第6章光放大器
第6章 OADM
2020/2/10
《全光通信网》
37
基于WB的ROADM特点
❖ 优点:结构简单,模块化程度好,预留升级端口 时可支持灵活扩展升级功能,上下路波长较少时 成本低,支持广播业务,具备通道功率均衡能力。
❖ 缺点:上下路波长较多时成本较高(独立的可调 谐滤波器成本高),不易过渡至OXC。
2020/2/10
×1
OCCr OChr
×i
×1
OTM-nr.m×1OCG-nr.m×j
×1 OCCr OChr ×1
×1
OTU3[V]
ODU3
×1
OPU3
客户信号
×k
1≤i+j+k ≤n
×1 OCCr OChr×1
k=3对应40Gbit/s
×1
OTU2[V]
ODU2
×1
OPU2
客户信号
×1
OTM-n.m OCG-
n.m
2)业务接入及汇聚能力
支持多业务,对任何厂家的SDH设备STM-N信号进行透明接 入;可承载其它格式的光信号;能提供灵活的多速率接口,汇 聚多个低速率信号为高速率信号。
2020/2/10
《全光通信网》
13
3)多种粒度的业务调度能力
OADM应能实现波长级和子波级的调度管理。 1)固定上下路的OADM,即只能上下一个或几个固定波 长的OADM。 2)可动态重构的光分插复用设备(ROADM),它可以 通过网管软件远程控制网元中的ROADM子系统实现上下 路波长的配置和动态调整。
2020/2/10
《全光通信网》
36
1.基于波长阻塞器的ROADM
OAM
3dB分光器
In
WB
光放大器与 激光器 原理
光放大器与激光器原理
光放大器和激光器都是基于激光放大原理工作的光学器件,但它们在功能和应用上有所不同。
光放大器的原理是通过将输入的光信号经过放大后输出,从而增加光信号的强度。
光放大器通常使用光纤或半导体材料作为工作介质。
当输入光信号进入光放大器中,它会与工作介质中的激发态粒子相互作用,从而导致激发态粒子退激发并释放出额外的能量。
这些能量会被传递给输入光信号,使其增强。
典型的光放大器包括光纤放大器和半导体光放大器。
激光器的原理是通过光放大器中的正反馈和激发态粒子的逆转跃迁来产生激光光束。
在激光器中,初始的光信号被输入到光放大器中,然后通过正反馈的反射和逆转跃迁的过程,在工作介质中产生高度相干和高能量的光子。
这些光子会被反射或透射出来,形成一个激光束。
激光器广泛应用于通信、医疗、测量、材料加工等领域。
常见的激光器包括气体激光器、固体激光器和半导体激光器。
总的来说,光放大器的主要功能是增强输入光信号的强度,而激光器则是在此基础上产生高度相干和高能量的激光光束。
第六章 无源与有源光器件—3
个来回,则偏振方向将一共旋 转90度,这是其实现光隔离功 能的本质特征;位相延迟波片 当光从一个方向通过它时,将 使偏振方向旋转45度;而光从 另一个方向通过它时,将使偏 振方向旋转-45度。这意味着 光束通过波片往返一次,其初 始的偏振状态将不被改变。有 了上述对三个关键器件功能的 分析,参考光隔离器的工作机 理,则易于理解图6.31所示的 三端口光环形器的工作原理。
光纤光栅
光纤光栅的功能与机理
光纤光栅是一类重要的无源光器件,也是一类重要的特种光 纤,它能有选择地反射和透射某此波长的光。 1.基本概念 光纤光栅的结构特征是,一段光纤其纤芯玻璃的折射率沿光纤 长度方向呈周期性的变化(如先增大,后减小,再次增大)。纤芯折 射率的周期性变化将导致通过光纤的光发生散射,这种效应与分布 在反射性表面上一排高度平行的条纹或槽构成的衍射光栅所产生的 不同波长光谱展开的现象类似。光纤光栅中“条纹”处的折射率高 于纤芯中其他部分的折射率,这种折射率变化的分布结构,将使通 过其中的光发生布拉格散射效应,最终使光纤光栅能选择性地反射 某些选定的波长,而使其他波长的光波透射。为此,光纤光栅又称 为反射型或短周期光栅,亦称为“光纤布拉格光栅”(Fiber Bragg Grating,BFG)。1990年光纤布拉格光栅开始出现。
图6.31 光环形器原理结构示意图
6.3.3 光衰减器
为防止强光可能使接收机过载(例如发射机距接收机很时, 接收机接收的光信号可能很强),光路中需要使用光衰减器。 光衰减器是光滤波器的一种,但它又区别于其他类型的光 滤波器。在光纤系统中,光滤波器是指光透过率随波长而显著 变化的光器件。例如,一个滤波器可以对1530~1565nm掺铒放 大器工作波段的光透过,而对980nm泵浦波段的光却衰减50dB; 但光衰减器的功能却是在整个光谱范围内均匀地减小光强,去 掉多余的光能量。衰减器若对某一波长光衰减了3dB,则对其 他所有波长的衰减也都应为3dB。具体衰减方法通常是通过衰 减器吸收掉多余的光能量,由于光信号的这些能量相对于衰减 器来说很弱,因而不会引起衰减器显著的发热现象。由于衰减 器对光信号能量的吸收,因而减小了由于反射、散射等返回光 对激光发射机可能产生的噪声影响。
第六章 光放大器
一、光纤拉曼放大器
拉曼现象在1928年被发现。
90年代早期,EDFA取代它成为焦点,FRA受到冷遇。
随着光纤通信网容量的增加,对放大器提出新的要求, 传统的EDFA已很难满足,FRA再次成为研究的热点。
特别是高功率二极管泵浦激光器的迅猛发展,又为FRA 的实现奠定了坚实的基础。
人们对FRA的兴趣来源于这种放大器可以提供整个波长 波段的放大。通过适当改变泵浦激光波长,就可以达到 在任意波段进行宽带光放大,甚至可在1270~ 1670nm整个波段内提供放大。
光纤放大器分为掺稀土元素光纤放大器和非线性
光学放大器。
非线性光学放大器分为拉曼(SRA)和布里渊
(SBA)光纤放大器。
半导体光放大器SOA
SOA也是一种 重要的光放大 器,其结构类 似于普通的半 导体激光器。
R1
I
R2
半导体光放大器示意图
•半导体光放大器的放大特性主要决定于激光腔的反射特性与 有源层的介质特性。 •根据光放大器端面反射率和工作偏置条件,将半导体光放大 器分为:----法布里-珀罗放大器(FP-SOA) ----行波放大器(TW-SOA)
均衡功能:针对点对点系统的增益均衡,针对全 光网的功率均衡; 监控管理功能:在线放大器,全光网路由改变;
动态响应特性; 其它波段的光纤放大器,如Raman放大器。 6.4 光纤拉源自放大器FRA拉曼放大器的简介
利用光纤非线性效应中的SRS原理进行光放大。 无需利用掺杂的光纤作为增益介质,直接使用传输 的光纤即可获得增益。 获得增益之波长约为泵浦源波长往长波长方向移位 100 nm,只要挑选对所需之泵浦源的波長,即可 放大光纤低损耗带宽內的任意波段信号。 利用多个不同波长的泵浦源组合可以获得超宽带、 增益平坦的放大器。
第6章 光放大器和光中继器
光纖
接收器
接收器
EDFA
發射器
Pre-Amplifier
接收器
第 6章
光放大器和光中继器
§6-6光中继器 光脉冲信号从光发射机输出,经光纤传输若干距 离后,由于光纤损耗和色散影响,将使光脉冲信号 的幅度受到衰减,波形出现失真,这样,就限制了
光纤中的长距离传输,为此,需在光波经过一定距
离传输后加上一个光中继器,经放大衰减的信号, 恢复失真的波形,使光脉冲得到再生。
外界激励源)的作用下,使工作物质的粒子处于反转 分布状态,具有了光放大作用,对于EDFA,其基本原
理相同。
简言之,在泵浦源的作用下,在掺铒光纤中出现 了粒子数反转分布,产生了受激辐射,从而使光信号 得到放大,由于EDFA具有细长的纤形结构,使得有源 区的能量密度很高,光与物质的作用区很长,这样, 可以降低对泵浦源功率的要求。
动端机面不改动线路。
第 6章
光放大器和光中继器
§6-2 EDFA的结构 一、构成
EDFA主要由掺铒光纤(EDF),泵浦光源,光
耦合器,光隔离器以及光波滤波器组成(如图6.1)。
第 6章
光放大器和光中继器
WDM 光纖耦合器 輸入光
摻鉺光纖
輸出光
1480或980 nm 激勵光源
光隔離器 光帶通 濾波器
第 6章
光放大器和光中继器
由于E2和E1有一定的宽度,使EDFA的放大效应具 有一定的波长范围,E=hf(h:普朗克常数),其典
型值为1530~1570nm,在这个范围内,EDFA都能提
供有用的增益和相对平坦特性,表明它们能对波分多 路(WDM)信号的每一路都提供放大作用,而相对平
坦增益带宽意味着,WDM各路光纤信号需采用特殊手
光纤通信原理与技术课程教学大纲
《光纤通信原理与技术》课程教学大纲英文名称:Fiber Communication Principle and its Application学时:51 学分:3开课学期:第7学期一、课程性质与任务通过讲授光纤通信技术的基础知识,使学生了解掌握光纤通信的基本特点,学习光纤通信系统的三个重要组成部分:光源(光发射机)、光纤(光缆)和光检测器(光接收机)。
通过本课程的学习,学生将掌握光纤通信的基本原理、光纤通信系统的组成和系统设计的基本方法,了解光纤通信的未来与发展,为今后的工程应用和研究生阶段的学习打下基础。
二、课程教学的基本要求要求通过课堂认真听讲和实验课,以及课下自学,基本掌握光纤通信的基础理论知识和应用概况,熟悉光纤通信在电信、通信中的应用,为今后的工作打下坚实的理论基础。
三、课程内容第一章光通信发展史及其优点(1学时)第二章光纤的传输特性(2学时)第三章影响光纤传输特性的一些物理因素(5学时)第四章光纤通信系统和网络中的光无源器件(9学时)第五章光纤通信技术中的光有源器件(3学时)第六章光纤通信技术中使用的光放大器(4学时)第七章光纤传输系统(4学时)第八章光纤网络介绍(6学时)第九章光纤通信原理与技术实验(17课时)四、教学重点、难点本课程的教学重点是光电信息技术物理基础、电光信息转换、光电信息转换,光电信息技术应用,光电新产品开发举例。
本课程的教学难点是光电信息技术物理基础。
五、教学时数分配教学时数51学时,其中理论讲授34学时,实践教学17学时。
(教学时数具体见附表1和实践教学具体安排见附表2)六、教学方式理论授课以多媒体和模型教学为主,必要时开展演示性实验。
七、本课程与其它课程的关系1。
本课程必要的先修课程《光学》、《电动力学》、《量子力学》等课程2。
本课程的后续课程《激光技术》和《光纤通信原理实验》以及就业实习。
八、考核方式考核方式:考查具体有三种。
根据大多数学生学习情况和学生兴趣而定其中一种.第一种是采用期末考试与平时成绩相结合的方式进行综合评定.对于理论和常识部分采用闭卷考试,期末考试成绩占总成绩的55%,实验成绩占总成绩的30%,作业成绩及平时考勤占总成绩的15%;第二种是采用课程设计(含市场调查报告)和平时成绩相结合的方式,课程设计占总成绩的55%,实验成绩占总成绩的30%,作业成绩及平时考勤占总成绩的15%。
《光纤通信》原荣 第三版 第6章 复习思考题参考答案
第6章复习思考题参考答案6-1 EDFA的工作原理是什么?有哪些应用方式答:现在我们具体说明泵浦光是如何将能量转移给信号的。
若掺铒离子的能级图用三能级表示,如图6.3.2(a)所示,其中能级E1代表基态,能量最低,能级E2代表中间能级,能级E3代表激发态,能量最高。
若泵浦光的光子能量等于能级E3与E1之差,掺杂离子吸收泵浦光后,从基态E1升至激活态E3。
但是激活态是不稳定的,激发到激活态能级E3的铒离子很快返回到能级E2。
若信号光的光子能量等于能级E2和E1之差,则当处于能级E2的铒离子返回基态E1时就产生信号光子,这就是受激发射,使信号光放大获得增益。
图6.3.2(b)表示EDFA的吸收和增益光谱。
为了提高放大器的增益,应尽可能使基态铒离子激发到能级E3。
从以上分析可知,能级E2和E1之差必须是相当于需要放大信号光的光子能量,而泵浦光的光子能量也必须保证使铒离子从基态E1跃迁到激活态E3。
图6.3.2 掺铒光纤放大器的工作原理EDFA可作为光发射机功率增强放大器、接收机前置放大器,或者取代光-电-光中继器作为在线光中继器使用。
在光纤系统中可延长中继距离,特别适用于长途越洋通信。
在公用电话网和CA TV分配网中,使用EDFA补偿分配损耗,可做到信号无损耗的分配。
另外,EDFA可在多信道系统中应用,因为EDFA的带宽与半导体光放大器(SOA)的一样都很宽(1~5 THz),使用光放大器可同时放大多个信道,只要多信道复合信号带宽比放大器带宽小就行。
EDFA具有相当大的带宽(∆λ = 20~40 nm,或∆f = 2.66~5.32 THz),这就意味着可用来放大短至皮秒级的光脉冲而无畸变。
从光波系统的应用观点出发,EDFA的潜在应用在于它们可放大ps级的脉冲而不发生畸变的能力。
6-2 EDFA有几种泵浦方式?哪种方式转换效率高?哪种噪声系数小答:使用0.98 μm和1.48 μm的半导体激光泵浦最有效。
光放大器基本知识简介
Communication Interface
Consumption Dimensions
RS-232
<5W @ without TEC;15W @ with TEC 90x70x12 mm or 70x50x15 mm or Customized
29 2014-10-31
生产能力
现基本上有两条光路生产线,一条电路 生产线,一条测试线,老化箱一台。 正常情况下,最大生产能力为每天3~4 台EDFA。
27 2014-10-31
Conditions
Value C-Band or L-Band -35~5 <22 15~35 <5.5
4、城域网用EDFA
分纯光模块、带电模块 带致冷、无带致冷 单信道和多信道 一般是Booster EDFA
28 2014-10-31
主要参数指标:
Parameter Wavelength Total Input Power Total Output Power Gain Gain Flatness NF Unit nm dBm dBm dB dB dB @Pin=6dBm Conditions Value 1529~1561 -20~5 <15 15~35 <2 <5.5
P=power
3dBm=0.5mW
3 2014-10-31
dB和dBm转换举例:
Relative dB % loss 1 21 2 37 3 50 4 60 5 68 10 90 15 96.8 20 99 Absolute dBm mW 30 1000 20 100 10 10 3 2 0 1 -3 0.5 -10 0.1 -20 0.01
光放大器1
1 2
2
g
ln 2 g0L ln
2
1
2
光纤放大器的洛仑兹谱和相应的放大器增益谱
二、增益饱和与饱和输出功率
•增益饱和:增益系数与光信号的功率有关,在P<<Ps时,为小 信号增益,这时可不计P对g(ω)的影响;当P增大至可与Ps比拟 时, g(ω)随P的增大而下降,放大器增益G(ω)也下降,这种现 象称为增益饱和。
L+ Band
1,450nm
1,490nm
1,530nm 1,550nm 1,570nm 1,580nm 1,610nm
1,650nm
40 nm
Fujitsu Proprietary
6.2 光放大器基本概念
6.2.1 光放大器一般工作特性
在泵浦能量(电或光)的作用下,实现粒子数反转(非线性光 纤放大器除外),然后通过受激辐射实现对入射光的放大。与 激光器不同之处在于光放大器没有反馈机制。
输出 信号光
(a) 半导体光放大器
输入 信号光
耦合器 掺杂光纤
耦合器
泵浦光
输出 信号光
(b)掺杂光纤放大器
输入 信号光
泵浦光
纯石英 光纤-----------------输--出 -----------信号光
泵浦光
(c)非线性光纤放大器
光放大器基本结构示意图
光放大器的类型和各自优缺点
放大器 类型
工作原 理
二、光放大器类型:掺杂光纤放大器(EDFA、PDFA、TDFA) 半导体光放大器(SOA) 非线性光纤放大器(FRA、FBA、FPA)
三、发展历程: 上世纪80年代中、后期SOA的研究为主;90年代EDFA获 得巨大成功,成为光纤通信系统必不可少的器件;2001年 FRA得到更广泛应用。
光放大器的测试
掺铒光纤放大器
Amplitude (dBm)
20
放大信号
0
原始信号
ASE+ (Gain x SSE) -20
Gain
Noise Figure -40
Source Spontaneous Emission 增益波长点的增益 之差,单位dB。在WDM系统中GF越小越好。
▪ 增益变化:指光放大器增益在光放大器工作波段
内(多通路)的变化,最大和最小增益变化的数 值与通路数无关。
测试参数的定义
动态增益斜率(DGT)表示不同波长信道的增益随输入光功率变化 而产生的动态变化的差异
DGT G' () G() G' (0 ) G(0 )
是参考波长, 0是定义的 波长,G是标称增益,G/是 不同输入光功率下的增益。
掺铒光纤放大器
测量EDFA增益的基本装置
OSA得到的输入信号光放大前后谱
掺铒光纤放大器
偏振消光法测量噪声指数的装置图
▪ ASE功率
PASE (dBm)=(PR PL )/2 (Pin P1) 3
▪ 放大器增益 G(dB) P2 (dB) P1(dB) ▪ 噪声指数 NF (dB) 10 log10 (PASE / h B0G 1/ G)
掺铒光纤放大器
具体测量噪声指数步骤如下:
(1) 使用光功率计测量输入光功率Pin; (2) 在未接入EDFA时,调整偏振控制器使光波只通过偏振分束器 的其中一条路径有最大的输出,用光谱分析仪测量此时信号的峰 值功率P1; (3)接入EDFA,调整偏振控制器使光谱仪测量到最大的信号峰值功 率P2; (4) 调整偏振控制器使信号峰值达到最小,只剩下ASE功率电平。 采用线性插值方法,即在信号波长左右约0.2nm间隔处测量ASE电 平PL、 PR,然后求和取平均值,我们认为这个平均值就是信号波 长的ASE电平;
光纤通信第6章光放大器
光功率(dB)
光纤拉曼放大器
同向泵浦
WDM耦合器
反向泵浦
6.3.1 分布式拉曼放大器工作原理和特性
2. 拉曼增益和带宽
斯托克斯(Stokes)频差(ΩR= ωP- ωs)在SRS过程 中扮演着重要角色。由分子振动能级确定的ΩR 值决 定了SRS的频率(或波长)范围。
1530~1564nm 之间的C波段
6.3 光纤拉曼放大器FRA
人们对FRA的兴趣来源于这种放大器可以提 供整个波长波段的放大。通过适当改变泵浦 激光波长,就可以达到在任意波段进行宽带 光放大,甚至可在1270~1670nm整个波 段内提供放大。 特别是高功率二极管泵浦激光器的迅猛发展, 又为FRA的实现奠定了坚实的基础。
第六章 光放大器
概述
光纤通信系统的传输距离受光纤损耗或色散 限制。
因此,传统的长途光纤传输系统,需要每隔 一定的距离,就增加一个再生中继器,以便 保证信号的质量。
光放大器出现之前,光纤通信的中继器采用 光-电-光(O-E-O)变换方式。
光放大器(O-O)
WDM系统光-电-光(O-E-O)变换方式
0
v0
1.46
增益带宽宽(约为70nm),有能力放大超窄光脉冲。
TW- SOA的特性
3. 缺点
SOA对极化态非常敏感(增益偏振相关性)。不同极 化模式,具有不同的增益G,横电模(TE)和横磁模 (TM)极化增益差可能达到5~8dB 起因:由于半导体有源层的横截面呈扁长方形,对横 向(长方形的宽边方向)和竖向(长方形的窄边方向) 的光场约束不同,光场在竖向的衍射泄漏强于横向, 因而竖向的光增益弱于横向。因此光信号的偏振方向 取横向时的增益大,取竖向时的增益小。 解决方法:采用宽、厚可比拟的有源层设计;
光纤通信习题解答
则每秒钟到达太阳能电池上每平方米板上的光子数为I/E=4.927×1021个
3.如果激光器在λ=0.5μm上工作,输出1W的连续功率,试计算每秒从激活物质的高能级跃迁到低能级的粒子数。
解:在λ=0.5μm上出射的光子的能量为:E= =39.78×10-20焦耳
6.简述WDM的概念。
答:WDM的基本思想是将工作波长略微不同,各自携带了不同信息的多个光源发出的光信号,一起注入同一根光纤,进行传输。这样就充分利用光纤的巨大带宽资源,可以同时传输多种不同类型的信号,节约线路投资,降低器件的超高速要求。
7.解释光纤通信为何越来越多的采用WDM+EDFA方式。
答:WDM波分复用技术是光纤扩容的首选方案,由于每一路系统的工作速率为原来的1/N,因而对光和电器件的工作速度要求降低了,WDM合波器和分波器的技术与价格相比其他复用方式如OTDM等,有很大优势;另一方面,光纤放大器EDFA的使用使得中继器的价格和数量下降,采用一个光放大器可以同时放大多个波长信号,使波分复用(WDM)的实现成为可能,因而WDM+EDFA方式是目前光纤通信系统的主流方案。
输出功率1W=1J/s,即每秒输出的能量为1J,则光子数为1/39.78×10-20=2.5138×1018
那么每秒从激活物质的高能级跃迁到低能级的粒子数等于出射光子数的一半,即1.2569×1018
4.光与物质间的互作用过程有哪些?
解:在介质材料中存在着受激吸收,自发发射和受激发射等三种光与物质的相互作用过程。
(c)假设最大比特率就等于带宽,则此光纤的带宽距离积是多少?
解:(a) =5*1.49*0.01/3*105=2.48×10-7s
光放大器
第六章光放大器6.1 光放大器简介6.2 半导体光放大器6.3 掺铒光纤放大器(EDFA)任何光纤通信系统的传输距离都受到光纤损耗或色散的限制,因此,在长距离传输系统中,每隔一定距离就需设置一个中继器以保证信号的质量。
中继器是将传输中衰减的光信号转变为电信号,并放大、整形和定时处理,恢复信号的形状和幅度,然后再变换为光信号(光-电-光过程),再继续由光纤传输。
这种方式的中继器结构复杂,价格昂贵,尤其对DWDM 系统,若采用光-电-光混合中继方式,则首先要对光信号进行解复用,然后对每一信道信号进行中继再生,再将各信道信号复用到光纤中进行传输,这样将需要大量中继设备,成本很高。
宽带宽的的各放大器可以对多信道信号同时放大而不需进行解复用,光放大器的问世推动了DWDM技术的快速发展。
•放大器带宽:放大器增益(放大倍数)降至最大放大倍数一半处的全宽度(FWHM )⎟⎟⎠⎞⎜⎜⎝⎛−∆=∆2ln 2ln 0L g g A νν0ωω=()ωG ()ωg 当 时, 和均达到最大值。
由图可知,放大器带宽比介质带宽窄得多。
右图为归一化增益和 随归一化失谐变化的曲线。
R τωω)(0−()ωG ()ωg Rτωω)(0−0G G 0g g 其实,只考虑了单纵模的情形。
(见下文后,回头再来理解。
)2. 增益饱和与饱和输出功率增益饱和是对放大器放大能力的一种限制。
由上式知,放大系数 在接近 时显著减小。
s P 当增大至可与 相比拟时,放大系数 随信号功率增加而降低,这种现象称为增益饱和。
P )(ωG 在前述讨论的基础上,设输入光信号频率位于增益峰值( )处,可推得(见马军山《光纤通信原理与技术》):0ωω=⎟⎟⎠⎞⎜⎜⎝⎛⋅−−=s out P P G G G G 1exp 0s P out P G 饱和输出功率:放大器增益降至最大小信号增益值一半时的输出功率。
20G G =令 得到饱和输出功率为:s s out P G G P 22ln 00−=例 G 0>>2(如:增益为30dB, G 0=1000), P s out ≈0.69Ps, 表明放大器的饱和输出功率比增益介质的饱和功率低约3030%.%.三. 光放大器的类型光放大器主要有三类:(1)半导体光放大器(SOA, Semiconductor Optical Amplifier)注:有文献也把半导体光放大器写为SLA(Semiconductor Laser Amplifier)(2)掺稀土元素(铒Er、铥Tm、镨Pr、钕Nd等)的光纤光放大器,主要是掺铒光纤放大器(EDFA,Erbium-Doped Fiber Amplifier)。
《光纤通信》习题解答
第1章1.光通信的优缺点各是什么?答:优点有:通信容量大;传输距离长;抗电磁干扰;抗噪声干扰;适应环境;重量轻、安全、易敷设;;寿命长。
缺点:接口昂贵;强度差;不能传送电力;需要专用的工具、设备以及培训;未经受长时间的检验。
2.光通信系统由哪几部分组成,各部分功能是什么?答:通信链路中最基本的三个组成部分是光发射机、光接收机和光纤链路。
各部分的功能参见1.3节。
3.假设数字通信系统能够在载波频率1%的比特率下工作,试问在5GHz的微波载波和1.55μm的光载波上能传输多少路64kb/s的音频信道?答:5GHz×1%/64k=781路(3×108/1.55×10-6)×1%/64k=3×107路4.SDH体制有什么优点?答:主要为字节间插同步复用、安排有开销字节用于性能监控与网络管理,因此更加适合高速光纤线路传输。
5.简述未来光网络的发展趋势及关键技术。
答:未来光网络的发展趋势为全光网,关键技术为多波长传输和波长交换技术。
6.简述WDM的概念。
答:WDM的基本思想是将工作波长略微不同,各自携带了不同信息的多个光源发出的光信号,一起注入同一根光纤,进行传输。
这样就充分利用光纤的巨大带宽资源,可以同时传输多种不同类型的信号,节约线路投资,降低器件的超高速要求。
7.解释光纤通信为何越来越多的采用WDM+EDFA方式。
答:WDM波分复用技术是光纤扩容的首选方案,由于每一路系统的工作速率为原来的1/N,因而对光和电器件的工作速度要求降低了,WDM合波器和分波器的技术与价格相比其他复用方式如OTDM等,有很大优势;另一方面,光纤放大器EDFA的使用使得中继器的价格和数量下降,采用一个光放大器可以同时放大多个波长信号,使波分复用(WDM)的实现成为可能,因而WDM+EDFA方式是目前光纤通信系统的主流方案。
8.WDM光传送网络(OTN)的优点是什么?答:(1)可以极提高光纤的传输容量和节点的吞吐量,适应未来高速宽带通信网的要求。
光放大器原理分类及特点
16
2.2 EDFA的工作原理
当泵浦(Pump, 抽运)光 激励,铒离子吸收泵浦光, 基态跃迁到激发态。 激发态不稳定,Er3+很 快返回到亚稳态。 亚稳态粒子数积累,形 成粒子数反转分布。 如果输入的信号光的能量 等于基态和亚稳态的能量差 ,亚稳态的Er3+将跃迁到基 态,产生一个与信号光子完 全一样的光子,实现了信号 光在掺铒光纤中的放大。
2.3 EDFA结构和特性-结构
因泵浦源所在的位置不同,分成同向、反向及双向泵浦方式。 1.同向泵浦:泵浦光与信号光从同一端注入掺铒光纤。输入泵 浦光较强,故粒子反转激励也强,其增益系数大。其优点是 构成简单,噪声指数较小;缺点是输出功率较低。
光隔离器
WDM EDF
光隔离器 光滤波器
输入信号
泵浦激光器
亚稳态和基态的宽度: 1530~1560nm 超过1560nm时增益会稳定下降, 在大约1616nm处降至0dB。
例.EDFA和LD中都有受激辐射,两者有何区别?
答:EDFA中的受激辐射产生于整个掺铒光纤材料中,其中粒子数反转分 布是在掺铒光纤材料的三能级结构之间直接(泵浦激光1480nm时)或间 接(泵浦激光980nm时)实现的(最终在能级E2和E1之间形成粒子数反 转分布)。三个能级是:低能级E1是基态能级,中间能级E2是亚稳态能 级(电子平均寿命可达10ms),高能级E3是非稳态能级(电子的平均寿 命<<1μs)。 LD中受激辐射产生于p-n结半导体材料中的有源区,其中粒子数反转分 布是在有源区导带和价带能级之间直接实现的。所谓有源区,是指加上 适当正向电压后,p-n结交界面附近具有粒子数反转分布状态的窄区域。
直 径 1 25 m SiO2包 层 直 径 2 50 m涂 覆 层
光放大技术
2、光纤放大器:用光纤做成的放大器 (1)掺杂光纤放大器(掺稀土元素光纤放大器) a.1550nm光纤放大器,如:掺铒光纤放大器(EDFA) b.1310nm光纤放大器,如:掺镨光纤放大器(PDFA) (2)非线性光纤放大器 a.拉曼光纤放大器(SRA) b.布里渊光纤放大器(SBA)
二、各类放大器的性能比较
4、噪声 (1)噪声来源:自发Raman散射、瑞利散射 (2)噪声特点:比EDFA噪声小得多;FRA的噪声对泵浦 功率的依赖性不强 (3)噪声系数:NF=SNRin/SNRout 集中式FRA的NF=3dB 噪声小是FRA的另一个显著特点
三、DRA的应用 主要作线路放大和预放 1、作线路放大时,对线路中光纤传输损耗进行分布式补 偿放大。当增益补偿损耗时,实现净增益为零的无损 耗透明传输。 2、作预放,使接收端光功率增加,信噪比有明显的改善。
αP为光纤对泵浦光的衰减系数
图为典型长光纤拉曼放大器的增益曲线: λp=1443nm,PP=100mW和200mW。
由曲线得到: (1)在单泵浦光条件下,在一个较宽的波长范围内均有 增益。不同的信号有不同的增益。最大增益出现在比 泵浦光频率低13.2THz处,即信号光波长比泵浦光波长 长100nm处 (2)GA随PP增大而增大,曲线形状不变 (3)泵浦光波长变化,最大增益波长λsmax变化。 λsmax-λp=60~100nm, λp增加,GAmax略小。
2、带宽定义:在增益波长曲线上取得最大 值的一半所对应的波长间隔,即半极大 值全宽(FWHM) 3、实用值:1530 〜 1565nm
三、饱和输出功率 Pmax-表征EDFA最大输出光功率的能力 1、定义:在EDFA增益-输出功率曲线上,放大器最大增益 下降3dB(最大放大倍数的一半)时对应的输出光功率 2、实用值:15dBm 〜 20dBm
光纤通信第5版第6章-光源和光放大器(2)PPT课件
❖ 好的激光器应具备的条件:低的阈值电流、 高的输出功率及单模工作。
❖ 气体激光器 ❖ 固体激光器 ❖ 半导体激光器
38
LD工作原理
电流注入
hv
P型
有源区
光
N型
解理面
(a)半导体激Biblioteka 器22双异质结: ①阻止有源层的 空穴进入n区和其 电子进入P区; ②有源层两边的 折射率低于有源 层,对光场具有 很好的约束。
23
SLED
有源层:发光区域 有源层中产生的光发射穿过衬底耦合入光纤。 凹坑:由于衬底材料的光吸收很大,用选择腐蚀的办
法形成凹坑。 接触电极:限定有源层中有源区的面积,大小与纤芯24
6
PN结形成过程动画演示
PN结偏置 PN结正向偏置—— 当外加直流电压使PN结P型半 导体的一端的电位高于N型半导体一端的电位时, 称PN结正向偏置,简称正偏。 PN结反向偏置—— 当外加直流电压使PN结N型半 导体的一端的电位高于P型半导体一端的电位时, 称PN结反向偏置,简称反偏。
8
PN结正偏动画演示
第6章 光源和光放大器
❖
6.1 发光二极管及其工作特性 6.2 半导体激光器及其工作特性 6.3 窄谱宽和可调谐半导体激光器 6.4 光放大器 6.5 光纤激光器 ❖ 6.5 垂直腔面发射激光器
1
整体概述
概述一
点击此处输入
相关文本内容
概述二
点击此处输入
相关文本内容
概述三
点击此处输入
相关文本内容
2
光源要求:
多子进行扩散, PN结呈现低阻、导通状态,
内电场被削弱,PN结变窄
9
PN结反偏动画演示
10
发光二极管工作原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R=0
0 -2 0 0 +2
频率
2021/3/10
讲解:XX
14
减小端面反射反馈,就可以制出行波半导体光放大器。 减小反射率的一个简单方法是在界面上镀以抗反射膜 (增透膜)。然而,对于作为行波放大器的SOA,反射
率必须相当小 103
作当为满行足波G (s TRW1R2)放0.1大7时器,来人描们述习其惯特把性半。增 导体光透 放大器膜
它源于放大器介质中电子空穴对的自发复合。自发复合 导致了与光信号一起放大的光子的宽谱背景。
2021/3/10
讲解:XX
9
光放大器的应用
线路放大(In-line):周 期性补偿各段光纤损耗
功率放大(Boost):增加 入纤功率,延长传输距离
前置预放大(Pre-Amplify): 提高接收灵敏度
局域网的功率放大器:补偿 分配损耗,增大网络节点数
第六章 光放大器
2021/3/10
讲解:XX
1
概述
光纤通信系统的传输距离受光纤损耗或色散 限制。
因此,传统的长途光纤传输系统,需要每隔 一定的距离,就增加一个再生中继器,以便 保证信号的质量。
光放大器出现之前,光纤通信的中继器采用 光-电-光(O-E-O)变换方式。
光放大器(O-O)
2021/3/10
光放大器的出现,可视为光纤通信发展史上的重要 里程碑。
2021/3/10
讲解:XX
4
光放大器的类型
利用稀土掺杂的光纤放大器(EDFA、 PDFA)
利用半导体制作的半导体光放大器(SOA) 利用光纤非线性效应制作的非线性光纤放大
器(FRA、FBA)
2021/3/10
讲:XX
5
6.1 一般概念
----行波放大器(TW,Traveling Wave-SOA) ----法布里-珀罗放大器(FP-SOA)
注入电流
R反射面
注入电流
R反射面
输入 光信号
有源区
z= 0
L
输出光信号
有源区 光信号 输入
z z=L
z= 0
L
输出光信号
z z=L
2021/3/10
讲解:XX
13
不同反射率时的F-P SOA的增益频谱曲线
有源区
光输入
光输 光 出 输
增透膜 透明区
有源区
有源区
入
光输 光 出 输入
光输
2021/3/10
讲解:XX
15
TW- SOA的特性
1. 增益
光场 限制
因子
G TW e Ax g p[in ()L t]
2. 增益带宽
增益g
GFP A
GTWA
vFPA vTWA
30
信 号 20 增 益 (dB1) 0
沿光纤线路继续传输。
通信设备复杂,系统的稳定性和可靠性不高,传输
容量受到一定的限制。
2021/3/10
讲解:XX
3
光放大器(O-O)
多年来,人们一直在探索能否去掉上述光-电-光转换 过程,直接在光路上对信号进行放大,然后再传输, 即用一个全光传输中继器代替目前的这种光-电-光再 生中继器。
经过多年的努力,科学家们已经发明了几种光放大 器,其中掺铒光纤放大器(EDFA)、分布光纤喇曼 放大器(DRA)和半导体光放大器(SOA)技术已 经成熟,众多公司已有商品出售。
v
0
0
v0
频率
1.44 1.4
增益带宽宽(约为70nm),有能力放大超窄光脉冲。
2021/3/10
讲解:XX
16
TW- SOA的特性
3. 缺点
SOA对极化态非常敏感(增益偏振相关性)。不同极 化模式,具有不同的增益G,横电模(TE)和横磁模 (TM)极化增益差可能达到5~8dB
讲解:XX
2
WDM系统光-电-光(O-E-O)变换方式
1
光纤 光
解 2
12. ..N
复 ...
N
用
O/E ADM E/O
1
光
光纤
2 复
...
N
用
12. ..N
这种再生中继器的基本功能是进行光-电-光转换, 并在光信号转变为电信号时进行再生、整形和定时
处理,恢复信号形状和幅度,然后再转换回光信号,
F-P谐振腔反
射率 R 越大, SOA的增益
增益 g
越多 不大峰适。 合值通、带信系宽G统窄FmPAax,应
但超用 信过是号,一,定当只处值R可理。用于一些
后,光放大 器将变为激
G
min FPA
光器。
0
G
max FPA
(
)
1 1
R 2Gs RG s
2
GFPA ( R = 0.32)
R = 0.03
1.光放大器的放大倍数(增益)
增益G是描述光放大器对信号放大能力的参数。 定义为:
G Ps ,out Ps ,in
G(dB)10log10PPss,o,inut
G与光放大器的泵浦功率、掺杂光纤的参数 和输入光信号有很复杂的关系。
2021/3/10
讲解:XX
6
6.1 一般概念
2. 增益饱和
输入光功率较小时,G是一常数,即输出光功率PS,OUT与输入光 功率PS,IN成正比例,此时增益G0 为光放大器的小信号增益。
G0
3dB Pout,sat
饱和输出功率:放大器增益降至小 信号增益一半时的输出功率。
饱和区域
当PS,IN增大到一定值后, 光放大器的增益G开始 下降。增益饱和现象。
2021/3/10
讲解:XX
7
61.1.0一般概念
3. 放大器带宽
相 0.8
对
信号
增 益
0.6
g A
0.4
0.2
2021/3/10
讲解:XX
g(
G(
8
6.1 一般概念
4. 放大器噪声
所有光放大器在放大过程中都会把自发辐射(或散射) 叠加到信号光上,导致被放大信号的信噪比(SNR) 下降,其降低程度通常用噪声指数Fn来表示,其定义为:
主要噪声源:放大F的n 自((发SSNN辐RR射))oinu噪t 声(ASE Amplified Spontaneous Emission)。
2021/3/10
讲解:XX
10
6.2 半导体光放大器SOA
对 于 半 导 体 光 放 大 器 (SOA, Semiconductor Optical Amplifiers)的研究,早在1962年发明 半导体激光器不久就已开始了。
然而,只有在上世纪80年代,在认识到它将 在光波系统中具有广泛应用前景的驱使下, 才对SOA进行了广泛的研究和开发。
2021/3/10
讲解:XX
11
6.2 半导体光放大器
半导体光放大器的机理与激光器的相同,即 通过受激发射放大入射光信号。
I
R1
R2
半导体光放大器示意图
光放大器只是一个没有反馈的激光器,其核心
是当放大器被光或电泵浦时,使粒子数反转获
得光增益。
2021/3/10
讲解:XX
12
根据光放大器端面反射率和偏置条件,SOA可分为: