现代机械设计方法复习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代机械设计方法试题-----复习使用
一、图解题
1.图解优化问题:min F (X)=(x 1-6)2+(x 2-2)2
s .t . 0.5x 1+x 2≤4
3x 1+x 2≤9
x 1+x 2≥1
x 1≥0, x 2≥0
求最优点和最优值。
最优点就是切点坐标:X1=2.7,x2=0.9 最优值:12.1【带入公式结果】
2.若应力与强度服从正态分布,当应力均值μs 与强度均值μr 相等时,试作图表示两者的干涉情况,并在图上示意失效概率F 。
参考解:
3.已知某零件的强度r 和应力s 均服从正态分布,且μr >μs ,σr <σs ,试用图形表示强度r 和应力s 的分布曲线,以及该零件的分布曲线和可靠度R 的范围。
参考解:
强度r 与应力s 的差可用一个多元随机函数Y =r -s =f (x 1,x 2,…,x n )表示,这又称为功能函数。 f (s) f (r)
Y >0安全状态;Y <0安全状态;Y =0极限状态
f (Y)
设随机函数Y 的概率密度函数为f (Y ),可以通过强度r 与应力s 的概率密度函数为f (r )和f (s )计算出干涉变量Y =r-s 的概率密度函数f (Y ),因此零件的可靠度可由下式求得:
Y Y f Y p R ⎰∞
=>=0d )( )0( 从公式可以看出,因为可靠度是以Y 轴的右边对f (Y )积分,因此可靠度R 即为图中Y 轴右边的阴影区域。而失效概率F =1-R ,为图中Y 轴左边的区域。
4.用图表示典型产品的失效率与时间关系曲线,其失效率可以分为几个阶段,请分别对这几个阶段进行分析。
失效率曲线:典型的失效率曲线。失效率(或故障率)曲线反映产品总
体寿命期失效率的情况。图示13.1-8为失效率曲线的典型情况,有时形象地
称为浴盆曲线。失效率随时间变化可分为三段时期:
(1) 早期失效期,失效率曲线为递减型。产品投于使用的早期,失效率较高
而下降很快。主要由于设计、制造、贮存、运输等形成的缺陷,以及调试、
跑合、起动不当等人为因素所造成的。当这些所谓先天不良的失效后且运转
也逐渐正常,则失效率就趋于稳定,到t 0时失效率曲线已开始变平。t 0以前
称为早期失效期。针对早期失效期的失效原因,应该尽量设法避免,争取失
效率低且t 0短。
(2) 偶然失效期,失效率曲线为恒定型,即t 0到t i 间的失效率近似为常
数。失效主要由非预期的过载、误操作、意外的天灾以及一些尚不清楚的偶
然因素所造成。由于失效原因多属偶然,故称为偶然失效期。偶然失效期是
能有效工作的时期,这段时间称为有效寿命。为降低偶然失效期的失效率而
增长有效寿命,应注意提高产品的质量,精心使用维护。加大零件截面尺寸
可使抗非预期过载的能力增大,从而使失效率显著下降,然而过分地加大,
将使产品笨重,不经济,往往也不允许。
(3) 耗损失效期,失效率是递增型。在t 1以后失效率上升较快,这是由于产品已经老化、疲劳、磨损、蠕变、腐蚀等所谓有耗损的原因所引起的,故称为耗损失效期。针对耗损失效的原因,应该注意检查、监控、预测耗损开始的时间,提前维修,使失效率仍不上升,如图13.1-8中虚线所示,以延长寿命不多。当然,修复若需花很大费用而延长寿命不多,则不如
报废更为经济。
5.用图表示坐标轮换法的迭代过程。
二、简答题
1.简述一维优化方法中黄金分割法的求解思路。
【解】黄金分割法也称0.618法,是通过对黄金分割点函数值的计算和比较,将初始区间逐次进行缩小,直到满足给定的精度要求,即求得一维极小点的近似解。
(一).区间缩小的基本思路
已知f(x)的单峰区间[a, b]。为了缩小区间,在[a, b]内按一定规则对称地取2个内部点x1和x2,并计算f(x1)和f (x2)。可能有三种情况:
(a).f(x1)< f(x2),经过一次函数比较,区间缩小一次。在新的区间内,保留一个好点x1和f(x1),下一次只需再按一定规则,在新区间内找另一个与x1对称的点x3,计算f(x3),与f(x1)比较。如此反复。
(b).f(x1)> f (x2),淘汰,另,得新区间。
(c).f(x1)=f (x2),可归纳入上面任一种情况处理。
迭代过程
2.简述梯度法的基本原理和特点。
3.简述复合型法的基本原理和特点。
基本思路:在可行域中选取K个设计点(n+1≤K≤2n)作为初始复合形的顶点。比较各顶点目标函数值的大小,去掉目标函数值最大的顶点(称最坏点),以坏点以外其余各点的中心为映射中心,用坏点的映射点替换该点,构成新的复合形顶点。
反复迭代计算,使复合形不断向最优点移动和收缩,直至收缩到复合形的顶点与形心非常接近,且满足迭代精度要求为止。
初始复合形产生的全部K个顶点必须都在可行域内。
方法特点
1)复合形法是求解约束非线性最优化问题的一种直接方法,仅通过选取各顶点并比较各点处函数值的大小,就可寻找下一步的探索方向。但复合形各顶点的选择和替换,不仅要满足目标函数值下降的要求,还应当满足所有的约束条件。
(2)复合形法适用于仅含不等式约束的问题。
4.试举一个机械优化设计实例。
5.最优化问题的数值迭代计算中,通常采用哪三种终止条件(准则)?
6.在有限元分析时,什么情况下适合选择一维、二维和三维单元?
7.试说明有限元解题的主要步骤。
(见第六讲课提纲3.2)
结构或区域离散、单元分析、整体分析和数值求解。
8.在进行有限元分析时,为什么要进行坐标转换?
(见第七讲课提纲)
答:在工程实际中,杆单元可能处于整体坐标系中的任意一个位置,需要将原来在局部坐标系中所得到的单元表达等价地变换到整体坐标系中,这样,不同位置的单元才有公共的坐标基准,以便对各个单元进行集成和装配。
9.试举一个有限元分析应用实例?
10.可靠性与可靠度二者在概念上有何区别与联系?
可靠性:产品在规定条件下和规定时间内,完成规定功能的能力。
可靠度(Reliability) :产品在规定条件下和规定时间内,完成规定功能的概率,一般记为R。它是时间的函数,故也记为R(t),称为可靠度函数,是可靠性指标。
11.简述强度—应力干涉理论中“强度”和“应力”的含义,试举例说明之。
这里应力与强度都不是一个确定的值,而是由若干随机变量组成的多元随机函数(随机