第四章向量自回归模型介绍
04向量自回归(VAR)模型
1.2
0.8
0.4
0.0
-0.4 2 4 6 8 10 12 14 16 18 20
yt = 1.4yt-1 − 0.6yt-2 + zt-3 + εt
16
二、传递函数模型
若zt是白噪声过程,则yt和zt之间的互相关图和传 递函数C(L)的关系为:
在多项式C(L)的第一个非零元素出现之前,所有的yz(j) =0 B(L)的形式不影响理论互相关图 互相关图中的峰值表示C(L)中的非零元素。因此,在滞 后期d处的峰值表示zt-d直接影响yt 所有的峰值都以比例a1衰减。
跳跃式
1 0.8 0.6 0.4 0.2 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
渐进式
延长式
9
一、干扰分析
例:轰炸利比亚的影响
1986年4月15日凌晨美国对利比亚进行了轰炸,英军暗 中协助了这次袭击,其官方理由是利比亚宣称参与了 西柏林的恐怖分子炸弹事件 令yt表示在月份t内直接针对美国和英国的国际恐怖事件。 考虑跳跃式和脉冲式两种干扰函数形式,估计结果分 别为: yt = 5.58 + 0.336 yt-1 + 0.123 yt-5 + 2.65 zt (5.56) (3.26) (0.84) AIC = 1656.03 SBC = 1669.95 yt = 3.79 + 0.327 yt-1 + 0.157 yt-5 + 38.9 zt (5.53) (2.59) (6.09) AIC = 1608.68 SBC = 1626.06 10
yt b10 b12 zt 11 yt 1 12 zt 1 yt zt b20 b21 yt 21 yt 1 22 zt 1 zt
向量自回归和向量误差修正模型
模型旨在捕捉变量之间的动态关 系,并分析一个经济系统中的内
在机制。
VAR模型假设变量之间的关系是 非结构性的,即它们之间的关系
是线性的。
VAR模型的参数估计
使用最大似然估计法(MLE) 来估计VAR模型的参数。
MLE是一种统计方法,用于估 计未知参数的值,使得已知数 据与模型预测的概率分布尽可 能接近。
独立同分布假设
02
模型假设误差项独立且同分布,实际数据可能无法满足这一假
设,导致模型的预测能力下降。
参数稳定性假设
03
模型假设参数在样本期间保持不变,这在现实中很难满足,参
数的变化可能影响模型的预测效果。
模型应用范围与限制
领域限制
向量自回归和向量误差修正模型 主要应用于宏观经济和金融领域 的数据分析,在其他领域的应用 可能受到限制。
向量自回归和向量误 差修正模型
目录
• 向量自回归模型(VAR) • 向量误差修正模型(VECM) • 向量自回归和向量误差修正模型的应用 • 向量自回归和向量误差修正模型的比较与选择 • 向量自回归和向量误差修正模型的局限性
01
向量自回归模型(VAR)
VAR模型的原理
多个时间序列变量同时受到各自 滞后值和相互之间滞后值的影响。
模型选择与优化
在向量误差修正模型中,需要根据实际问题和数据特点选择合适的滞后阶数和模型形式。 同时,可以通过比较不同模型的拟合优度、解释力度等指标来优化模型。
03
向量自回归和向量误差修 正模型的应用
宏观经济预测
总结词
向量自回归和向量误差修正模型在宏观经济预测中具有重要应用,能够分析多个经济变量之间的动态关系,预测 未来经济走势。
参数值。
var-向量自回归模型
预测评估
采用适当的评估方法(如均方误差、平均绝 对误差等)对预测结果进行评估,以确保预 测的准确性和可靠性。
政策建议与展望
政策建议
根据VAR模型的实证分析结果,提出针对性 的政策建议,以促进经济的稳定和可持续发 展。
展望
对VAR模型未来的发展趋势和应用前景进行 展望,为进一步研究提供方向和思路。
05
VAR模型的优缺点与改 进方向
VAR模型的优点
01
描述经济变量之间的ຫໍສະໝຸດ 态关系VAR模型能够描述多个经济变量之间的动态关系,通过分析变量之间的
相互影响,揭示经济系统的内在机制。
02
避免结构化约束
VAR模型不需要对经济变量之间的因果关系进行结构化约束,而是通过
变量自身的历史数据来分析相互影响,减少了主观因素对模型的影响。
模型估计与结果解读
模型估计
采用适当的统计软件(如EViews、Stata等)对VAR模型进行估计,确定模型的最佳滞 后阶数,并检验模型的稳定性。
结果解读
对估计结果进行详细解读,包括各经济指标之间的动态关系、长期均衡关系等,以便更 好地理解经济现象。
模型预测与评估
模型预测
利用估计好的VAR模型对未来经济走势进行 预测,为政策制定提供参考依据。
拓展应用领域
可以将VAR模型拓展应用到其他领域,如金融市 场、环境经济学、健康经济学等,以揭示不同领 域变量之间的动态关系。
THANKS FOR WATCHING
感谢您的观看
金融市场分析
VAR模型可用于分析股票、债券等金 融市场的相关性,以及市场波动对其 他经济指标的影响。
国际经济关系研究
VAR模型可用于分析不同国家之间的 经济关系,例如贸易往来、汇率变动 等。
【生产管理】计量学-向量自回归和自回归条件异方差模型
第一节 向量自回归模型
一、向量自回归模型概述 ARMA模型分析针对单个时间序列,存在忽略
经济变量之间内在联系的缺点。 克服这个缺点的方法是把ARMA模型扩展到针
对多个时间序列,把ARMA模型中的变量换成 向量。 因为自回归移动平均模型可相互转换,而且在 向量变量的情况下自回归模型比较方便,因此 一般主要考虑向量变量的自回归模型,称为 “向量自回归模型”(Vector autoregression model,VAR)。
变换成移动平均形式并不是很容易,因 此一般采用模拟的方法求向量自回归模 型的脉冲——响应函数。 令 Yt 1 Yt p c εt 1 εt 2 0
εt (0,,0,1,0,,0)
32
根据上述向量自回归模型模拟时期t、 t+1、t+2…的 Y向量,其中 Yts 即对应矩 阵 Ψs 的第j列。让j取遍1,…,n,即可计
7
向量自回归模型VAR(p) 展开,可以写成
每个变量对常数项和向量中所有变量的
1-p阶滞后项回归的,n个方程构成的联
立方程组系统
Y1t
1
Y (1)
11 1,t 1
Y (1)
1n n,t 1
Y ( p)
11 1,t p
Y ( p) 1n n,t p
1t
Ynt
n
Y (1)
21
T
如果
2 i
由其一致估计ˆi2
(1/T )
2 it
T
t 1
代,
而 Q1则由一致估计[(1/T ) XtXt ]1代,则
可以将近似看作
t 1
T
πˆ i ~ N (πi ,[ Xt Xt ]1) t 1
当样本容量较大时,可以利用该渐近分 布进行统计推断检验。
向量自回归模型
诊断主要是对模型残差进行一系列检验, 如果诊断结果表明模型存在问题,需要
以判断模型是否充分拟合了数据,是否 对模型进行修正或重新设定,以确保模
存在异常值或违反模型假设的情况。常
型的准确性和可靠性。
见的诊断方法包括残差诊断、正态性检
验、异方差性检验等。
03
向量自回归模型的实现
向量自回归模型的编程语言实现
诊断与修正困难
向量自回归模型在诊断和修正模型中的问题时较为复杂,需要较高 的统计技巧和经验。
对数据要求高
向量自回归模型要求数据具有平稳性,对于非平稳数据需要进行差分 或其他处理,可能会影响模型的准确性和稳定性。
向量自回归模型的发展趋势与未来展望
改进估计方法
针对向量自回归模型参数过多的问题,未来研究可以探索更加有 效的参数估计方法,提高模型的泛化能力。
能够更好地捕捉时间序列数据的长期趋势和稳定性。
解释性强
02
向量自回归模型能够清晰地揭示多个变量之间的相互影响关系,
有助于理解经济现象之间的内在联系。
适用范围广
03
向量自回归模型适用于多种类型的数据,包括平稳和非平稳时
间序列数据。
向量自回归模型的缺点
参数过多
向量自回归模型需要估计的参数数量较多,容易产生过拟合问题, 导致模型泛化能力下降。
极端天气事件预测
通过向量自回归模型预测极端天气事件的发生, 如暴雨、洪涝、干旱等,有助于减轻灾害损失。
3
气候变化对生态系统的影响
利用向量自回归模型分析气候变化对生态系统的 影响,如植被分布、物种多样性和生态平衡等。
向量自回归模型在社会科学领域的应用
经济发展预测
通过分析历史经济发展数据,利用向量自回归模型预测未来经济 发展趋势,为政策制定提供依据。
第四章向量自回归模型介绍
第四章向量自回归模型介绍向量自回归模型(Vector Autoregression,VAR)是一种时间序列分析模型,常用于分析多个相关变量之间的动态关系。
VAR模型可以看作是多个单变量自回归模型的组合,它对多个变量的信息进行了同时处理,能够更全面地捕捉变量之间的相互作用和影响。
VAR模型的基本假设是,当前时间点的所有变量值与过去时间点的所有变量值相关。
假设我们有p个变量,那么VAR(p)模型定义了每个变量在当前时间点的取值都是过去p个时间点的线性组合,同时还考虑了随机误差项。
数学表示为:Yt=A1*Yt-1+A2*Yt-2+...+Ap*Yt-p+εt其中Yt是一个p维列向量,包含当前时间点p个变量的取值;Yt-1至Yt-p是过去p个时间点的p维列向量;A1至Ap是p个p×p维矩阵,表示每个变量与过去时间点的线性关系;εt是一个p维列向量,表示随机误差项。
VAR模型的参数估计可以使用最小二乘法进行,通过最小化模型产生的残差平方和来求解参数。
可以使用矩阵形式进行计算,将所有时间点的变量值和延迟值堆叠成矩阵,并将所有误差项堆叠成矩阵,然后通过对应的矩阵运算求解参数矩阵。
VAR模型的参数估计结果可以用于分析变量之间的动态关系和相互影响。
通过观察参数矩阵中的元素值,可以了解到不同变量之间的关系类型(正相关还是负相关)、强度(系数大小)和延迟效应(系数所对应的时间点)。
同时,还可以利用VAR模型进行变量预测和冲击响应分析。
变量预测是VAR模型的一个常用功能,在给定过去时间点的变量值后,使用估计得到的参数矩阵可以预测未来时间点的变量取值。
这对于经济领域的预测和政策制定非常有用,可以根据变量之间的关系和历史数据进行未来变量值的估计。
冲击响应分析是指在VAR模型中引入一个外部冲击,观察该冲击对其他变量的影响。
冲击响应分析能够量化不同变量之间的直接和间接关系,帮助研究人员了解系统中各个变量对于一个特定冲击因素变化的反应情况。
向量自回归模型(-VAR)-和VEC
模型建立与估计
模型建立
首先需要确定经济时间序列之间的长 期均衡关系,然后构建误差修正项, 最后将误差修正项引入VAR模型中。
模型估计
使用最小二乘法或广义矩估计法 (GMM)对模型进行估计。来自模型应用与实例应用
用于分析经济时间序列之间的长期均 衡关系和短期调整机制,如汇率、利 率、通货膨胀率等。
实例
02
向量误差修正模型(-VEC) 介 绍
定义与原理
定义
向量误差修正模型(Vector Error Correction Model,简称VEC)是一种用于分析 长期均衡关系和短期调整机制的计量经济模型。
原理
基于协整理论,VEC模型通过引入误差修正项来反映经济时间序列之间的长期均 衡关系,并分析短期调整机制。
向量自回归模型(-var)和vec
目录
Contents
• 向量自回归模型(-VAR) 介绍 • 向量误差修正模型(-VEC) 介绍 • 向量自回归模型(-VAR) 与向量误
差修正模型(-VEC) 的比较
目录
Contents
• 向量自回归模型(-VAR) 和向量误 差修正模型(-VEC) 的扩展与展望
以汇率和通货膨胀率为例,通过构建 VEC模型,可以分析两者之间的长期 均衡关系和短期调整机制,为政策制 定提供依据。
03
向量自回归模型(-VAR) 与向量 误差修正模型(-VEC) 的比较
模型相似性
两者都属于向量自回归模型家族, 用于分析多个时间序列之间的动
态关系。
两者都基于向量自回归模型,通 过估计参数来描述时间序列之间 的长期均衡关系和短期调整机制。
模型建立与估计
模型建立
在建立VAR模型之前,需要选择合适的滞后阶数,并确定模型中的变量。然后, 可以使用最小二乘法或最大似然法等估计方法来估计模型的参数。
向量自回归过程时间序列分析
第四章向量自回归过程的时间序列分析§1向量自回归模型有时我们需要考虑多个时间序列过程的组合。
例如,宏观经济系统中,(x ,〃s ,p ,D 它 们之间是一个相互联系的整体(IS —LM )。
多变量的时间序列将会产生一些单变量不存在的 问题。
本章主要讨论平稳的自回归形式的多变虽:随机过程VAR 。
给一般的向量平稳过程,X=(人必门…比/ / = 0,±1,±2,……。
这里X 的协差矩阵定义为:厂伙)= covVr )= E [a —〃)(Xr 仅依赖于&。
设,:.r (k )=r (-k )a 设n= f ;r 伙),那么,。
=厂(0)+£山伙)+厂伙)']。
称为x 的长X 2期协差阵。
且乙的谱泄义为:人9)= ^-E=丄{几+却伙严+r (肪严]}。
2/T A .YO2兀^-1A 1 丄 一 一用厂伙)=—工(乙一丫)(匚一丫); &=0丄2,…作为r 伙)的估计,又M 是一个截断,满T 心+]M 八 . 时 k足M T s,且一to 。
再用c = r (o )+y (i ------------------- )[T 伙)+r‘伙)]作为。
的一致估计。
T 台 A/+1相应于单变量平稳过程,我们同样定义向量的白噪声过程WN 和向量的鞅差分过程MDS O 并进一步给岀由它们的线性过程组成的其他的向量过程:匕4尺(1)过程,Y t =(l )Y t _}+s {。
这里0是一个mxm 的矩阵,£是向量WN 。
平稳性要 求0的特征值的绝对值小于1。
UMA (l )过程,Y’这里&是一个mxm 的矩阵,£是向量WN 。
可逆性要求&的特征值的绝对值小于1。
又,UMA (l )过程总是平稳的。
VARMA(p^)^程,乙=空}^+・・・+ 0上-“+£+&适1+・・・+ &庐1,这里0和0都 是mxmZu厂伙)=/21Z12…YxmY11 • (i)于是得到矩阵序列⑴伙)} o 又I %•伙)=,的矩阵。
向量自回归模型与结构向量自回归模型简介
Y 2 , =, ( Y 2 . , 2 … . )
为 N×1阶 的 时 间 序 列 列 向 量 , 为 N ×1阶 的 常 数 项 列 向 量 , Ⅱl ,… , 玎I 均为 N× N阶 的参数矩阵 ,u ~I I D( O, 力)为 N×1阶 的随 机误差列 向量 ,这 中间每个元素都是非 自 相关 的,但是不 同方程对应 的 之间却 可能存 在一定 的相关关 系。 2 、向量 自回归模 型 ( V AR)的特点 V AR模型有 区别与其他模型 的许多特点 ,其主要的特点如下 : ( 1 )不依据传统的相关经济理论。有两个关键之处需要在模型的建 立过程 中引起特别注 意 :①确定 在 V A R模型 中的变量 都是 相关 的;② 确定滞后 阶数 g。建立 后 的模 型应能 反 映出绝 大部 分变 量 间的相 互 影
一
( 2 )VA R模 型 中的 参 数 可 以为 零 Βιβλιοθήκη ・ .l
∥l ’ I
, .
l+ , t
+ 2
,
( 1
.
一 l L Y 2 I = 2 + 丌2 l _ 1 Yl l 一 1+仃2 2 t Y 2‘
1 )
I
其中 8 I . 1 , 2 , ~l i D ( 0 , o r ), C o y ( I . 1 , 8 2 , )=0。写成矩 阵形式
裘 斌 斌
摘 要 :计量 经济学作 为一 门经济学科 ,进入 2 1世纪后在全世界得到 了迅猛的发展 ,可以说是近 1 0年来发展 最为迅速 的经济学科子 类 。其研 究成果越 来越 多地被应 用到 实际金融领域 ,并取得 了令人 瞩 目的成绩 。在我 国,随着金融业 的不断发展 ,计 量经济模 型也被 越来 越 多地应 用于宏观 经济分析 以及行业分析 中,很 多金 融从业 者也逐渐依 靠计量 经济模型进行投 资 以克服 人性的弱 点。在此大 背景下 。本文 拟 对 逐 渐 被 广泛 使 用 的 向量 自回 归模 型及 其 衍 生 出 的 结构 向 量 自回 归模 型 做 相 关 的 简介 与探 讨 。 关键词 :向量 自回归;结构向量 自回归;脉 冲响应;方差分解;G r a n g e r因果检验
向量自回归和误差
同期相关性
VAR模型假设变量之间存在同期相关 性,即一个变量的当前值受到另一个 变量当前值的影响。
误差项独立性
VAR模型的误差项应相互独立,即误 差项之间没有相关性。
02
误差修正模型(ECM)
误差修正机制
误差修正项
误差修正项是模型中的一个重要组成部分,用于衡量长期均衡关系偏离短期调 整机制的程度。
模型检验
平稳性检验
对模型残差进行平稳性检验,如ADF检验或PP检验,以确保模型 残差没有单位根。
异方差性检验
使用White检验或Jarque-Bera检验来检验模型残差的异方差性, 以确保残差具有同方差性。
自相关检验
使用LM检验或Breusch-Godfrey检验来检验模型残差的自相关性, 以确保残差之间没有自相关关系。
残差自相关检验
检验VAR模型的残差是否存在自相关,常用的方法 有Ljung-Box Q统计量检验。
残差异方差性检验
检验VAR模型的残差是否存在异方差性,常 用的方法有White检验和ARCH检验。
诊断检验
模型拟合优度检验
通过比较VAR模型拟合数据与原始数据的差异程度,评估模型的拟合优度,常用的方法有 R方统计量和调整R方统计量。
经济政策评估
政策效果评估
通过VAR模型,可以分析经济政策对多个经济变量的影响,从而评估政策效果。
政策制定依据
VAR模型可以提供政策制定者关于经济变量之间相互作用的深入了解,有助于制 定更加科学合理的政策。
金融市场分析
市场趋势预测
VAR模型可以用于分析金融市场中的多个变量,预测市场趋势,为投资者提供决策依据。
1 2 3
单位根检验
用于检验时间序列数据是否平稳,常用的方法有 ADF检验和PP检验。
Eviews向量自回归模型
9
表中的每一列对应 VAR模型中一个内生变量的方 程。对方程右端每一个变量,EViews会给出系数估计
值、估计系数的标准差 ( 圆括号中 ) 及 t- 统计量 ( 方括号
中)。
同时,有两类回归统计量出现在VAR对象估计输
出的底部:
10
11
输出的第一部分显示的是每个方程的标准OLS回归 统计量。根据各自的残差分别计算每个方程的结果,
计算对数似然值:
Tn T ˆ l 1 ln 2π ln Σ 2 2
AIC和SC两个信息准则的计算将在后文详细说明。
13
二 VAR模型的检验
无论建立什么模型,都要对其进行识别和检验,以
判别其是否符合模型最初的假定和经济意义。本节简单
介绍关于VAR模型的各种检验。这些检验对于后面将要 介绍的向量误差修正模型(VEC)也适用。 (一) Granger因果检验 VAR模型的另一个重要的应用是分析经济时间序列 变量之间的因果关系。本节讨论由 Granger(1969) 提出, Sims(1972) 推广的如何检验变量之间因果关系的方法。
相互之间可以同期相关,但不与自己的滞后值相关及不与
等式右边的变量相关
3
由于仅仅有内生变量的滞后值出现在等式的右边,所 以不存在同期相关性问题,用普通最小二乘法 (OLS)能得
到VAR简化式模型的一致且有效的估计量。即使扰动向量
t有同期相关,OLS仍然是有效的,因为所有的方程有相
同的回归量,其与广义最小二乘法 (GLS)是等价的。注意, 由于任何序列相关都可以通过增加更多的 yt的滞后而被消 除(absorbed),所以扰动项序列不相关的假设并不要求 非常严格。
4
(二)EViews软件中VAR模型的建立和估计
向量自回归模型及其预测结果分析
向量自回归模型及其预测结果分析时间序列分析是统计学中的一个重要分支,主要关注某一个变量在时间上的变化规律,以及该变量与其他变量之间的关系。
在实际应用中,人们往往需要对未来的变量值进行预测。
而向量自回归模型是一种常用的时间序列模型,能够较准确地对未来时间点的变量值进行预测。
一、向量自回归模型介绍向量自回归模型(VAR)是一种多元时间序列模型,它能够同时考虑多个变量之间的相互作用,并描述每个变量在过去一段时间内的变化趋势。
VAR模型建立在向量自回归的基础上,用过去一段时间内自身的变量值来预测未来的变量值。
通常情况下,VAR模型是由基础时间序列、观察时间长度和滞后阶数三个因素共同决定的。
基础时间序列指的是多元时间序列模型中的所有变量,观察时间长度指的是时间序列模型的建立时间跨度,而滞后阶数则是指VAR模型所考虑的时间序列自回归的最高阶数。
VAR模型的优点在于它能够同时考虑多个变量之间的作用,而且能够较好地处理协整关系。
但是,它的缺点在于模型中包含的变量较多,需要较多的样本数据才能稳定地进行模型的预测。
二、VAR模型的建模流程VAR模型的建模流程主要包括以下几个步骤:1. 数据准备阶段:首先需要准备可以用来构建VAR模型的数据,要求数据可以被分解成多个变量的时间序列。
2. 模型估计阶段:VAR模型是基于多元回归模型的基础上建立的,需要通过估计模型中的系数来求解模型。
通常采用最小二乘法来进行估计。
3. 模型诊断阶段:对VAR模型进行一系列的检验、诊断,包括回归系数的显著性检验、残差的正态性检验、异方差性检验等等,以保证模型的可靠性。
4. 模型预测阶段:用已知的历史数据来建立VAR模型,再根据模型对未来的时间点进行预测。
三、VAR模型的预测结果分析VAR模型的预测结果主要包括两个方面,即点预测和置信区间。
点预测是指对未来时间点的变量值进行确定性的预测,而置信区间则是指预测的不确定性范围。
通过比较预测结果和实际观测值,可以对VAR模型的预测能力进行评估。
向量自回归模型
2、结构向量自回归模型 (Structural Vector Auto-Regression,SVAR)
添加标题
西姆斯(1986)以及布兰查德(Q.J.Blanchard)和匡赫(D.Quah)(1989)
添加标题
变量之间的当期关系揭示了变量之间的相互影响,实际上是对VAR模型施加了基于经济理论的限制性条件,从而识别变量之间的结构关系。
检验结果
4、几个应用中的实际问题
滞后期长度的选择问题
检验结果对于滞后期长度的选择比较敏感,不同的滞后期可能会得到不同的检验结果。 一般而言,需要进行不同滞后期长度下的检验,观察其敏感程度;并且根据模型中随机误差项不存在序列相关时的滞后期长度来选取滞后期。 例题中不同滞后期的检验结果
从2阶滞后期开始,检验模型都拒绝了“X不是Y的格兰杰原因”的假设,而不拒绝“Y不是X的原因”的假设。 滞后阶数为2或3时,两类检验模型都不存在序列相关性。 由赤池信息准则,发现滞后2阶检验模型拥有较小的AIC值。 可判断:可支配收入X是居民消费支出Y的格兰杰原因,而不是相反,即国民收入的增加更大程度地影响着消费的增加。
向量自回归模型(VAR)-Eviews实现
对于滞后阶数的选择存在主观性,可 能导致模型拟合不足或过度拟合;无 法进行因果检验和结构分析。
02 Eviews软件介绍
Eviews软件的特点
界面友好
Eviews软件采用图形用户界面,操作简便,易 于上手。
灵活多变
Eviews软件支持自定义函数和命令,用户可以 根据需要自行编写程序。
ABCD
系方面的有效性。
实证分析中,我们采用了国内生 产总值(GDP)、消费者价格指数 (CPI)和货币供应量(M2)三个经 济指标,通过VAR模型分析它们 之间的动态关系,并利用Eviews 软件进行了模型估计和检验。
实证结果表明,VAR模型能 够有效地描述多个时间序列 变量之间的动态关系,并且 通过Eviews软件可以实现方
02
模型通过估计变量之间的滞后系数来分析变量之间 的动态关系。
03
滞后阶数决定了模型中包含的滞后项数量,滞后阶 数越多,模型拟合的自由度越少。
VAR模型的应用场景
用于分析多个经济指标或金融变量之间的动态关 系。 用于预测经济趋势和政策效应。
用于评估经济政策的有效性。
VAR模型的优缺点
优点
能够同时考虑多个时间序列变量之间 的动态关系,能够捕捉到变量之间的 长期均衡关系和短期调整机制。
预测性能评估
使用各种预测性能指标, 如MSE、MAE、RMSE等, 对VAR模型的预测性能进 行评估。
04 案例分析
案例选择与数据准备
案例选择
选择一个具有代表性的经济时间序列数据集,如股票收益率、汇 率等。
数据准备
收集所需数据,进行数据清洗和整理,确保数据准确性和一致性。
数据预处理
对数据进行必要的预处理,如缺失值填充、异常值处理等。
向量自回归模型(VAR)和VEC
数据清洗
对数据进行预处理,如缺失值填 充、异常值处理、数据转换等, 以保证数据的质量和一致性。
数据平稳性检验
对时间序列数据进行平稳性检验, 以避免伪回归问题,确保模型的 有效性。
模型选择与参数估计
模型选择
根据研究目的和数据特征,选择合适的VAR或VECM模型。 考虑模型的滞后阶数、变量个数等参数设置。
向量自回归模型(VAR) 和VECM
目录
Contents
• 向量自回归模型(VAR)介绍 • 向量误差修正模型(VECM)介绍 • VAR与VECM的比较 • 实证分析 • 结论与展望
01 向量自回归模型(VAR)介绍
VAR模型的原理
多个时间序列变量同时受到各 自过去值和彼此过去值的影响。
模型通过将多个时间序列变 量视为内生变量,并考虑它 们之间的相互影响,来分析 这些变量之间的动态关系。
将VAR和VECM模型的结果进行对比 分析,探讨两种模型在解释变量相互 影响方面的异同点。
政策建议
根据模型结果,提出针对性的政策建 议,为政府决策提供参考依据。
不足与展望
总结研究的不足之处,并提出进一步 研究的方向和展望。
05 结论与展望
结论总结
本文通过实证分析,探讨了向量自回归 模型(VAR)和向量误差修正模型(VECM) 在分析多个时间序列数据时的适用性和 优势。
01
参数估计
采用合适的估计方法,如最小二乘法、 极大似然法等,对模型参数进行估计。
02
03
模型诊断
对模型进行诊断检验,如残差检验、 稳定性检验等,以确保模型的合理性 和有效性。
模型结果解释与讨论
结果解释
对模型结果进行详细解释,包括各变 量的系数估计值、符号、显著性等, 分析其对内生变量的影响。
向量自回归模型简介
向量自回归模型简介一、Var模型的基本介绍向量自回归模型(Vector Autoregressive Models,VAR)最早由Sims(1980)提出。
他认为,如果模型设定和识别不准确,那么模型就不能准确地反应经济系统的动态特性,也不能很好地进行动态模拟和政策分析。
因此,VAR模型通常使用最少的经济理论假设,以时间序列的统计特征为出发点,通常对经济系统进行冲击响应(Impulse-Response)分析来了解经济系统的动态特性和冲击传导机制。
由于VAR模型侧重于描述经济的动态特性,因而它不仅可以验证各种经济理论假设,而且在政策模拟上具有优越性。
VAR模型主要用于替代联立方程结构模型,提高经济预测的准确性。
用联立方程模型研究宏观经济问题,是当前世界各国经济学者的一种通用做法,它把理论分析和实际统计数据结合起来,利用现行回归或非线性回归分析方法,确定经济变量之间的结构关系,构成一个由若干方程组成的模型系统。
联立方程模型适合于经济结构分析,但不适合于预测:联立方程模型的预测结果的精度不高,其主要原因是需要对外生变量本身进行预测。
与联立方程模型不同,VAR模型相对简洁明了,特别适合于中短期预测。
目前,VAR模型在宏观经济和商业金融预测等领域获得了广泛应用。
二、VAR模型的设定VAR模型描述在同一样本期间内的n个变量(内生变量)可以作为它们过去值的线性函数。
一个VAR(p)模型可以写成为:或:其中:c是n × 1常数向量,A i是n × n矩阵,p是滞后阶数,A(L)是滞后多项式矩阵,L是滞后算子。
是n × 1误差向量,满足:1. —误差项的均值为02. Ω—误差项的协方差矩阵为Ω(一个n × 'n正定矩阵)3.(对于所有不为0的p都满足)—误差项不存在自相关虽然从模型形式上来看比较简单,但在利用VAR模型进行分析之前,对模型的设定还需要意以下两点:一是变量的选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量自回归模型
西姆斯创立了一种基于向量自回归的方法,来分析 经济如何受到经济政策临时性变化和其他因素的影 响。
西姆斯和其他研究者使用这一方法来研究诸如央行 加息等对经济的影响等问题。
9
向量自回归模型
虽然萨金特和西姆斯的研究是分别独立完成的,但 他们的贡献在几个方面都是互补的。 他们在 1970和 1980年代的创造性贡献已被世界各地 的研究者和政策制定者所采用。 现在,萨金特和西姆斯创立的方法已成为宏观经济 分析的基本工具。
第四章 向量自回归模型及应用
传统经济计量建模是以经济理论为基础,有以下特 点: 具有某些主观因素的影响 不足以描述变量间的动态联系 内生变量既可出现在方程的左端又可出现在方程的 右端,使得估计和推断变得更加复杂。 向量自回归模型的提出克服了这些缺点。
第一节 向量自回归模型
向量自回归模型 Vector Autoregression Model,简称VAR模型 由美国计量经济学家和宏观经济学家西姆斯于 1980 年提出。
他的贡献还有随机对策理论、Bondareva-Shapley规则 、Shapley-Shubik权力指数、Gale-Shapley运算法则、潜 在博弈论概念、Aumann-Shapley定价理论、HarsanyiShapley解决理论、Shapley-Folkman定理。 此外,他早期与R.N.Snow和Samuel Karlin在矩阵对 策上的研究如此彻底,以至于此后该理论几乎未有补充 。他在功用理论发展上扮演关键角色,他为冯-诺依曼摩根斯坦稳定集存在问题的解决奠定了基 础。他在非核 心博弈理论及长期竞争理论上与Robert Aumann的工作均 对经济学理论产生了巨大影响。
第一节 向量自回归模型
克里斯托弗· 西姆斯 (Christopher A. Sims) 生于1942年10月21日。 1963 年在哈佛大学获得数学 学士学位,后去加州伯克利 大学读了一年的研究生,然 后回到哈佛大学继续学习, 获得经济学博士学位。
3
第一节 向量自回归模型
7
第一节 向量自回归模型
萨金特发明了如何用结构宏观计量经济学方法来分 析经济政策的永久性调整。 这一方法可用于研究家庭和公司调整它们预期以及 同时期经济发展的宏观经济关系。 例如,萨金特研究了二战后的经济状况,当时许多 国家开始都倾向于推行高通胀政策,但最终它们对 经济政策做出系统性调整,进而转化为通胀率的下 降。
1960年毕业于马萨储塞州Tufts大学,主修法文,获 得学士学位。 1960-1963年在芝加哥大学商学院研究生院攻读 MBA,1963年开始攻读博士学位, 1964年获得博士学位,其博士论文为“股票市场价 格走势”。 1995年,比利时鲁文大学授予法玛荣誉博士学位。
10
罗伊德· 沙普利 (Lloyd Shapley)
埃尔文· 罗斯 (AlvinRoth)
埃尔文-罗斯(Alvin E. Roth),生于1951年12月 19日,是一位美国经济学 家,目前在哈佛商学院担 任经济及工商管理乔治冈德(George Gund)教授。 罗斯在博弈论、市场设计 和实验经济学领域都曾作 出重大贡献。
罗斯1971年本科毕业于哥伦比亚大学,获运筹学学士 学位,随后赴斯坦福大学攻读研究生,1973年获运筹学 硕士学位,一年后获运筹学博士学位。 离开斯坦福之后,罗斯直到1982年一直在伊利诺斯大 学任教。此后他在匹兹堡大学任安德鲁-梅隆经济学教授 直到1998年,之后他加入哈佛大学并在此工作至今。 罗斯是美国杰出年轻教授奖:斯隆奖的获得者,古根 海姆基金会会士,美国艺术和科学院院士。他还是美国 国家经济研究局(NBER)和美国计量经济学学会
宏观经济中的因果关系 利息的临时性增长或减税是如何影响 GDP和通胀的? 如果央行永久性改变通胀目标,或者政府调整预算 平衡目标,经济将发生什么呢? 西姆斯和萨金特创立了一系列方法来回答这些问题, 以及许多与经济政策及 GDP 、通胀、就业和投资等 不同宏观经济变量之间因果关系的问题。
4
第一节 向量自回归模型
西姆斯还被誉为普林斯顿大学经济系计量双塔 组合之一(另一个就是2015年诺贝尔奖获得者 迪顿),他偏重于宏观计量经济学方向。
5
第一节 向量自回归模型
西姆斯与纽约大 学经济学教授萨 金 特 (Thomas J. Sargent) 一 起 获 得 2011 年诺贝尔 经济学奖 获奖理由是“对 宏观经济中因果 的实证研究”
罗伊德· 沙普利(Lloyd Shapley),1923年6月2日生于 美国麻省剑桥。他是杰出的美 国数学家和经济学家,加州大 学洛杉矶分校数学及经济学名 誉退休教授。他对数理经济学 、特别是博弈论理论做出过杰 出贡献,被公认为是博弈论的 具体化身。
沙普利的父亲是杰出天文学家Harlow Shapley。他是 哈佛大学学生,1943年应征入伍,同年作为美国空军士 兵在中国成都服役,他因破解苏联气象密码获得铜质勋 章。 战后他重返哈佛大学并于1948年获得数学学士学位。 在美国兰德公司工作一年后,他赴普林斯顿大学学习, 于1953年获得博士学位。他的论文及博士后论文对 Francis Ysidro Edgeworth的理论进行深入研究,并在 博弈论中推出了沙普利价值和核心解决概念。 毕业后,他在普林斯顿短暂停留后重返兰德公司。自 1981年起,他担任加州大学洛杉矶分校教授。
80多岁高龄之际,沙普利学术上仍有产出,如多人 效用和权 力分配理论。
罗伯特· J· 席勒 尤金·法玛
拉尔斯·皮特·汉森
18
尤金· 法玛(Eugene F. Fama) 经济学家、金融经济学领域的 思想家。 1939年2月14日出生于美国马 萨储塞州波士顿,是意大利裔 移民的第三代。
1968一1970年在哈佛大学担任经济学助理教授。 1970年,前往明尼苏达大学任经济学副教授,并在 1974年任教授直至1990年。 1990年后一直在普林斯顿大学担任经济学教授。 由于他杰出的研究成就,担任了众多的学术兼职, 并拥有很多荣誉头衔。 1988年成为美国艺术和科学研究院的院士。 1989年成为美国科学院院士。