数学试卷在整体上具有一定的难度,涵盖了基本的数学知识和能力要求。

试卷中的题目有些需要深入思考和运用多个解题方法,而有些则较为简单直观。

下面将以各个题型分析试卷中的难点和易点。

二、选择题分析选择题在试卷中占了较大比例,主要考察了学生对基本概念和运算的掌握。

1. 二次函数与一次函数混合题这是本次试卷中的一道较难的选择题。

题目要求通过分析二次函数与一次函数的性质,求解函数转折点的坐标和函数值等内容。

解答过程中需要灵活运用函数相关的知识,对函数的图象和性质有一定的理解。

此题可以帮助学生巩固二次函数与一次函数的知识,提高解题能力。

2. 直接比例与反比例的辨析本题目从实际生活中的情景出发,考察学生对于直接比例与反比例关系的辨析能力。

通过观察实际情境中两个量的变化情况,学生需要判断两个量之间是直接比例还是反比例,进而选择正确的答案。

此题旨在培养学生的实际问题解决能力,培养学生的观察力和分析能力。

三、计算题分析计算题在试卷中也占有一定的比例,主要考察学生的计算能力和运算技巧。

1. 平行四边形的面积计算这是本次试卷中的一道较难的计算题。

题目要求计算给定平行四边形的面积,考察学生对平行四边形性质的理解和计算面积的能力。

解答过程中需要正确地运用计算面积的公式,并注意计算中的单位换算和运算符号。

此题旨在培养学生的计算思维和准确性。

2. 分数的运算和化简这道题目要求学生对分数的加法和乘法进行计算,并且对结果进行化简。

通过此题,考察学生对分数加法和乘法的掌握情况,以及对分数化简的熟练程度。

同时,此题也要求学生注意运算过程中的细节和精度,培养学生的计算准确性和思考能力。

四、解答题分析解答题主要考察学生综合运用数学知识解决实际问题的能力。

1. 运动员训练问题这是一道综合应用题,要求学生通过已知数据求解出运动员的平均速度。

通过此题,考察学生对速度、时间、距离之间的关系和计算的理解。

安徽省近五年中考数学函数试题分析

安徽省近五年中考数学函数试题分析

安徽省近五年中考数学函数试题分析
吴慧琳;刘兮
【期刊名称】《理科考试研究》
【年(卷),期】2023(30)2
【摘要】本文以2018-2022年安徽省中考数学函数试题为研究对象,研究近五年函数考情,分析近五年函数命题思路,赏析不同类型函数中考真题.从而针对安徽省中考函数给出复习建议,以增强教师函数课堂教学的针对性和提高考生中考复习备考的有效性.
【总页数】4页(P2-5)
【作者】吴慧琳;刘兮
【作者单位】合肥师范学院数学与统计学院
【正文语种】中文
【中图分类】G63
【相关文献】
1.安徽省近五年中考数学试题分析
2.中考试卷研究:整体解读与局部剖析——基于徐州市近五年中考数学试题分析的感悟
3.中考英语知识运用试题命题质量探究——以2016-2020年安徽省中考英语试题为例
4.初中语文教学质量测试中(中考)对地域文化考查的分析研究--以陇南市近九年初中语文教学质量测试(中考)试题为例
5.循中考试题路径觅作业设计路径--由安徽省近三年中考语文试题探索语文作业设计思路
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xx近五年xx数学试题分析看今
后的方向数与代数部分:
(一)数与式
综观近年来中考数与式”部分的试题,再结〈〈标准》的要求,2018年关于数与式”考查还会主要为基础性题目集中在基础知识与基本技能方面。

但伴随着近年来试题不断推陈出新,以数与式”内容为依托,加强数学理解能力的考查也越发凸显。

如以新定义概念为载体的开放题,着重考查数学理解能力,这种能力在近年来的中考题中并不少见,如2017年内蒙古呼伦贝尔卷第5题等,另外,依托于数与式”的有关知识,考查探索规律的能力,即合情推理、归纳概括能力,已经成为一种趋势,如2017年安徽卷第16题。

此外,以几何图形为载体,结合数与式”的基础知识、考查图形观察能力和逻辑推理能力。

这种试题的呈现形式是把数与式”部分内容与图形结合,增大了思考量,具有一定的难度。

这种形式值得大家进一步关注。

如2015年安徽卷第18题、2016安徽卷第17题等。

(二)方程(组)与不等式(组)
首先,关注解方程(组)与不等式(组)的基本技能。

综观历年中考题,都是针对解方程(组)与不等式(组)这一基本技能编制的试题,其解法的是课程标准中要求掌握的。

因此,有理由确信,在2018年的中考中,对解方程(组)与不等式(组)的试题依然出现。

其次,近年来围绕学生的创新意识,中考试题在开放性增强的同时注重考查了学生思维的严谨性与灵活性,因此,要注重学生对数学事实的真正理解。

最后,关注数学模型思想,考查数学应用意识和能力,因此,以当地热点话题为背景,体现问题情境一建立模型---求解---解释与应用”这一过程的试题在2018年的中考试题中依然会出现,应该引起关注。

(三)函数
首先,关注函数概念及表达方式,此类问题仍在2018年考试中有所体现。

其次,关注函数与方程、不等式之间的关系。

利用函数思想及函数模型解决相关问题也会是考查重点。

近些年试题开放性、灵活性、综合性是一种命题趋势。

在2018年考试中数形结合的思想仍会是重点考查内容。

动点问题”在2018年考试中还会是重点出
现的考试内容。

利用函数模型解决实际问题的这种能力的考查力度仍不会减弱。

空间与图形部分:
综观2017年全国各地中考题,均较好地体现了〈〈标准》的基本理念,在考查学生数学基础知识、基本技能的基础上强调了学生对基本数学思想方法的理解及应用的水平,关注了学生在新的问题情境下,可以合理地选择已有的数学活动经验,分析和解决问题的能力。

关于空间与图形’学习领域,突出了以下特色:
第一、试题更加关注了对基础知识和基本技能的考查,特别强调在复杂几何图形中分解出简单、基本的图形,以及由基本的图形中寻找出基本元素及其关系的能力;
第二,试题更加注重学生经历观察实验、操作研究、推理论证等过程,并借助于图形的运动和变化,考查学生对已有的基本数学活动经验的合理选择及运用的能力;
第三、试题更加突出图形变化时研究几何问题的工具和方法”的重要意义,而且
将几何图形放置于平面直角坐标系中,考查了学生对数学是研究数量
关系和空间形式的科学”思想内涵的领悟及综合应用水平。

空间与图形”部分考查的内容,主要包括图形的性质、分类、度量,以及对图形
基本性质的证明;图形的平移、旋转、轴对称变换;运用坐标描述图形的位置和运动,其中考查的重点是可以从复杂几何图形中分解出基本图形”的能力,以及对图形变换时研究几何问题的工具和方法”、数学是研究数量关系和空间形式的科学”思想内涵的领悟程度及综合应用水平。

因此,在以上关于
图形的性质”、图形的变化”、图形与坐标”中所反映出来的特色基础上,2018 年中
考试题将更加关注空间概念、几何直观、推理能力、应用意识等核心问题,关注合情推理和演绎推理”的关系,更加强调可以在新的问题情境下,合理选择已有的数学活动经验,在图形的运动和变化过程中,探索图形的性质,感悟数学思想的精髓。

具体体现在以下3个方面:
(一)基于核心概念,强化基础知识和基本技能的有效落实。

基于数学核心概念,把握数学问题的本质,是理解数学知识,解决数学问题的关键,以数学核心概念为载体,设置中考试题,将始终作为中考命题的基本原则。

针对空间与图形”学习内容,考查学生基础知识和基本技能的达成情况,将主要借助于基本图形:三角形、四边形和圆,考查学生对重要重要几何基本事
实的理解与运用,考查图形的变化”、图形与坐标”的有关内容,考查学生是否在具体情境中合理应用图形的性质解决问题的能力。

(二)注重学习过程,体现生活经验和思考经验的合理延伸。

基本活动经验,应包含生活经验”和思、考经验”两部分,在复习中,注意引导
学生经历从生活到数学”的建模过程。

如,日常生活中的各种包装盒的设计与直棱柱、圆锥的侧面展开图有关。

另外,引导学生能够从不同角度分析问题,还原知识的发生、发展、形成的过程,使学生能够在一点一滴活动经验”
的基础之上,完成对新知识学习的正迁移,实现对基础知识与基本技能”的内
化,也是在教学中应特别值得关注的问题。

(三)强调思维含量,关注合情推理和演绎推理的有机结合。

数学不仅仅是一种重要的工具”和方法’更重要的是一种思维模式,数学思维是数学基础知识在更高层次上的抽象和概括,它蕴含
于数学知识之中,是数学知识的精髓。

强调数学思维含量,是设置中考试题永恒的主题。

推理包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。

在解决问题的过程中,合情推理用于探索思路,发现结论,演绎土里用于证明结论,两者有机融合才能实现对学生思维水平的提升。

因此,在复习中,一方面,应重点引导学生通过操作、观察、实验等的活动,对现象进行归纳或类比,通过图形的运动,观察图形运动过程中变与不变的关系,,弓I导学生发现图形的性质,突出合情推理在分析、解决问题中的作用;另一方面,帮助学生通过演绎推理,明确证明的意义和必要性,知道证明要合乎逻辑,并以不同的表达形式,清晰、条理地表达白己的思考过程。

作为研究图形性质的有效方法和工具,合情推理”与演绎推理”相辅相成,将有助于
发展学生的思维能力,从而增强学生发现和提出问题的能力、分析和解决问题的能力。

概率与统计部分:
(一)统计
1、对统计技能的考查是基础,注重统计知识之间的联系性。

2、注重考查统计活动的完整性。

3、关注应用,对统计思想的考查蕴含在统计活动中,注重考查利用统计数据作出决策的能力。

(二)概率
(1)针对概率意义的考查更简约。

通过实验,可以获得事件发生的概率。

当大量重复实验时,频率可以作为事件发生的概率,如果学生不理解概率的意义,将概率知识与确定性数学知识混淆。

(2)对列举法和树状图法的考查是主旋律,并注重利用所得的数据作出决策。

再有一种变式是将几何概型问题通过区域划分转化为等可能事件的概率问题。

(3)在综合应用中,考查学生对概率知识的掌握程度。

概率的最大特点是其应用性,不但可以和现实生活中的问题紧密相连,还可以和其他领域的知识紧密结合。

实践与综合应用部分
一、命题内容及趋势:
(1)从数量角度反映变化规律的函数类题型:
(2)以直角坐标系为载体的几何类题型:
(3)以几何变换”为主体的几何类题型:
(4)以存在型探索性问题”为主体的综合探究题:
(5)以动点问题”为主的综合探究题:
二、需要注意的问题及建义:
(1)在复习中要更多关注几何变换”,强化对图形变换的理解。

加强对图形的旋转、平移、对称多种变换的研究,对不同层次的学生进行分层拔高,使每一个学生都有较大的提升空间。

(2)让学生参与数学思维活动,经历问题解决的整个过程。

复习中应多引导学生运用运动的观点”来分析图形,要多引导学生学会阅读、审题、获取信息,养成多角度、多侧面分析问题的习惯,逐步提高学生的数学能力。

(3)要特别重视函数图像变换型”问题教学的研究。

通过开展函数图像变化”的专题教学,树立函数图像间相互转换的思维,尽量减少学生对函数数形”认知的欠缺,比如,平时渗透抛物线的轴对称、旋转等知识点。

当某个函数图像经过变换出现多个函数图像时,要引导学生从图形间的相互联系中寻找切入点,排除识图的干扰,对图像所蕴含的信息进行横向挖掘和纵向突破,将有效探索”进行到底。

此类试题考查的思路是从知识转向能力,从传统应用转向信息构建,这就提醒我们课堂上重要的不是讲解,而是点拨、引导、提升,
一定要从重视知识积累转向问题探究的过程,关注学生白主探究能力的培养。

(4)突出数学核心概念、思想、方法的考查。

中学数学核心概念、思想方法是数学知识的精髓,也势必会成为考查综合应用能力的重要载体,这包括方程、不等式、函数,以及基本几何图形的性质、图形的变化、图形与坐标知识之间横纵向的联系,也包括中学数学中常用的重要数学思想。

如:函数与方程思想、数形结合、分类讨论思想很化归与转换思想。

而数学基本方法是数学的具体表现,具有模式化和可操作性,常用的基本方法有配方法、换兀法、待定系数法、归纳法和割补法。

(5)将核心知识点组合”作为实践综合题引导学生理解数学本质。

教学中要有意识地将多个知识点进行组合”与串接”白己编一些有针对性的、适合本班学生来练习的综合题,或者精选一些比较成功的试题,有目的的将它们进行剪裁、组合与改编,特别是专题复习阶段,更要能静心、精心、精选,以题为载体,以题论法。

相关文档
最新文档