《平面直角坐标系》教学课件3new

合集下载

平面直角坐标系教学课件

平面直角坐标系教学课件

06
总结回顾与作业布置
关键知识点总结回顾
平面直角坐标系概念
在平面内,两条互相垂直且有公共原点的数轴组成平面直 角坐标系,简称直角坐标系。
点的坐标表示
对于平面内任意一点P,过点P分别向x轴、y轴作垂线, 得到P的横坐标和纵坐标,记作P(x,y)。
坐标平面区域划分
根据点的坐标符号特征,将坐标平面划分为四个象限,依 次为第一象限(x>0,y>0)、第二象限(x<0,y>0)、第三象 限(x<0,y<0)、第四象限(x>0,y<0)。
线
空间中一条直线L可以由两个不 同点P1(x1,y1,z1)和P2(x2,y2,z2) 确定,或者使用点向式方程表示 ,如:L: (x-x0)/a = (y-y0)/b = (z-z0)/c,其中(x0,y0,z0)为直线 上一点,a、b、c为方向向量分
量。

空间中一个平面M可以由三个不 共线点P1(x1,y1,z1)、
05
互动环节:学生操作演示与讨论
学生上台操作演示平面直角坐标系相关知识点
绘制坐标系
学生上台使用电子白板或投影展示如何绘制平面直角坐标系,并标 注x轴、y轴及原点。
点的坐标表示
学生演示如何在坐标系中表示点的坐标,包括整数坐标、分数坐标 等不同情况。
坐标平面内点的移动
学生演示点在坐标平面内如何进行平移,包括水平移动和垂直移动。
分组讨论并分享心得体会
01
分组讨论
学生分组进行讨论,探讨平面直角坐标系在实际生活中的应用,如地图
、建筑图纸等。
02
分享心得体会
每组选派代表上台分享讨论成果,包括平面直角坐标系的应用实例、学

《平面直角坐标系》课件(共20张PPT)

《平面直角坐标系》课件(共20张PPT)
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/182021/9/182021/9/182021/9/189/18/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月18日星期六2021/9/182021/9/182021/9/18 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/182021/9/182021/9/189/18/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/182021/9/18September 18, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/182021/9/182021/9/182021/9/18
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

4、如果以中心 广场为原点呢?
.

(-2,1) (3,1)
. . 雁塔
碑林
. (-2,-1)中 心 广 场 .大 成 殿
.. . (-1,-3) 影月楼 科技大学
B(0,-3) D(4,0) F(0,3)
思考 对比
1.平面直角坐标系中,点P(3,5)与Q(5,3) 是同一个点吗?
2.在平面直角坐标系下,点与实数对之间有何 关系?
*3.引入平面直角坐标系,有什么好处?
发现 归纳
• 在直角坐标系中,对于平面上的任意一点, 都有唯一的一对有序实数对(即点的坐标) 与它对应;

3.2.3《 平面直角坐标系》(第3课时)北师大版八年级数学上册教学课件

3.2.3《 平面直角坐标系》(第3课时)北师大版八年级数学上册教学课件
第三章 位置与坐标
3.2 平面直角坐标系 第 3 课时
能建立适当的平面直角坐标系,描述物体的位置.
学习目标
如图,长方形ABCD的长与宽分别是6,4,建立适当 的直角坐标系,并写出各个顶点的坐标.
探究新知 解:以点C为坐标原点,分别以CD,
CB所在的直线为x轴、y轴,建立 直角坐标系,如图,此时点C的坐 标为(0,0).
典例精析 解:如图,以边BC所在直线为x轴,以边BC的中垂线
为y轴建立直角坐标系. 由等边三角形的性质可知
AO AB2 BO2 42 22 2 3
,顶点A,B,C的坐标分别为A(0,2 3),B(-2,0), C(2,0).
1.在直角坐标系中,设法找到若干个点使得连结各点 所得的封闭图形是如下图所示的“+”字.
课堂练习
解:如下图建立直角坐标系
它是连接(-3,-1),(-
1,-1),(-1,-3),(2,
课堂练习-3),(2,-1),(4,-1), (4,2),(2,2),(2,4),(
-1,4),(-1,2),(-3,
Байду номын сангаас
2),(-3,-1)点组成的.
由于选取坐标系的不同,
所以得出的坐标也会不同
2.在一次“寻宝”游戏中,寻宝人已经找到了A(3,2)和 B(3,-2)两个标志点(如图),并且知道藏宝地点的坐标
A(3,2) B(3,-2)
1.建立适当平面直角坐标系.
课堂小结
再见
由CD=6,CB=4,可得坐标分 别为D(6,0),B(0,4),A(6,4).
议一议:还可以怎样建立直角坐标系? 答:建立直角坐标系有多种方法,如还可以以其他三个
探究新知 顶点或两条对角线的交点为坐标原点建立在角坐标系.

《平面直角坐标系》课件(共21张PPT)

《平面直角坐标系》课件(共21张PPT)

C
A.
F 点(0,3)在____轴上;
点(3,-2)在第_____象限;
B
(0,3),(-2,0),(6,0) ,
两条互相垂直且有公共原点的数轴
(1)线段 AG 上的点都在 x 轴上,它们的纵坐标等于0;
G 原点 轴正半轴 C.
这四组点关于直线x=2对称.
A
连接起来的图形像“房子” (0,3),(-2,0),(6,0) ,
观察所描出的图形,它像什么?
y
连接起来的图形像“房子” D
E
C
F
B
G
oA
x
① D(- 3,5),E(- 7,3), C(1,3),D(- 3,5);
② F(- 6,3),G(- 6,0), A(0,0),B(0,3); -1
y
D
与y轴平行的直线上点的坐标的特征
E ③(1,0),(1,-6),
若点 P(2m - 1,3)在第二象限,则( )
o
若点P(m+5,m-2)在y轴上,则m=
.
x
解答下列问题: ① D(- 3,5),E(- 7,3),
若点P在第三象限且到x轴的距离为 2 ,
(1)若CA平行于x轴,BC平行于y轴,则点C的
(1)图形中哪些点在坐标轴上,它们的坐标有什么特点? 已知线段AB=3,AB∥x轴,若A点坐标为
(1)线段 AG 上的点都在 x 轴上,它们的纵坐标等于0;
纵轴上的点横坐标为0.
若点 P(2m - 1,3)在第二象限,则( )
A.
(-1,-3),(2,-1),(-3,4)这些点所在的象限,说说你是怎么判断的.
① D(- 3,5),E(- 7,3),
③(1,0),(1,-6),

《平面直角坐标系》PPT优质课件

《平面直角坐标系》PPT优质课件
3Y 2 1
-3 -2 -1-1O1 2 3 X
-2 -3
知识回顾 问题探究 课堂小结 随堂检测
探究一:平面直角坐标系的概念
重点、难点知识★
概念2
平面直角坐标系的象限
y 4
第二象限
3
2
1
第一象限
–4 –3 –2 –1 O 1 2 3 4 x –1
–2
第三象限
–3
第四象限
–4
坐标平面被两条坐标轴分成四个部分,每个部分称为 象限 ,
(2)能在给定的平面直角坐标系中根据点的坐标描出点的位 置,由点的位置写出点的坐标。
(3)运用平面内的点的坐标特征解决问题时要注意数形结合, 不宜死记硬背.
知识回顾 问题探究 课堂小结 随堂检测 作业布置
课本第68页练习题1、2题。
向右为正方向;竖直的数轴称为纵轴或
1
y轴,一般取向上为正方向;两坐标轴 –4 –3 –2 –1 O 1 2 3 4 x
–1
的交点为平面直角坐标系的原点。
–2
–3
–4
知识回顾 问题探究 课堂小结 随堂检测
探究一:平面直角坐标系的概念
重点、难点知识★
如何正确画出平面直角坐标系?
y
1.选原点
4
2.作两轴
思考:已知点的坐标确定点的位置
y
5
A(3,4)
4
已知平面直角坐标系内一点的坐标,分别 3 以点的横坐标、纵坐标在数轴上表示点的垂足 2
,作x轴、y轴的垂线,两垂线的交点即为要找
1
的点。
-2 -1 0 -1
-2
· A(3,4)
1 2 3 4x
知识回顾 问题探究 课堂小结 随堂检测

《平面直角坐标系》PPT课件

《平面直角坐标系》PPT课件
由CD长为6; CB长为4; 可得D ; B ; A的坐标分 别为D 6 ; 0 ; B 0 ; 4 ; A6;4
B 0;4
C 0;0
0
A 6;4
D 6;0
x
做一做
例2 如图;正三角形ABC的边长为 6 ; 建立适当的直角坐 标系 ;并写出各个顶点的坐标
y
解: 如图;以边AB所在 的直线为x 轴;以边AB 的中垂线y 轴建立直角 坐标系
布置作业
作业:
A类:课本习题5 5
B类:完成A类同时;补充:
1已知点A到x轴 y轴的距离均为4;求A点坐标;
2已知x轴上一点A3;0;B 3;b ;且AB=5;
求b的值
C类:建立坐标系表示右面图形各顶点的坐标
直角梯形上底3;下底5;底角60˚
y
o
x
练习提高
随堂练习:
课本 随堂练习
练习
1如图;某地为了发展城市群;在现有的四个中小城市A;B;C;D附近 新建机场E;试建立适当的直角坐标系;并写出各点的坐标
2点A1a;5;B3 ;b关于y轴对称;则 a + b =______
3在平面直角坐标系内;已知点P a ; b ; 且a b < 0 ; 则点P的位置 在________
在一次寻宝游戏中;寻宝人已
11 2
2
3
经找到了2和3;2的两个标志点;并
3
且知道藏宝地点的坐标为4;4;除4ຫໍສະໝຸດ 此外不知道其他信息 如何确定直
角坐标系找到宝藏 与同伴进行交

做一做
例1 如图; 矩形ABCD的长宽分别是6 ; 4 ; 建立适当的 坐标系;并写出各个顶点的坐标
y
解: 如图;以点C为坐标 原点; 分别以CD ; CB所 在的直线轴建 立直角坐标系 此时C点 坐标为 0 ; 0

《平面直角坐标系》PPT课件教学课件初中数学3

《平面直角坐标系》PPT课件教学课件初中数学3

课堂小结
1.平面直角坐标系的概念:在平面内画两条互相垂直、原点 重合的数轴,组成平面直角坐标系。 2.横轴和纵轴:在平面直角坐标系中,水平的数轴称为x轴或 横轴,一般取向右方向为正方向;竖直的数轴称为y轴或纵轴, 一般取向上方向为正方向。 3.坐标原点:在平面直角坐标系中,两坐标轴的交点为平面 直角坐标系的原点,一般用O来表示。
新知讲解
平面直角坐标系的概念
解:A(4,0),B(-2,0),C(0,5),D(0,-3),
平面直角坐标系的概念:在平面内画两条互相垂直、 1.平面直角坐标系的概念:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
平面直角坐标系的概念:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。 D(-1,-4) 注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔。
ቤተ መጻሕፍቲ ባይዱ
C(4,-3),
两坐标轴的交点为平面直角坐标系的原点。
C(4,-3),
在上面的问题中,点B和点C的坐标之间有什么关系?每一个点的横坐标与纵坐标的符号与什么有关?
平面直角坐标系的概念:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
1.平面直角坐标系的概念:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
A.第一象限
B.第二象限
根据课前查阅的资料,哪位同学能给大家简单介绍平面直角坐标系的产生以及数学家笛卡儿对数学产生的影响?
A.平面内两条互相垂直的数轴就构成了平面直角坐标系
例2:如图,在平面直角坐标系中,点B,C,D的坐标分别是什么?
A(4,0),B(-2,0),
B.平面直角坐标系中两条数轴是互相垂直的
例2:如图,在平面直角坐标系中,点B,C,D的坐标分别是什么?

《平面直角坐标系》ppt课件

《平面直角坐标系》ppt课件

坐标系的建立
确定原点
选择平面内的任意一点作为原点,作为两条数轴 的公共起点。
确定正方向
在水平数轴上选取正方向,通常以向右为正;在 垂直数轴上选取正方向,通常以向上为正。
单位长度
根据实际需要确定数轴上的单位长度,通常以厘 米或毫米为单位。
坐标系的分类
绝对坐标标 系。
平面直角坐标系
目录
• 平面直角坐标系的基本概念 • 平面直角坐标系中的点 • 平面直角坐标系中的直线 • 平面直角坐标系中的距离公式 • 平面直角坐标系的应用
01
平面直角坐标系的基本 概念
定义与性质
定义
平面直角坐标系是由两条互相垂直、 原点重合的数轴构成的平面几何图形。
性质
具有方向性、单位性、正交性等性质, 是描述平面内点位置的重要工具。
05
平面直角坐标系的应用
在几何中的应用
确定点位置
01
通过平面直角坐标系,可以确定平面内任意点的位置,并描述
其坐标。
计算距离和角度
02
利用坐标系,可以方便地计算两点之间的距离和两点之间的夹
角。
绘制图形
03
通过坐标系,可以绘制各种几何图形,如直线、圆、椭圆等。
在代数中的应用
代数方程表示
平面直角坐标系可以将代数方程表示为图形,便于理解和解决代 数问题。
点到直线的距离公式
总结词
点到直线最短距离的平方
详细描述
给定点$P(x_0, y_0)$和直线$Ax + By + C = 0$,则点到直线的距离公式为:$d^2 = frac{|Ax_0 + By_0 + C|^2}{A^2 + B^2}$。

【教学课件】《平面直角坐标系》(共21张PPT)

【教学课件】《平面直角坐标系》(共21张PPT)

y
6 5 4 3 2 1
-1 o
-1 -2 -3 -4 -5
1
x 2 3 4 5 6
E(1,-3)
ቤተ መጻሕፍቲ ባይዱ
例2 在平面直角坐标系中,
(1)画出下列各点:
A(1, 3) ,B(1 ,1) ,C(0 ,0), D(0, -2) ,E(1,-3) ,F(-3,-3), G(-2,-2) ,H(-2,0),M(-3,1), N(-3, 3).
位置呢?于是,在蜘蛛网的启示下,笛卡儿创建了平
第N 5单M元 平面O 直角A坐标系B C E F
面直角坐标系. 三第、5单合元作平交面流直,角内坐化标新系知
蜘在蛛平的 面“直表角演坐”使标笛系卡中儿,豁一然对开有朗序,实他数想可,以可确以定把一蜘个蛛点看的成位一置个;点,它在屋子里可以向上、向下、向左、向右运动,那能不能用横线和竖线描述蜘蛛在网上的位置呢?于是,在蜘蛛网的启示
(-2,3)
y
★(-2,3)
3 2 1
★ N(1 , 2) M★(2 , 1)
-3 -2 -1
1o2 3 4
x
-1
三、合作交流,内化新知
点的坐标:
在平面直角坐标系中,一对有序实数可以确定一个点的位置;反过来,任
意一点的位置都可以用一对有序实数来表示. 这样的有序实数对叫做点的坐
标. y

·M (a,b)
C
-3
( -2,1.5)
·
·4 Q
3 2 1
( 0,4 )
·A ( 2,3 )
·B
( 3,2 )
-2 -1 o 1
-1
2 3 4 5 6x
-2
·H ,-2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

范例讲解
例1、对于边长为4的正三角形ABC,建立适当的 直角坐标系,写出各个顶点的坐标。
y
AO AB2 BO2 42 22 2 3 A
BO
Cx
新知探究
Ⅱ、对于边长为4的正三角形ABC,建立适当的 直角坐标系,写出各个顶点的坐标。
y (–2, 2 3)A 2 E
y E 2 A (2, 2 3 )
• (1)能否标出A、B、C、D四点坐标? (2)如图,若已知点C(a,b)你能写出
其它三点坐标吗?
y 6
b+4
A怎D(Ba么((+aa6来+,b,6b的+,+b44)))
5
Байду номын сангаас
B
A
4
3
2
1 b
-2
-1
O -1
C 1 2a 3 4
D x
新知归纳 建立平面直角坐标系的原则: (1) 以特殊线段所在直线为坐标轴; (2) 图形上的点尽可能地在坐标轴上;
的正方形,“炮”的坐标为(–2, 1),“帅”的坐标
为(1, –1),则“卒”的坐标为

y
卒 炮
O
x

2:如图,建立两个不同的直角坐标系,在各个 直角坐标系中,分别写出8个角的顶点坐标,并 比较同一顶点在两个坐标系中的坐标。
3、在下列图中,建立适当的直角坐标系,写出 各个景点的坐标。
合作交流
5 在一次“寻宝”游戏中,寻宝人已经找到了 坐标为(3, 2)和(3, −2)的两个标志点,并且知道藏 宝地点的坐标为(4, 4),除此之外不知道其他信息。 如何确定直角坐标系找到“宝藏”? (4, 4)
y
(3, 2)
O
x
(3, –2)
6、如图,A、B两点的坐标分别为(2, −1),(2, 1), 你能确定(3, 3)的位置吗?
课堂小结
1、建立平面直角坐标系的原则: (1) 以特殊线段所在直线为坐标轴;
(2) 图形上的点尽可能地在坐标轴上; (3) 所得坐标简单,运算简便。
2、平面直角坐标系中的点与一对有序 实数一一对应. 写点的坐标时,一定要注意顺序:横在前,纵在 后.
第三章 位置的确定
3.2 平面直角坐标系(3)
四种情况哦,你想到了 吗?
1.在平面直角坐标系中, (1)若点P(a,b)在第二象限,则a < 0 ,b > 0; (2)若M(0,-5)在 x轴上
(3)点Q离x轴、y轴的距离分别是2、3,则 点Q的坐标是( -33 ,-22 )
(4)若点N(3,y)距原点距离为5,则y= ±4 又是两种情况!!
23
23
B
D
Cx B
D
Cx
新知归纳
建立平面直角坐标系的原则:
(1) 以特殊线段所在直线为坐标轴; (2) 图形上的点尽可能地在坐标轴上; (3) 所得坐标简单,运算简便。
巩固练习
1、如图,有五个儿童在做游戏,建立适当的直角 坐标系,写出这五儿童所在位置的坐标。
y
O
x
巩固练习
4、如图,象棋盘中的小方格均为边长为1个单位
情景引入
如图,有五个儿童在做游戏,你将怎样描 述这五个儿童的位置?
建立平面直角坐标系
新知探究
Ⅰ、如图,矩形ABCD的长和宽分别为6、4,
建立适当的直角坐标系,并写出各个顶点的坐
标。
y
A(6, 4) B(0, 4) C(0, 0) D(6, 0)
B
A
4
3
2
1C
D
O 123456 x
• 如图,矩y6 形ABCD的长与y6 宽分别是
6,4,建立5 适当的y 直角坐5标系,并写
出各个4顶点的坐6 标. 4
3
5
3
y
y
62
4
26
15 B
3
15 A
-2
-1
O4 -13
1
2 2 13
-42
-1
O4 -13
x1 2 3 4
2 1
-2
-1
O -1
1 2 23 4 1
x
C
D
-2
-1
O -1
1
2
3
-42
-1
O -1
x1 2 3 4
• 如图,任给一点作为坐标原点
相关文档
最新文档