场效应晶体管共24页文档

合集下载

23-场效应晶体管PPT模板

23-场效应晶体管PPT模板
6.场效应管和三极管都可组成各种放大电路和开关电 路,但由于前者制造工艺简单,且具有耗电少、热稳定性好、 工作电源电压范围宽等优点,因而被广泛应用于大规模和超 大规模集成电路中。
1.5 场效应管的使用注意事项
1.使用场效应管时要注意电压极性,电压和电流的数 值不能超过最大允许值。
2.为了防止栅极击穿,要求一切测试仪器、电烙铁等 都必须有外接地线。焊接时用小功率烙铁,动作要迅速,或 切断电源后利用余热焊接。焊接时,应先焊源极,后焊栅极。
转移特性曲线的斜率gm的大小反映了栅源电压UGS对漏 极电流ID的控制作用。gm的量纲为mA/V,所以,gm又称为 跨导,其定义为:
gm UIDGS(UDS为常数)
(2)输出特性曲线
输出特性曲线是指栅源电压UGS一定时,漏极电流ID与漏 极电压UDS之间的关系曲线ID=f(UDS)。它可分为三个区: 可变电阻区、恒流区和截止区。
电工电子技术
场效应晶体管*
场效应晶体管(FET)是一种利用输入回路的电场效应 来控制输出回路电流的半导体器件,属于电压控制器件。它 只依靠一种载流子参与导电,故又称为单极型三极管。它具 有输入阻抗高、噪声低、热稳定性好、抗辐射能力强、功耗 小、制造工艺简单和便于集成化等优点。
根据结构不同,场效应管可分为结型场效应管(JFET) 和绝缘栅场效应管(MOS管)。由于MOS管的性能更优越, 发展更迅速,应用更广泛,因此,本节将仅介绍MOS管。
由于耗尽型MOS管自身能形成导电沟道,所以只要有 UDS存在,就会有ID产生。如果加上正的UGS,则吸引到反型 层中的电子增加,沟道加宽,ID增大。如果加上负的UGS,则 此电场将会削弱原来绝缘层中正离子的电场,使吸引到反型 层中的电子减少,沟道变窄,ID减小。若负UGS达到某一值, 则沟道中的电荷将耗尽,反型层消失,管子截止,此时的值 称为夹断电压UGS(off)或UP。

金属—氧化物—半导体场效应晶体管PPT课件

金属—氧化物—半导体场效应晶体管PPT课件

(6-22) 的关系称为MOS系统的电容—电压特性。
1 dVG dV0 d s
C dQM dQM dQM
(6-23)
若令
C0
d QM d V0
CS
dQM
d S
dQS
d S
(6-24) (6-25)
第15页/共76页
6.2 理想MOS电容器

1 1 1 C C0 CS
C0 =绝缘层单位面积上的电容,
半导体表面就存在表面势 S >0。因此,欲使能带平直,即除去功函数差所带来的影
响,就必须在金属电极上加一负电压。
VG1
' ms
m'
s'
(6-56)
S
这个电压一部分用来拉平二氧化硅的能带,一部分用来拉平半导体的能带,
使
第31页/共76页
6.4 实际MOS的电容—电压特性
第32页/共76页
6.4 实际MOS的电容—电压特性
6.4实际MOS的电容-电压特性
• 功函数差的影响
第30页/共76页
6.4 实际MOS的电容—电压特性
以铝电极和P型硅衬底为例。铝的功函数比型硅的小,前者的费米能级比 后者的高
。接q触m 前,q功S 函数差EFM EFS
由于功-函数的不=同,-铝( —二氧化硅—P型)<硅0 MOS系统在没有外加偏压的时候,在
qNa
4kS 0 f
qNa
QB qNa xdm
总表面空间电荷
QS QI QB QI qNa xdm
QI
为反型层中单位面积下的可动电荷即沟道电荷:
QI
xI 0
qnI
x dx
(6-19) (6-20) (6-21)

MOS场效应晶体管74026-PPT精选文档

MOS场效应晶体管74026-PPT精选文档

正常 放大 时外 加偏 置电 压的 要求
VGS<0 ,使栅极 PN 结反偏,iG=0。
VDS>0 , 使 形 成 漏 电流iD。
问题:如果是P沟道,直流偏置应如何加?
栅源电压对沟道的控制作用
(动画2-9)
VGS 继续减小,沟道继续变窄, ID继续减小直至为0。当 当 VV =0时,在漏、源之间加有一定电压时,在漏源 GS 当 GS<0时,PN结反偏,形成耗尽层,漏源间的 漏极电流为零时所对应的栅源电压 VGS称为夹断电压 VP。 间将形成多子的漂移运动,产生漏极电流。 沟道将变窄,ID将减小。
断”。
特性曲线
vGS 2 iD IDSS (1 ) VP
v v v V G D G SD S P
(a) N沟道结型FET (b) 输出特性曲线
(b) N沟道结型FET 转移特性曲线
各类场效应三极管的特性曲线
N 沟 道 增 强 型 P 沟 道 增 强 型
绝 缘 栅 场 效 应 管
各类场效应三极管的特性曲线
N 沟 道 耗 尽 型 P 沟 道 耗 尽 型
绝 缘 栅 场 效 应 管
各类场效应三极管的特性曲线
结 型 场 效 应 管
N 沟 道
P 沟 道
场效应管参数 开启电压VGS(th) (或VT)
开启电压是 MOS增强型管的参数,栅源电压 小于开启电压的绝对值, 场效应管不能导通。
§2.3 MOS场效应晶体管
分类
Junction type Field Effect Transistor
ቤተ መጻሕፍቲ ባይዱ
场 效 应 管
结型场效应三极管JFET
N沟道
P沟道
绝缘栅型场效应三极管IGFET Insulated Gate Field Effect Transistor

数电03场效应晶体管及其放大电路

数电03场效应晶体管及其放大电路

特别说明
共源小信号低频跨导:gm (A/V、 mA/V)
gm
I D U GS
U DS 常数
gm表征场效应管UGS对ID控制能力的大小, 也表明场效应管是电压控制元件。
场效应管与双极性晶体管的比较
类型 载流子 (电子、空穴) 控制方式 放大参数 输入电阻 输出电阻 热稳定性差 制造工艺 对应极
双极性晶体管
id
D
GT
RS +
ui
ugs
S RD
RG1 RG2
RL
uS -
uo RG1
+UDD RD C2
+
C1+
T
RS
+ ui uS -
RG2 RSS
RL uo CS
id
D
GT
RS +
ui
ugs
S RD
RG1 RG2
RL
uo
uS -
id GD
RS +
ui
RG1 RG2 ugs
uS -
gmugs RD RL uo
S
uo (RD // RL )id RL gmugs
ui ugs
Au
uo ui
RL gmugs ugs
gmRL
ri RG1 // RG2
id GD
ro RD
RS +
ui
RG1 RG2 ugs
gmugs RD RL uo
uS -
S
The End
-+
● - + UDS ID
S UGS G
D
N+
N+
P型硅衬底
1.3 特性曲线

有机场效应晶体管和研究(可打印修改)

有机场效应晶体管和研究(可打印修改)

有机场效应晶体管的研究摘要:有机场效应晶体管(Organic Field Effect Transistors,OFETs)是以有机半导体材料作为有源层的晶体管器件。

和传统的无机半导体器件相比,由于其可应用于生产大面积柔性设备而被人们广泛的研究,在有机发光、有机光探测器、有机太阳能电池、压力传感器、有机存储设备、柔性平板显示、电子纸等众多领域具有潜在而广泛的应用前景。

文中对OFET结构和工作原理做了简要介绍,之后重点讨论了最近几年来OFET中有机材料和绝缘体材料的发展状况,接着总结了OFET制备技术,最后对OFET发展面临问题及应用前景做了归纳和展望。

关键词:有机半导体材料;有机场效应晶体管;迁移率;绝缘体材料;柔性面板显示0引言场效应晶体管( Field Effect Transistor FET)是利用电场来控制固体材料导电性能的有源器件。

由于其所具有体积小、重量轻、功耗低、热稳定性好、无二次击穿现象以及安全工作区域宽等优点,现已成为微电子行业中的重要元件之一。

目前无机场效应晶体管已经接近小型化的自然极限,而且价格较高,在制备大表面积器件时还存在诸多问题。

因此,人们自然地想到利用有机材料作为FET的活性材料。

自1986年报道第一个有机场效应晶体管( OFET )以来,OFET研究得到快速发展,并取得重大突破。

由于OFET具有以下突出特点而受到研究人员的高度重视:材料来源广,工作电压低,可与柔性衬底兼容,适合低温加工,适合大批量生产和低成本,可溶液加工成膜等。

从使用共扼低聚物成功地制造出第一个有机场效应晶体管,到全有机全溶液加工的光电晶体管的诞生,这些突破性进展对有机半导体材料的发展无论从理论上还是工业生产上都起到了巨大的推动作用。

1器件结构、工作原理及性能评定1. 1有机场效应晶体管基本结构传统的有机场效应晶体管的主要包括底栅和顶栅两种结构,其中底栅和顶栅结构又分别包括顶接触和底接触两种结构,如图1所示。

第章电力场效应晶体管PPT课件

第章电力场效应晶体管PPT课件

缓二极管反向恢复时间。
2、结温的影响。
功率MOSFET的结温对CSOA没有直接影响,但是器件的电压和电流直接受结温 高低的影响。
3、线路引线电感的影响。
电路中的引线电感在二极管反向恢复过程会产生反电势,使器件承受很高的峰
值电压。二极管换向速度越快或引线电感越大,器件承受的峰值电压越高。过高的
电压使对器件CSOA的要求更加苛刻。为此,应尽量缩短电路引线,以便使引线电
a) 测试电路 b) 开关过程波形
降时间之和。
up—脉冲信号源,Rs—信号源内阻, RG—栅极电阻,
RL—负载电阻,RF—检测漏极电流
--
9
6.3
功率MOSFET的主要参数
1、静态参数
1) 通态电阻Ron
在确定的栅压UGS下,由可调电阻区进入饱和区时的直流电阻。
——它是影响最大输出功率的重要参数,在开关电路中决定了输出幅 度和自身损耗的大小。
61mosfet的结构和工作原理62功率mosfet的基本特性63功率mosfet的主要参数64功率mosfet的安全工作区65功率mosfet的栅极驱动电路功率场效应晶体管mosfet也分为结型和绝缘栅型类似小功率fieldeffecttransistorfet但通常主要指绝缘栅型中的mos型metaloxidesemiconductorfet简称功率mosfetpowermosfet结型功率场效应晶体管一般称作静电感应晶体管staticinductiontransistorsit功率场效应晶体管mosfet电流容量小耐压低一般只适用于功率不超过10kw的功率电子装置
器件在关断过程中承受很高的再加电压,即dUDS/dt 。
——器件的动态dUDS/dt耐量与本身的耐压水平密切相关。耐压越高, dUDS/dt的耐量越大。

晶体三极管与场效应管详解演示文稿

晶体三极管与场效应管详解演示文稿

U11==64-V5.3,VV,U,2U=U222==V-21,V.8U,V3,=U23U=.37=5VV-,1.5V
第13页,共43页。
共射极NPN放大电路
进入基区少数电子和空穴复
结论:I =I +I 合,以及进入发射区的空穴
与电集子电复区合少而数载形E流成子电B流IBNC和
IC =ICN+集IC电BO结反发,偏射发结射正区偏多
UCE VCC IC RC 15 0.716103 5000 11.42(V )
③如果VBB=5V;RB=300kΩ,β=300 解答:
IB
VBB U BE RB
5 0.7 300000
0.01
IC IB 300 0.0143 4.29(mA)
I里IIBPEB了,空IC--?B那穴O。么形扩复其成散漂它合移多运运电数流电动动子形去形哪成成的的电电C流流 IC-漂移运IB动ICB形O 成的电流JC
ICN
数载流子电 子不断向基 区扩散,形 成扩散电流
IEN。
基区多数载
流子空穴不断 向基区扩散, 形成扩散电流
IEP。
B
RB IEP
VBB
IBP JE
集电极C
Collector
基极B 发射极E
Base Emitter
金属层
发射区:发射载流子 集电区:收集载流子
基区:传送和控制载流子
P
N+
N-Si
N型硅片
(衬底)
第5页,共43页。
强化练习1
NPN型三极管
C
B E
基极 B
电符路号符号 集电区的作用:
收集载流子
基区的作用: 传送、控制载流子

《场效应晶体管》课件

《场效应晶体管》课件
压力
在制造过程中,压力也是一个重要的参数,它能够影响材 料的物理性质和化学反应速度,从而影响晶体管的性能。
时间
时间是制造过程中的另一个重要参数,不同的工艺步骤需 要不同的时间来完成,时间过长或过短都可能影响晶体管 的性能。
气体流量
在化学气相沉积等工艺中,气体流量是关键的参数之一, 它能够影响材料的生长速度和均匀性,从而影响晶体管的 性能。
掌握搭建场效应晶体管放大电路的基本技 能。
05
06
学会使用示波器和信号发生器测试放大电 路的性能。
特性测量实验
实验三:场效应晶体管的 转移特性与输出特性测量
分析测量结果,理解场效 应晶体管的工作机制。
学习测量场效应晶体管频 率响应和噪声特性的方法。
掌握场效应晶体管转移特 性和输出特性的测量方法。
实验四:场效应晶体管的 频率响应与噪声特性测量
了新的可能。
制程技术优化与突破
制程技术
不断缩小晶体管的尺寸,提高集成度和能效比,同时降低制造成本。
突破
探索新型制程技术,如纳米线、纳米孔等新型器件结构,以提高场效应晶体管的性能和 稳定性。
应用领域的拓展与挑战
要点一
应用领域
场效应晶体管的应用领域不断拓展,包括通信、物联网、 智能制造、医疗电子等领域。
要点二
挑战
随着应用领域的拓展,对场效应晶体管的性能要求也越来 越高,需要不断研究和改进以满足市场需求。
Part
06
实验与习题
基本实验操作
实验一:场效应晶体管的认知与检测
01
02
了解场效应晶体管的基本结构和工作原理。
学习使用万用表检测场效应晶体管的方法 。
03
04
实验二:场效应晶体管放大电路的搭建与 测试

场效应晶体管放大电路

场效应晶体管放大电路

N
N
G
P+ P+
UDS G
P+ P+
UDS
UGS
S
S
第3页/共34页
Sect
3.1.2 JFET特性曲线
1. 输出特性曲线:
iD f (U DS )∣ UGS const
可变电阻区 线性放大区 ID=gm UGS 击穿区
2. 转移特性曲线:
ID
I
DSS
(1
U GS UP
)
2
IDSS:饱和栅极漏极电流,
着源极、栅极的次序焊在电路上; • 电烙铁或测试仪表与场效应晶体管接触时,均
第15页/共34页
各种场效应管所加偏压极性小结
结型
N沟道(uGS<0) P沟道(uGS>0)
场效应管
绝缘栅型
增强型
耗尽型
PN沟沟道道((uuGGSS<>00)) N沟道(uGS极性任意) P沟道(uGS极性任意)
uo
u gs
g m u gs
u ds
S
GD
Id
RG
Ui
Ugs
gm Ugs RD
RL
Uo
R2
R1
S
第26页/共34页
动态分析:
G
电压放大倍数
Id
RL
D
RG
Ugs
Ui R2R1RD g源自 UgsRL Uo•

Ui Ugs
S
ri

ro
Au gm R'L


Uo gm Ugs (RD // RL )
ID(mA)
第8页/共34页
UGS=6V

MOS场效应晶体管ppt课件

MOS场效应晶体管ppt课件
MOS 场效应晶体管基本结构示意图
16
2. MOS管的基本工作原理
MOS 场效应晶体管的工作原理示意图
17
4.2.2 MOS 场效应晶体管的转移特性
MOS 场效应晶体管可分为以下四种类型:N沟增强型、 N沟耗尽型、P沟增强型、P沟耗尽型。 1. N沟增强型MOS管及转移特性
18
2. N沟耗尽型MOS管及转移特性 3.P沟增强型MOS管及转移特性
理想 MOS 二极管不同 偏压下的能带图及 电荷分布
a) 积累现象 b) 耗尽现象 c) 反型现象
3
2.表面势与表面耗尽区 下图给出了P型半导体MOS结构在栅极电压UG>>0情况 下更为详细的能带图。
4
在下面的讨论中,定义与费米能级相对应的费米势为
F
(Ei
EF )体内 q
因此,对于P型半导体, F
如图所示,当漏源电压UDS增高到某一值时,漏源电流 就会突然增大,输出特性曲线向上翘起而进入击穿区。 关于击穿原因,可用两种不同的击穿机理进行解释:漏 区与衬底之间PN结的雪崩击穿和漏-源之间的穿通。
41
1. 漏区-衬底之间的PN结击穿 在MOS晶体管结构中,栅极金属有一部分要覆盖在漏极上。 由于金属栅的电压一般低于漏区的电位,这就在金属栅极 与漏区之间形成附加电场,这个电场使栅极下面PN结的耗 尽区电场增大,如下图,因而使漏源耐压大大降低。
a) N 沟 MOS b) P 沟 MOS
29
3. 衬底杂质浓度的影响
衬底杂质浓度对阀值电压的影响
30
4. 功函数差的影响
功函数差也将随衬底杂质浓度的变化而变化。但实验证明, 该变化的范围并不大。 从阀值电压的表示式可知,功函数越大,阀值电压越高。 为降低阀值电压,应选择功函数差较低的材料,如掺杂多 晶体硅作栅电极。

4.1-MOS场效应晶体管的结构工作原理和输出特性

4.1-MOS场效应晶体管的结构工作原理和输出特性

国家标准对半导体三极管的命名如下:
3 D G 110 B
用字母表示同一型号中的不同规格
用数字表示同种器件型号的序号
用字母表示器件的种类 用字母表示材料 三极管
第二位:A锗PNP管、B锗NPN管、 C硅PNP管、D硅NPN管
2022/1/15
第三位:X低频小功率管、D低频大功率管、 G高频小功率管、A高频大功率管、K开关管
N+
G
P 型衬底
B
D B
S
IDSS
夹断电压
ID /mA
6 5 I DSS 4 3 2
1
4 3 2 1 UGS(off)
0
U GS/V
当UGS=0时,对应的漏极电流用IDSS表示。当UGS>0时,将使ID进一步增加。 UGS<0时,随着UGS的减小漏极电流逐渐减小,直至ID=0。对应ID=0的UGS称 为夹断电压,用符号UGS(off)表示,有时也用UP表示。N沟道耗尽型MOSFET的转移 特性曲线如右上图所示。
增强型 N沟道、P沟道 耗尽型 N沟道、P沟道
N沟道增强型MOSFET
的结构示意图和符号见图
02.13。其中: D(Drain)为漏极,相当c;
G(Gate)为栅极,相当b;
S(Source)为源极,相当e。
图4.1 N沟道增强型
MOSFET结构示意图(动画2-3)
第4页,共31页。
如果在同一N型衬底上同时制造P沟MOS管和N沟MOS 管,(N沟MOS管制作在P阱内),这就构成CMOS 。
表示衬底在 内部没有与 源极连接。
N沟道耗尽

MOSFET 管。漏、 衬底和源 不断开表 示零栅压 时沟道已 经连通。
如果是P沟道,箭头则向外。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。

由多数载流子参与导电,也称为单极型晶体管。

它属于电压控制型半导体器件。

具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。

目录基本特点工作原理主要参数型号命名主要作用试验测试分类简介测量方法基本特点工作原理主要参数型号命名主要作用试验测试分类简介测量方法•判断方法•产品特性•电气特性•参数符号•注意事项•使用优势•应用领域•应用特点展开编辑本段基本特点场效应管属于电压控制元件,这一点类似于电子管的三极管,但它的构造与工作原理和电子管是截然不同的,与双极型晶体管相比,场效应晶体管具有如下特点:场效应管(1)场效应管是电压控制器件,它通过UGS来控制ID;(2)场效应管的输入端电流极小,因此它的输入电阻很大。

(3)它是利用多数载流子导电,因此它的温度稳定性较好;(4)它组成的放大电路的电压放大系数要小于三极管组成放大电路的电压放大系数;(5)场效应管的抗辐射能力强;(6)由于不存在杂乱运动的少子扩散引起的散粒噪声,所以噪声低。

编辑本段工作原理场效应管工作原理用一句话说,就是“漏极-源极间流经沟道的ID,用以门极与沟道间的pn结形成的反偏的门极电压控制ID”。

更正确地说,ID流经通路的宽度,即沟道截面积,它是由pn结反偏的变化,产生耗尽层扩展变化控制的缘故。

在VGS=0的非饱和区域,表示的过渡层的扩展因为不很场效应管大,根据漏极-源极间所加VDS的电场,源极区域的某些电子被漏极拉去,即从漏极向源极有电流ID流动。

从门极向漏极扩展的过度层将沟道的一部分构成堵塞型,ID饱和。

将这种状态称为夹断。

这意味着过渡层将沟道的一部分阻挡,并不是电流被切断。

在过渡层由于没有电子、空穴的自由移动,在理想状态下几乎具有绝缘特性,通常电流也难流动。

但是此时漏极-源极间的电场,实际上是两个过渡层接触漏极与门极下部附近,由于漂移电场拉去的高速电子通过过渡层。

因漂移电场的强度几乎不变产生ID的饱和现象。

其次,VGS向负的方向变化,让VGS=VGS(off),此时过渡层大致成为覆盖全区域的状态。

而且VDS的电场大部分加到过渡层上,将电子拉向漂移方向的电场,只有靠近源极的很短部分,这更使电流不能流通。

编辑本段主要参数直流参数饱和漏极电流IDSS它可定义为:当栅、源极之间的电压等于零,而漏、源极之间的电压大于夹断电压时,对应的漏极电流。

夹断电压UP它可定义为:当UDS一定时,使ID减小到一个微小的电流时所需的UGS。

场效应管开启电压UT它可定义为:当UDS一定时,使ID到达某一个数值时所需的UGS。

交流参数低频跨导gm它是描述栅、源电压对漏极电流的控制作用。

极间电容场效应管三个电极之间的电容,它的值越小表示管子的性能越好。

极限参数漏、源击穿电压当漏极电流急剧上升时,产生雪崩击穿时的UDS。

栅极击穿电压结型场效应管正常工作时,栅、源极之间的PN结处于反向偏置状态,若电流过高,则产生击穿现象。

编辑本段型号命名有两种命名方法。

第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。

第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。

例如,3DJ6D是结型P沟道场效应三极管,3DO6C是绝缘栅型N沟道场效应三极管。

第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。

例如CS14A、CS45G 等。

编辑本段主要作用1.场效应管可应用于放大。

由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。

2.场效应管很高的输入阻抗非常适合作阻抗变换。

常用于多级放大器的输入级作阻抗变换。

3.场效应管可以用作可变电阻。

4.场效应管可以方便地用作恒流源。

5.场效应管可以用作电子开关。

编辑本段试验测试1、结型场效应管的管脚识别:场效应管的栅极相当于晶体管的基极,源极和漏极分别对应于晶体管的发射极和集电极。

将万用表置于R×1k档,用两表笔分别测量每两个管脚间的正、反向电场效应管阻。

当某两个管脚间的正、反向电阻相等,均为数KΩ时,则这两个管脚为漏极D和源极S(可互换),余下的一个管脚即为栅极G。

对于有4个管脚的结型场效应管,另外一极是屏蔽极(使用中接地)。

2、判定栅极:用万用表黑表笔碰触管子的一个电极,红表笔分别碰触另外两个电极。

若两次测出的阻值都很小,说明均是正向电阻,该管属于N沟道场效应管,黑表笔接的也是栅极。

3 、制造工艺决定了场效应管的源极和漏极是对称的,可以互换使用,并不影响电路的正常工作,所以不必加以区分。

源极与漏极间的电阻约为几千欧。

注意不能用此法判定绝缘栅型场效应管的栅极。

因为这种管子的输入电阻极高,栅源间的极间电容又很小,测量时只要有少量的电荷,就可在极间电容上形成很高的电压,容易将管子损坏。

4、估测场效应管的放大能力,将万用表拨到R×100档,红表笔接源极S,黑表笔接漏极D,相当于给场效应管加上1.5V的电源电压。

这时表针指示出的是D-S极间电阻值。

然后用手指捏栅极G,将人体的感应电压作为输入信号加到栅极上。

由于管子的放大作用,UDS和ID都将发生变化,也相当于D-S极间电阻发生变化,可观察到表针有较大幅度的摆动。

如果手捏栅极时表针摆动很小,说明管子的放大能力较弱;若表针不动,说明管子已经损坏。

由于人体感应的50Hz交流电压较高,而不同的场效应管用电阻档测量时的工作点可能不同,因此用手捏栅极时表针可能向右摆动,也可能向左摆动。

少数的管子RDS减小,使表针向右摆动,多数管子的RDS增大,表针向左摆动。

无论表针的摆动方向如何,只要能有明显地摆动,就说明管子具有放大能力。

本方法也适用于测MOS管。

为了保护MOS场效应管,必须用手握住螺钉旋具绝缘柄,用金属杆去碰栅极,以防止人体感应电荷直接加到栅极上,将管子损坏。

MOS管每次测量完毕,G-S结电容上会充有少量电荷,建立起电压UGS,再接着测时表针可能不动,此时将G-S极间短路一。

[1]编辑本段分类简介场效应管分结型、绝缘栅型(MOS)两大类。

按沟道材料型和绝缘栅型各分N沟道和P沟道两种;按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。

场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。

场效应管分为结型场效应管(JFET)和绝缘栅场效应管(MOS管)。

结型场效应管(JFET)1、结型场效应管的分类:结型场效应管有两种结构形式,它们是N沟道结型场效应管和P沟道结型场效应管。

结型场效应管也具有三个电极,它们是:栅极;漏极;源极。

电路符号中栅极的箭头场效应管方向可理解为两个PN结的正向导电方向。

2、结型场效应管的工作原理(以N沟道结型场效应管为例),N沟道结构型场效应管的结构及符号,由于PN结中的载流子已经耗尽,故PN基本上是不导电的,形成了所谓耗尽区,当漏极电源电压ED一定时,如果栅极电压越负,PN 结交界面所形成的耗尽区就越厚,则漏、源极之间导电的沟道越窄,漏极电流ID就愈小;反之,如果栅极电压没有那么负,则沟道变宽,ID变大,所以用栅极电压EG可以控制漏极电流ID的变化,就是说,场效应管是电压控制元件。

绝缘栅场效应管(MOS管)1、绝缘栅场效应管的分类:绝缘栅场效应管也有两种结构形式,它们是N沟道型和P沟道型。

无论是什么沟道,它们又分为增强型和耗尽型两种。

2、它是由金属、氧化物和半导体所组成,所以又称为金属—氧化物—半导体场效应管,简称MOS场效应管。

3、绝缘栅型场效应管的工作原理(以N沟道增强型MOS场效应管)它是利用UGS来控制“感应电荷”的多少,以改变由这些“感应电荷”形成的导电沟道的状况,然后达到控制漏极电流的目的。

在制造管子时,通过工艺使绝缘层中出现大量正离子,故在交界面的另一侧能感应出较多的负电荷,这些负电荷把高渗杂质的N区接通,形成了导电沟道,即使在VGS=0时也有较大的漏极电流ID。

当栅极电压改变时,沟道内被感应的电荷量也改变,导电沟道的宽窄也随之而变,因而漏极电流ID随着栅极电压的变化而变化。

场效应管的式作方式有两种:当栅压为零时有较大漏极电流的称为耗散型,当栅压为零,漏极电流也为零,必须再加一定的栅压之后才有漏极电流的称为增强型。

编辑本段测量方法用测电阻法判别结型场效应管的电极根据场效应管的PN结正、反向电阻值不一样的现象,可以判别出结型场效应管的三个场效应管电极。

具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。

当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。

因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。

也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。

当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。

若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。

若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。

用测电阻法判别场效应管的好坏测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效应管手册标明的电阻值是否相符去判别管的好坏。

具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。

然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。

要注意,若两个栅极在管内断极,可用元件代换法进行检测。

用感应信号输人法估测场效应管的放大能力具体方法:用万用表电阻的R×100档,红表笔接源极S,黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时表针指示出的漏源极间的电阻值。

然后用手捏住结型场效应管的栅极G,将人体的感应电压信号加到栅极上。

相关文档
最新文档