压力容器厚度计算 (2)精品文档5页

合集下载

压力容器材料厚度计算及设计

压力容器材料厚度计算及设计
样 中时 ,则应 该 对 有 效厚 度
{ _ 耐瀣 簿鼗 t 钢牲 魄缩 箍
蒜s 铡 槭 t麟 穗 稚 精
那 么 应 该 将 补 强 金 属 对 厚 度 的 要 求 以 产 生影 响的原 因进行 分 析 。 及 计算 厚 度相加 进行 整体 补强操 作。 2 设计 的厚 度 另 外 , 如 果 等 过 等 面 积 补 强 法 进 行 操 行计算 :
若 计 算方 式 持续 以反 腐迭 代 的方 式进 行 ,则 有 着 较大 的 损 失 。如 果 是从 开 孔 补 强 、 外 压 容器 、卧式 容 器 等方 面 出发 ,则 通 过有 效 厚 度做 好 强 度 核算 的工 作 。 因此 ,一 旦 将 计算 厚 度 注 明在设 计 图
工业技术
C — h i n a N — e W T e c h n o l o e i e s a n d P m d u c t s 口匪 墨圈 ● ■ 盈 瞩 酗 ■ 啊 啊 _ ■ ■
压力容器材料厚 度计算及设 计
黄 洁 涛
( 广 东长征机械 有限公 司,广 东 中山 5 2 8 4 5 5)
n 职 义嘟店
l B— d } 一 2 { 一 c X 1 一 l
期 要 求 、刚度 、强度 等最 小 厚 度 的要 求理 解 成 设计 的厚
公 式 中 :A1 属 于 多 余 的 面 积 , 其 度 ,主要 是指 制 造 容 器在 出 主 要 是 壳 体 有 效 厚 度 将 计 算 厚 度 相 减 厂 之 前 ,实 际测 量 的厚 度 在 后 获 得 的 数 值 ,m m ;8 1主 要 是 根 据 超 过设 计 厚 度 的前 提 下 ,与 G B 1 5 0 — 2 0 1 1 内的规 定进 行 计算 后: 获得 的 安 全使 用 容器 的需 求互 相 满 厚 度 ,m m; 8 2主要 是 根 据 相 关 文 件规 足 。通 常 情况 下 ,腐 蚀 裕 量 定 进行 厚度 的计算 ,m m。 的介 质均 是通 过 容 器 寿命 以 公 式 内其他 符号 与 G B I 5 0 — 2 0 1 1《 压 及 腐蚀 速 率之 间乘 积得 到 的

压力容器设计开孔补强精品文档4页

压力容器设计开孔补强精品文档4页

开孔补强4.5.5.5等面积补强的分析与计算■等面积补强----壳体承受应力所必需的金属截面,因开孔被削去多少,就必须在开孔周围的补强范围内补回同样截面的金属面积。

有效补强的金属面积大于或等于开孔削弱的金属面积A 、判断是否可以不补强和不作进一步补强计算(1)强度裕量(开孔后仍有的)●容器实际壁厚大于计算壁厚(δδφe )●接管厚度大于计算厚度(t et δδφ)●接管根部有填角焊缝 ●所开孔不在焊缝处,但壁厚计算的中径公式仍考虑了焊缝系数,计算壁厚有裕量。

(2)GB150-1998对不另行补强的规定同时满足下列条件时,开孔后可不另行补强:②相邻两孔中心的距离()2d d +≥B、等面积补强计算(1)所需最小补强面积接管有效面积:接管转化为壳体的当量面积:ΔA-----弥补[][]tttσσ≤而需增加的面积;或接管有效承载面积的折减量。

■圆柱壳■外压柱壳或球壳■平盖注:上述平盖和外压容器的公式来由参见丁伯民《压力容器设计----原理及应用》对平盖和外压容器,决定壳体厚度或承载能力的是弯曲应力,开孔削弱的是抗弯截面模量(而不是壁厚截面积)。

为保证开空前后的抗弯截面模量相等(w=w 0),要求k=A/A 0=1/(2+S/S 0),为保守起见,取k=0.5。

s —补强圈厚度,s 0----平盖厚度;A----补强面积,A 0----开孔削弱面积。

(2)补强范围■有效宽度B■接管外侧高度h 1■接管内侧高度h 2{}接管实际内伸高度,min 2nt d h δ=1(3)补强范围内富裕的可作补强的金属面积A e■A 1----壳体有效厚度减去计算厚度之后的多余面积■接管有效厚度减去计算厚度之后的多余面积()()r et r t et f C h f h A 221222-+-=δδδ■A 3----有效补强区内焊缝金属的截面积(4)有效补强区内另外再增加的补强元件的金属截面积A 4若A A e >,则开孔后无需补强。

ASME_B31.3_管道壁厚自动计算word精品文档5页

ASME_B31.3_管道壁厚自动计算word精品文档5页
压力管道的壁厚选择是压力管道设计中最基本和最常见的问题,但是在实际设计过程中却非常混乱,经常出现凭经验估算、乱用SCH表、不经过演算随意套用某些手册数据的现象,还有的认为壁厚越大越好,随意扩大管道壁厚。管道壁厚选择的不合理,不但给安全带来隐患,而且也造成建设成本的提高和材料的浪费。
加蓬撬块项目设计过程中,需要对压力管道进行壁厚计算、校核,由于该工程压力等级多,计算工作量大。因此,我们采用Excel表格编写了一个可以自动计算管道壁厚的程序,只需要输入相应的参数,就会自动计算出结果,方便、快速、准确,自动生成计算书。
该工程采用ASME B31.3《工艺管道规范》,是美国机械工程师学会《压力管道规范》ASME B31中的一卷。工艺管道包含了炼油、化工、制药、纺织、造纸、半导体和制冷工厂,以及相关的工艺流程装置和终端设备中的典型管道。本规范规定了上述管道在材料、设计、制作、装配、安装、检查、检验和试验的要求。它适用所有流体的管道,如水、气、蒸汽、液化固体、低温流体等。
一、壁厚计算
(1)当直管壁厚t小于管子外径D的1/6时,根据ASME B31.3《工艺管道规范》采用了如下公式:
T——压力设计壁厚;
P——设计内压(表压);
D——管道外径;
S——材料的许用压力,查表A-1;
E——表A-1A或A-1B所列的质量系数;
Y——从表304.1.1查的系数,但限于t<D/6和表列的材料。
二、计算实例:
设计参数:设计压力:1.6MPa;设计温度:80℃;材料:A106 Gr.B.B;腐蚀裕量:3mm;公称直径:200mm;
三、计算结果
经济效益、社会效益计算:
1、压力管道壁厚计算又原先的手工计算变为软件计算,计算方便、快速、准确;
2、自动出计算书;

GB1503压力容器-设计(xiezg)精品资料

GB1503压力容器-设计(xiezg)精品资料

2. 增加两个不全焊透的带补强圈接管与壳体的焊接接头结构(如图)
平封头与圆筒的连接 参照ASME Ⅷ-1标准,增加了一些典型的连接结构供选用
凸形封头与圆筒的搭接连接 删除了GB150-1998附录J中图J11中关于“当圆筒厚度δn≤16mm时,可
用做端封头”的注,即不推荐设计时采用此结构型式用作端封头与圆筒 的连接
b)多孔板的支撑载荷:由一根支撑管(杆)的支撑面积减去该面积 内的管孔总面积,其上承受的计算压力载荷为该管状拉撑所承受的支承载 荷
c) 拉撑所需要的最小截面面积
1.1W
a t
注:式中另取1.1倍的安全系数主要考虑腐蚀的影响
开孔补强的设计方法
不需另行补强的最大孔直径见表6-1
注: 1) 当腐蚀裕量不为1mm时,表6-1中的接管壁厚应相应调整。
的间距 L dc / 2 ;
(b) 按最大圆通过的相应支撑点类型,系数K取表 5-14的平均值
(当支撑结构中存在不同支撑点类型时)。
3) 拉撑件的强度校核: a)无孔板的支承载荷:拉杆与其相邻的所有支撑中心连线的垂直平
分线所围成的面积为该拉杆的支撑面积,其上承受的计算压力载荷为该拉 杆所承受的支承载荷;
圆形平盖取短轴长度),可用等面积法进行补强计算,所需最小补强面积
A 0.5dop p
注:平盖厚度是按弯曲应力计算得到,按开孔前后在有效补强范围内 的抗弯截面模量相等的原理,得到上式表示的需要补强面积
b) 平盖上开有多个孔时,可采用增加平盖厚度进行补强的方法。计算削 弱系数 ν:
Dc b
不包括设计及制造的所有细节,且所列结构并不意味着只限于本附录图 示或所述的结构型式
非受压附件与受压元件的连接 该部分为新增内容,给出常用非受压附件与受压元件之间连接的E类

第9章 压力容器设计2(2)(1)

第9章 压力容器设计2(2)(1)
5
❖ 我国容器标准中给出的椭圆形封头厚度计
算公式如下:
2
Kpc Di
t 0.5 pc
此公式是在胡金伯基(Huggenberger)按 最大主应力理论导出的椭圆形理论公式的 基础上,计入了封头折边处的弯曲应力, 并用应力增强系数K予以调整。增强系数K 是以科次(Coates)的计算且经试验修正后 提出的建议性曲线经圆整而得。ASME于 1956年开始采纳此式,一直沿用至今。
pw
2 t e
MRi 0.5e
❖ 上述公式是采用球壳的基本公式,计入封头上连接 边缘处的弯曲应力与拉伸应力,用应力增强系数M予 以调整,M值计算式系试验所得,在ASME规范中已使 用30多年。
11
球冠形封头
❖ 球冠形封头也称无折边球形封头。部分球面 与圆筒直接连接,因而结构简单、制造方便, 常用作容器中两独立受压室的中间封头,也 可用作端盖。由于球面与圆筒连接处没有转 角过渡,所以在连接处附近的封头和圆筒上 都存在相当大的不连续应力,其应力分布不 甚合理。封头与圆筒连接的T形接头必须采用 全焊透结构
由于气压试验较液压试验危险,故试验压力比液压试验 低,容器上的对接接头应进行100%射线或超声检测。
28
(3)压力试验前的应力校核
液压:
T
PT
Di e
2e
0.9 s
气压:
T
PT
Di e
2e
0.8 s
式中 σs (σ0.2)—服圆强度筒)材,料M在P试a;验温度下的屈服点(或0.2%屈 φ—圆筒的焊接接头系数。 pT—试验压力力)(,对M液Pa压。试验,校核时还应计入液柱静压
26
(2) 试验压力 液压试验压力的最低值按下述规定,上限应满足应力

压力容器计算公式

压力容器计算公式

压力容器计算
在合格的基础上,我们为什么不能作得更好一些!1压力容器计算
一、符号及计算公式:
(1)设计温度下厚度计算:适用范围c p ≤0.4[]t
s φ。

[]C t i
C p
D p -=j s d 2(3-1)[]C
t O
C p
D p +=j s d 2(3-2)
(2)设计温度下圆筒应力:
e e δ2)
δ(+=i c t D p s (3-3)e
e δ2)
δ(-=O c t D p s (3-4)
(3)设计温度下最大允许工作压力:
[]e e δδ2+=i t W D P j s (3-6)[]e
t W Do P δδ2e -=
j s (3-7)
P —设计压力,Mpa ;
P W —筒体允许的最大工作压力,Mpa ;Pc—计算压力,Mpa ;
P T —试验压力最低值,Mpa ;
Di --筒体内直径;mm
Do --筒体外直径(D O = Di+2δn);mm
δ—计算厚度(理想状态下得出),mm ;δd—设计厚度(计算厚度+腐蚀裕量C 2),mm ;δn—名义厚度(设计厚度+钢板厚度负偏差+C 1腐蚀裕量C 2),mm ;δe—有效厚度(名义厚度-钢板厚度负偏差-C 1腐蚀裕量C 2),mm ;C —厚度附加量,mm ;
C 1—厚度负偏差,按4.3.6.1,mm ;
C 2—腐蚀裕量,按4.3.6.2,mm ;
[σ] t--设计温度下材料许用应力;Mpa σs--屈服极限;Mpa
σt—设计温度下计算应力;Mpa
φ-焊接接头系数;。

设计参数的确定和筒体与封头的壁厚计算

设计参数的确定和筒体与封头的壁厚计算
是重要依据。
σ pT 1.25 p σt
四、设计温度t
工作温度-通常指在正常操作下容器内物料的
温度。它是影响器壁金属温度的直接原因,而金 属温度则是设定设计温度的依据。
设计温度:指容器正常操作时,在相应设计压力
下,设定的受压元件的金属温度。
设计温度和设计压力一起作为设计载荷条件。
设计温度不得低于元件金属在工作状态可能达 到的最高温度。对于0℃以下的金属温度,设 计温度不得高于元件金属可能达到的最低温度
设计温度视不同情况设定:
(1)设备内介质用蒸汽直接加热或被内置加 热元件(如加热盘管、电热元件等)间接加热 时,可取介质的最高温度为设计温度。
(2)若容器内的介质是被热 载体(或冷载体)通过容器 器壁从外边间接加热(或冷 冻),取热载体的最高工作 温度或冷载体最低工作温度 为设计温度。
(1)装有安全阀的容器
不应低于安全阀整定压力pZ,pZ= (1.05~1.1)pW
安全阀——非破坏型的安全泄放装置
P ≥Pz
P ≥(1.05~1.1)pW
指安全阀阀芯开始升起离开阀 座,介质连续排出时安全阀进 口的瞬时压力,又叫安全阀的 动作压力,用pz表示。pz是根 据pw调定
(2)装有爆破片的容器
如设计一台无保冷设施的液氨储罐:氨气的临界 温度和临界压力分别为132.5℃和11298KPa
取氨50℃时饱和蒸汽压为2.03MPa为工作压力。
(4)常温储存混合液化石油气储罐的工作压力按表8-4。
(TSG21-2016)
三、计算压力 pc
概念:在相应温度下,用以确定元件厚度 的压力。
当容器内盛有液体物料时,计算压力包括液 柱静压力。
爆破片 ——断裂型的安全泄放装置

压力容器材料厚度计算

压力容器材料厚度计算

■ - 卜—设计压力(design pressure(1)相关的基本概念(除了特殊注明的,压力均指表压力)工作压力P w :在正常的工作情况下,容器顶部可能达到的最高压力。

①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压 试验的压力和卧置时不同;② 工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶 部的压力并不是其实际最高工作压力( the maximum allowable working pressure )。

③ 标准中的最大工作压力,最高工作压力和工作压力概念相同。

设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条 件,其值不低于工作压力。

①对最大工作压力小于 0.1Mpa 的内压容器,设计压力取为 0.1Mpa ;②当容器上装有超压泄放装置时,应按 超压泄放装置”的计算方法规定。

③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下,可能达到的最高金属温度确定。

(详细内容,参考 GB150-1998,附录B (标准的附 录),超压泄放装置。

)计算压力P C 是GB150-1998新增加的内容,是指在相应设计温度下, 用以确定元件厚度的压力,其中包括液柱静压力,当静压力值小于 5%的设计压力时,可略去静压力。

① 注意与GB150-1989对设计压力规定的区别;《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算 厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。

当容器受 静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。

使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。

② 一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。

③ 计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。

设计温度(Design temperature 设计温度是指容器在正常工作情况下, 在相应的设计压力下,设定的受压元件的金属温 主要用于确定受压元件的材料选用、 强度计算中材料的力学性能和许用应力,以及热应 力计算时设计到的材料物理性能参数。

化工机械第五章压力容器

化工机械第五章压力容器
2
即锥形壳体上环向应力是径向应力的两倍。由应力计算 公式可知,应力与α角成正比,α角增大,应力也随着增 加。两向应力随着r的增加而增加。在锥壳开口处,两向 应力有最大值,在锥顶端r=0处,两向应力为零。
第二十三页,编辑于星期六:十八点 二十五分。
第五章
压力容器
5.2.5边缘应力的概念
由应力分析及推导可知,当薄壁壳体的几何形状发生 突变,或载荷分布发生突变;或壳体厚度发生突变,材 料发生突变等,都会在突变处产生附加的局部应力,我 们称为边缘应力。这种局部应力有时会是薄膜应力的数 倍,甚至会导致容器失效,设计中应予以重视。
椭球形壳体上任一点的两向薄膜应力为:
P
2 b
a4 x2(a2 b2)
(5-4)
P
2 b
a
4
x2
(a2
b2
)[2
a
4
x
a4 2 (a2
b2
)
]
第二十一页,编辑于星期六:十八点 二十五分。
第五章
压力容器
由式(5-4)可知,椭球封头上的应力是随x的变化而变化 的。对于标准椭圆形封(a/b=2),封头顶点处的(x=0), 两向应力有最大拉应力值,在封头边缘处(x=a),径向应 力为顶点处的1/2,环向应力为负应力,且其值与顶点处值 相等。
在工艺尺寸确定之后,为了满足安全和使用要求,还要 确定强度尺寸,零部件在机械设计时,应满足以下要求:
<1>强度———有足够的抵抗外力破坏的能力。
<2>刚度———有足够的抵抗外力变形的能力,以防 止变形过大。
<3>稳定性——有保持自身形状的能力,以防压瘪或
皱折。
第十二页,编辑于星期六:十八点 二十五分。

压力容器的设计_内压薄壁容器圆筒的强度设计

压力容器的设计_内压薄壁容器圆筒的强度设计
(1)对类似设备实测;(2)传热计算; (3)参照书P44表3-2。
例如:不被加热或冷却的器壁,且壁外有 保温,取介质温度;用水蒸气、热水或 其它液体加热或冷却的器壁,取热介质 的温度;等等。
23
3、许用应力和安全系数
许用应力是以材料的各项强 度数据为依据,合理选择安 全系数n得出的。
0 (1)极限应力
39
5.壁厚附加量
满足强度要求的计算厚度之外,额外增加的厚度, 包括钢板负偏差(或钢管负偏差) C1、腐蚀裕量 C2 即 C= C1十 C2 容器壁厚附加量—— (1)钢板或钢管厚度负偏差 C1: 例如,
40
在设计容器壁厚时要 预先考虑负偏差。
C1 钢板厚度负偏差
1、钢板负偏差参见P49表3-7选取; 钢管厚度负偏差参见相关文件。 2、当钢材的厚度负偏差不大于0.25mm,且 不超过名义厚度的6%时,负偏差可以忽略不 计。
中温容器
t =min{
=min{
t
nb
,
ns
, ,
}
高温容器
t t t st 0 .2 n D
ns
nn n D
}
高温式中

t n
nn、n D
----设计温度下材料的蠕变强度和 持 久强度。 ----蠕变强度和持久强度的安全系数。
25
t D
(2)安全系数
20
计算压力pc在相应设计温度下,用以确定元件厚度的 压力,其中包括液柱静压力。当元件所承受的液柱静 压力小于5%设计压力时,可忽略不计。
即计算压力设计压力液柱静压力5%P时计入) 可见,计算压力设计压力工作压力容器顶部表压
例:一立式容器,工作压力0.5MPa,液 体深10m, 重度为10,000N/m3。

压力容器设计

压力容器设计

设计厚度 计算厚度 腐蚀裕度
td
pDi
2[ ]t P
C2
2.51200 1.0 11.47mm 2170 0.85 2.5
8.3 内压薄壁容器的设计
名义厚度 设计厚度 钢板厚度负偏差 圆整值
tn td C1 11.47 0.8 12.27 14mm
该厚度同时满足最小壁厚要求。 储罐的水压实验压力:
F
F=Fcr


临界载荷


T



6.1 压杆失稳的概念
稳定性:构件保持原有形状的能力。
失稳:构件失去原有形状的平衡。失稳现象 的发生决定于构件及其作用载荷。
压杆的临界载荷Fcr:压杆保持直线稳定平衡时所 能承受的最大轴向压力。当轴向压力达到Fcr时, 压杆随时有失稳的可能,一旦失稳变弯,将不可能 恢复。
d 环向应力为:
pD 2t
• 球形壳体的应力分析
• 环向应力和经向应力相等:
PR PD 2t 4t
椭球形壳体的应力分析
x
M
b
a
P 2tb
a4 x2 (a2 b2 )
P 2tb
a4
x 2 (a2
b2
)
2
a4
a4 x 2 (a 2
b2
)

顶点:
Pa a 2t b
薄壁壳体: R0 / Ri 1.2或 tn / Di 0.1
p
B
二向应力状态:经向应力、周向应力
Di
1. 经向应力 (轴向应力)
截面法求 取右半部分受力分析:
p
Di
列平衡方程:
Fx 0
4
D2

压力容器厚度计算

压力容器厚度计算

厚计算(以内径为准)
厚度 负偏 差 0.3 Pw ( 最 大 有效 计算 δ t圆筒的计 允 厚度 应力 算应力 许 δ e 校核 工 作 压 力
设计厚度
封头 减薄 率
封头最 小厚度
封头最小 厚度是否 大于设计 厚度
否 14.2 159.8132394 good 2 13.75687276 0.13 13.62 且计算得到的封头最小厚度不得小于设计厚度,设计厚度=计算厚度-腐蚀裕量 封头厚度计算(以内径为准) 名义厚度
厚度 负偏 差 0.3
圆筒厚度计算(以外径为准)
Pc(计算压 力) 1.88 是(1)否 (0)适用 1 φ (焊 δ t(设计温度下 Do(圆筒外直 腐蚀裕 接接头 材料许用应力) 径) 量 系数) 185 1 2400 2 C(厚 δ (圆筒计算厚 度附加 未圆整厚度 度) 量) 12.13294611 2.3 14.43294611
圆筒筒体厚度计算(以内径
Pc(计算压 力) 1.88 φ (焊 [δ t](设计温度 Di(圆筒内直 腐蚀裕 接接头 下材料许用应力) 径) 量 系数) 185 1 2400 1.5
是(1)否 (0)适用
δ (圆筒计算厚 度)
C(厚 度附加 量)
未圆整厚度
δ n名 义厚度 (圆 整)
1 12.25687276 1.8 14.05687276 16 备注:封头最小厚度=名义厚度*(1-减薄率)-钢板负偏差,并且计算得到的封头最小 圆筒椭圆封头厚度计算(以内径 内曲面深度hi 椭圆封头形状系数K计算厚度 未圆整厚度 名义厚度

压力容器常用材料的基本知识精品文档5页

压力容器常用材料的基本知识精品文档5页

压力容器常用材料的基本知识1、压力容器用钢板选用时应考虑:①设计压力;②设计温度;③介质特性;④容器类别。

2、从材料力学性能来说,升温等效于升压,降温将导致钢材的脆性增加。

3、对同一种材料来说,随温度和板厚的增加,其许用应力则降低。

因而当容器壳体的名义厚度处于钢板许用应力变化的临界值时,应考虑此问题。

如处于16mm的Q235-B、Q235-C和16mm、36mm的Q345R都会发生许用应力跳档现象。

4、钢材的强度和塑性指标可通过拉伸试验和冷弯试验(室温下进行)获得。

5、板材供货时薄板以热轧状态供货,厚板以正火状态供货(因强度和韧性下降)。

6、压力容器用钢板当达到一定的厚度时,应在正火状态下使用,即使用正火板,如用于壳体厚度>30mm的Q345R钢板必须要求正火状态下供货和使用。

需注意:正火仅对板材而言,而非整体设备。

(热轧板呈铁红色,正火板呈铁青色)。

7、压力容器用钢与锅炉用钢类同,首先要保证足够的强度,还要有足够的塑性,质地均匀等。

因此,必须选用杂质(S、P)和有害气体含量较低的碳素钢和低合金钢,均为镇静钢。

且为保证受压元件材料的焊接性能,一般须控制材料的含碳量≤0.25%。

材料的含碳量升高,则其冲击韧性下降,脆性转变温度升高,在焊接时容易产生裂纹。

8、低合金钢的机械性能、耐腐蚀性、耐热性、耐磨性等均比碳素钢有所提高,其中最常用的是:Q345R。

它不仅S、P含量控制较严,更重要的是要求保证足够的冲击韧性,在材料验收方面也比较严格。

因此其使用压力不受限制,使用温度上限为475℃,下限为-20℃。

板厚为3~200mm。

是应用很广的材料。

9、Q345R(GB713-2008,代替原16MnR)的使用说明:①、Q345R的适用范围是:使用压力不限、使用温度为-20~475℃。

②、 Q345R用作压力容器壳体的板厚>30mm时,则容器需焊后作退火热处理,热处理的温度为600~650℃;若焊前预热至100℃,则板厚可提高至34mm。

压力容器厚度计算(2)

压力容器厚度计算(2)

目前,我国压力容器设计依据GB150-98《钢制压力容器》,是国内普遍遵循的原那么。

一样情形下,板厚增加,元件强度会提高,但有时板厚增增强度反而降低。

如何依照该标准进行厚度的恰被选取,更好地知足强度需求,对压力容器设计具有重要意义。

GB150-98规定,计算厚度是指按各章公式计算得到的厚度;设计厚度是指计算厚度与腐蚀裕量之和;名义厚度指设计厚度加上钢板厚度负偏差后向上圆整至钢材标准规格厚度,即标注在图样上的厚度;有效厚度指名义厚度减去腐蚀裕量和钢板厚度负偏差。

我们这里讨论的厚度是名义厚度。

从定义中可以看出,名义厚度不包括加工减薄量,元件的加工减薄量由制造单位根据各自的加工工艺和加工能力自行选取,只要保证产品的实际厚度不小于名义厚度减去钢材厚度负偏差就可以。

这样可以使制造单位根据自身条件调节加工减薄量,从而更能主动地保证产品强度所要求的厚度,更切合实际地符合制造要求。

按照GB150-98等国家标准的原则,制造工艺人员要根据图样厚度考虑加工减薄量而增加制造元件的毛坯厚度。

在我国材料标准中,钢板厚度范围变化,钢板的σb、σs也有变化,一般是板厚增加,σb、σs有所降低。

我国压力容器用钢板许用应力随板厚厚度范围增厚而有所降低,因而可能出现虽然有时板厚增加,强度反而降低的现象,尤其是封头,这种现象更明显。

2 实例为了证明上述现象存在,举例如下:首先我们给出常用钢板在不同状态下的强度指标,如下表所示:经常使用钢板在不同状态下的强度指标表例1某台储气罐,其封头为标准椭圆形,材质15MnVR,设计内径Di=2000mm,侵蚀裕度C2=1mm,焊缝系数φ=1,设计压力P=,设计温度t=20℃,标准椭圆封头形状系数K=1,侧十图样上封头名义厚度δn=16mm.制造厂选用18mm厚度钢板压制封头,该制造厂压制封头时最大成型减薄量为δx10%,即18x10%=(包括钢板厚度负误差在内)。

(1)选用18mm厚度钢板压制封头,知足GB150-98设计要求。

压力容器常用1

压力容器常用1

MPa 1.4℃197mm 484Mpa 94.48mm 6mm 100mm 106Mpa 1.88Mpa
235mm 22mm 12mm 0.8mm 1有效厚度δe=δn-C=20.2mm
当筋板厚度δ1与高度h之比为1/5时,筋板的计算厚度
筋板有效厚度δ1e=δ1n-C=9.2
mm 3.571749mm 191.1912mm 3
3.筋板厚度的估算
设作用于平盖上的载荷由筋板承受其一半,则筋板的截面系数计算厚度9.819473mm 2.径向筋板加强的圆形平板盖厚度计算
图20-3中当量圆直径161.3333mm 1.当量圆的计算计算筋板名义厚度 δ1n
钢板负偏差 C1
腐蚀裕量 C2
二、平盖计算
中心轴直径 D1=
试验压力 Pt=
试验温度下的屈服强度бs 平盖名义厚度 δn
径向筋板加强的圆形平板盖结构及厚度计算
以下各部分计算内容系根据HG20582-98《钢制化工容器强度计算规定》进行设计计算。

一、数据输入
设计压力 P c
设计温度 T c
壳体内径 D i
许用应力 [б]t =
筋板数 n=
筋板高 h=
=+=
)
/sin(1)/sin(n n Di d ππ==t P d ]
[5.0σδ==t n Pc D W ][065.0310σ=
=30162.0W δ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目前,我国压力容器设计依据GB150-98《钢制压力容器》,是国内普遍遵循的原则。

一般情况下,板厚增加,元件强度会提高,但有时板厚增加强度反而降低。

如何按照该标准进行厚度的恰当选取,更好地满足强度需求,对压力容器设计
具有重要意义。

GB150-98规定,计算厚度是指按各章公式计算得到的厚度;设计厚度是指计算厚度与腐蚀裕量之和;名义厚度指设计厚度加上钢板厚度负偏差后向上圆整至钢材标准规格厚度,即标注在图样上的厚度;有效厚度指名义厚度减去腐蚀裕量和钢板厚度负偏差。

我们这里讨论的厚度是名义厚度。

从定义中可以看出,名义厚度不包括加工减薄量,元件的加工减薄量由制造单位根据各自的加工工艺和加工能力自行选取,只要保证产品的实际厚度不小于名义厚度减去钢材厚度负偏差就可以。

这样可以使制造单位根据自身条件调节加工减薄量,从而更能主动地保证产品强度所要求的厚度,更切合实
际地符合制造要求。

按照GB150-98等国家标准的原则,制造工艺人员要根据图样厚度考虑加工减薄量而增加制造元件的毛坯厚度。

在我国材料标准中,钢板厚度范围变化,钢板的σb、σs也有变化,一般是板厚增加,σb、σs有所降低。

我国压力容器用
钢板许用应力随板厚厚度范围增厚而有所降低,因而可能出现虽然有时板厚增加,强度反而降低的现象,尤其是封头,
这种现象更明显。

2 实例
为了证明上述现象存在,举例如下:首先我们给出常用钢板在不同状态下的强度指标,如下表所示:
常用钢板在不同状态下的强度指标表
2.1 例1
某台储气罐,其封头为标准椭圆形,材质15MnVR,设计内径Di=2000mm,腐蚀裕度C2=1mm,焊缝系数φ=1,设计压力P=2.6MPa,设计温度t=20℃,标准椭圆封头形状系数K=1,侧十图样上封头名义厚度δn=16mm.制造厂选用18mm厚度钢板压制封头,该制造厂压制封头时最大成型减薄量为
δx10%,即18x10%=1.8(包含钢板厚度负偏差在内)。

(1)选用18mm厚度钢板压制封头,满足GB150-98设计要求。

15MnVR钢板厚度负偏差C1=0.25mm,封头成型后最小厚度δmin=18-1.8=16.2mm,图样厚度一钢板厚度负偏差=16-0.25=15.75mm,即满足GB150-98的要求。

(2)16mm图样厚度满足设计强度要求。

对图样封头厚度16mm进行强度校核,由GB150-98(7-1)椭圆封头厚度计算公式(标准椭圆K=1):
式中,由GB150-98表4-1,16mm厚度的15MnVR[σ]=177MPa,则封头计算厚度:
考虑腐蚀裕量C2=1MM,封头设计厚度δa=δ+C2=14.74+1=15.74mm,再考虑钢板厚度负偏差C1=0.25mm,δa+C1=15.74+0.25=15.99mm,现图样厚度B.=16mm>15.99rmn,即满足设计强度要求。

(3)板厚增加,强度反而不符合要求。

虽然制造时考虑加工成型减薄量,增加了压制封头钢板厚度,满足GB150-98封头最小厚度≧图样厚度-钢板厚度负偏差的要求,但由GB150-98表2-1查18mm厚度的15MnVR封头材料的许用应力[δ]=170MPa,此时,封头计算厚度:
考虑腐蚀裕度C2=1mm,则封头设计厚度δb=15.35+1=16.35mm,现封头成型后最小厚度(包含钢板厚度负偏差在内)为:18-1.8=16.2mm<封头设计厚度16.35mm,即不满足设计强度要求。

2.2 例2
某低温反应容器(t=25℃)的球形封头材质为15MnNiDR,图样厚度20mm,设计压力P=7.65MPa,设计内径Di=1500mm,腐蚀裕度C2=1mm。

制造厂选用22mm钢板压制球形封头,该制造厂压制封头时最大成型减薄量(包含钢板厚度负偏差在内)为δx 12%=22x12%=2.64mm。

(1)选用22mm厚度钢板压制球形封头,满足GB150-98要求。

22mm厚度的15MnNiDR钢板厚度负偏差为0.8mm,封头成型后最小厚度(包含钢板厚度负偏差在内)δmin=22-2.64=19.36mm>图样厚度-钢板厚度负偏差
=20-0.8=19.2mm,即选用22mm厚度钢板压制球形封头,满足GB150-98要求。

(2)20mm图样厚度满足设计要求。

对图样球形封头厚度进行强度校核,由GB150-98(5-5):
考虑腐蚀裕度C2=1MM,则封头设计厚度δb=17.8+1=18.8mm,再考虑钢板厚度负偏差C1=0.8mm,δa+C1=18.8+0.8=19.6mm<20mm图样厚度,即图样厚度20mm满足设计强度要求。

(3)板厚增加,强度反而不符合要求。

虽然制造时考虑加工成型减薄量,增加了压制封头钢板厚度,满足了GB150-98封头最小厚度≧图样厚度-钢
板厚度负偏差的要求,但由于钢板厚度增加后[σ]由163MPa降至157MPa,此时,球型封头计算厚度:
再考虑腐蚀裕度C2=1MM,则球形封头设计厚度δa=δ+C2=18.5+1=19.5mm,现封头成型后最小厚度δmin=22-2.64=19.36mm<19.5mm,故不能满足设计强度要求。

3 结语
由以上实例说明,若不考虑板厚增加,材料力学性能降低这一因素,将可能制造出强度不够的不合格受压元件。

除了上述两例材质外,还有其它多种钢种,如
16MnR,16MnDR等的力学性能均随厚度范围变化。

因此,设计人员在选用我国钢板进行设计时,应充分考虑材料许用应力随板厚范围变化而变化的问题;应增加最小厚度值,确保制造工艺人员为弥补加工减薄量而增加板厚时,受压元件成型后最小厚度仍能满足设计强度要求。

希望以上资料对你有所帮助,附励志名言3条:
1、要接受自己行动所带来的责任而非自己成就所带来的荣耀。

2、每个人都必须发展两种重要的能力适应改变与动荡的能力以及为长期目标延缓享乐的能力。

3、将一付好牌打好没有什么了不起能将一付坏牌打好的人才值得钦佩。

相关文档
最新文档