第7讲 电化学

合集下载

南京工业大学物理化学课件第七章电化学

南京工业大学物理化学课件第七章电化学
缔合离子
§7—3 溶液的电导率和摩尔电导率
弱电解质 : 电导率虽也随着浓度的增加而稍有增大,之后减小,但并不显著。
因为浓度增大时,单位体积溶液中的分子数目虽然增加,但电离度 却随之减小,以致离子数目的增加量并不显著而造成的。
摩尔电导率随浓度的变化与电导率的变化不同 当浓度降低时,由于粒子之间的相互作用力 减弱,正、负离子的运动速度加快,故摩尔 电导率增加;当浓度降低到一定程度之后, 强电解质的摩尔电导率几乎保持不变。
弱电解质溶液在稀释过程中,摩尔电导率 增加甚多随着浓度的下降,该 溶液中的电解质数量未变,但电离度随之 增大稀释到一定程度后,电离度迅 速增加, 致使离子数目增加很多,因而摩尔电导率 显著增大
§7—3 溶液的电导率和摩尔电导率
科尔劳施(德国化学家)根据实验结果发现:如以 C 的值为横坐 标,以 m 的值为纵坐标作图。强电解质的 m 与 C 之间有如下 关系:
z
• 上式又可写成: Q nF
• 因此 F 的物理意义:就是1克当量物质发生放电时通过溶液 的电量:此值也就是电极上有1mol电子转移时所带的电量。
F Le 6.0221023 m ol1 1.60221019 C 96484.6C • m ol1
96500C • m ol1
§7-2 离子的迁移数 1、离子的电迁移现象:
相连的电极是发生失去电子的反应是阳极。
§7-1 电化学的基本概念和法拉第定律
• 原电池:若电池能自发地在两极上发生化学反应并产生电流, 此时化学能转化为电能,则该电池就称为原电池
• 示意图如下:
§7-1 电化学的基本概念和法拉第定律
无论是在原电池还是电解池中,人们总是把电势较低的电极称为 负极,在电势较高的极称为正极,在电解池中阳极是正极,阴极 是负极。

7-6 氧化还原反应方向和程度的判断,特殊平衡常数的求算

7-6 氧化还原反应方向和程度的判断,特殊平衡常数的求算

第7 讲电化学基础知行合一、经世致用7.6 氧化还原反应方向和程度的判断,特殊平衡常数的求算7.6 Judgment of REDOX reaction direction and limit, Special equilibrium constant calculation本次课主要内容:氧化还原反应的方向的判断氧化还原反应的程度的判断特殊平衡常数的求算氧化还原反应方向的判断1. 标准态下氧化还原反应方向的判断-决定氧化还原反应方向的本质因素是吉布斯自由能变化ΔG,若在标准态下,则为ΔGӨ。

标准态下:ΔGӨ= –nFEӨ•若ΔGӨ <0,则EӨ >0时,反应自发。

-故标准态下,氧化还原反应方向的判断规则为:EӨ>0 反应正向自发进行EӨ=0 反应处于平衡状态EӨ<0反应逆向自发进行而EӨ>0 ,即EӨ=EӨ氧化剂–EӨ还原剂>0 。

-当给定的反应物中氧化剂电对的EӨ大于给定的反应物中还原剂电对的EӨ时,反应才能正向自发进行。

-这样,就可用标准电极电势EӨ 表的对角线规则来直接判断标准态下氧化还原反应自发进行的方向。

2. 非标准态下氧化还原反应方向的判断非标准态下:ΔG= –nFE•若ΔG<0,则E>0时,反应自发。

-故非标准态下,氧化还原反应方向的判断规则为:E>0 反应正向自发进行E=0 反应处于平衡状态E<0反应逆向自发进行而E>0 ,即E=E氧化剂–E还原剂>0 。

-当给定的反应物中氧化剂电对的E大于给定的反应物中还原剂电对的E时,反应才能正向自发进行。

而非标准态下的E 值,则必须用能斯特方程计算。

在电化学中,判断非标准态下氧化还原反应的方向,有没有更简便的方法呢?对于非标准态下的反应,有个粗略判断方法,即:-若EӨ> 0.2V,一般可认为E> 0,反应正向进行;-若EӨ< –0.2V,一般可认为E< 0,反应逆向进行;-若–0.2V < EӨ< 0.2V,则只能根据能斯特方程计算出E的实际大小来进行判断。

第七章 电化学(4)

第七章 电化学(4)

l g Ksp = −9.7566
K sp = 1 . 75 × 10 − 10
例7.9.3 将下列扩散过程设计成电池,并写出其电动势的能斯 特方程。
(1) H 2 (g, p1 ) → H 2 (g, p2 )
( p1>p2 )
(2) Ag + (a1 ) → Ag + (a2 )
解: (1) 阳极: 阴极:
Pt | O 2 (g, p ) | OH − H + | O 2 (g, p ) | Pt
同样,这两个电极中O2压力也必须相等。
例 7.9.2
利用表7.7.1的数据,求25℃ AgCl(s)在水中的溶度积Ksp。 解:溶解过程表示为
AgCl(s) = Ag + + Cl −
阳极 阴极
Ag = Ag + + e −
{
}
2.第二类电极
(1)金属—难溶盐电极 这类电极是在金属上覆盖一层该金属的难溶盐,然后 将它浸入含有与该难溶盐具有相同阴离子的溶液中而 构成的。 银-氯化银电极和甘汞电极。 甘汞电极
Cl − Hg 2 Cl 2 (s) Hg
电极反应为:
Hg 2 Cl 2 (s) + 2e − 2Hg + 2Cl −
当外加电压等于分解电压时,两极的电极电势分别称为氢和氧 的析出电势。 表7.10.1 几种电解质溶液的分解电压(室温,铂电极) 电解质 HCl HNO3 H2SO4 NaOH CdSO4 NiCl2 浓度c/mol·dm−3 1 1 0.5 1 0.5 0.5 电解产物 H2和Cl2 H2和O2 H2和O2 H2和O2 Cd和O2 Ni和Cl2 E分解/V 1.31 1.69 1.67 1.69 2.03 1.85 E理论/V 1.37 1.23 1.23 1.23 1.26 1.64

7-7 元素电势图及其应用,实用化学电源

7-7 元素电势图及其应用,实用化学电源

第 7 讲 电化学基础知行合一、经世致用7.7 元素电势图及其应用,实用化学电源7.7 Element potential diagram and its application,Practical chemical power supply本次课主要内容:元素电势图及其应用实用化学电源元素电势图:把同一元素的不同氧化态物质,按照其氧化数由高到低的顺序从左至右排列成图,并在两种氧化态之间的连线上标出 25℃时相应电对的标准电极电势值而得到的图。

-有注明了E A Ө 、E B Ө 的酸性介质和碱性介质中的元素电势图之分。

-如 Cu 在酸性介质中的元素电势图:Cu 2+ Cu + Cu0.16070.5180E A Ө / V 0.3394-主要用于求未知电对的标准电极电势和判断歧化反应能否发生元素电势图的应用1. 求未知电对的标准电极电势z 1z 2z 3A B z x E xE 1C E 2DE 3图中,z 为任意一电对不同氧化态之间元素氧化数的差值。

(1)A + z1e-⇌ B E1Ө ∆r G m1Ө = –z1FE1Ө(2)B + z1e-⇌ C E2Ө ∆r G m2Ө = –z2FE2Ө(3)C + z3e-⇌ D E3Ө ∆r G m3Ө = –z3FE3Ө +)(4)A + z x e-⇌ D E xӨ ∆r G m xӨ = –z x FE xӨ根据盖斯定律,由于电极反应(4)=(1)+(2)+(3) 则: ∆r G m xӨ = ∆r G m1Ө + ∆r G m2Ө + ∆r G m3Ө且:z x = z1 + z2 + z3再根据: r G mӨ = – z FEӨ则有: -z x FE xӨ = - z1FE1Ө - z2FE2Ө - z3FE3Өz x E xӨ = z1E1Ө + z2E2Ө + z3E3Ө故:E xӨ =z1E1Ө + z2E2Ө + z3E3Өz x已知 25 ℃ 时,在酸性溶液中 E 1Ө(Cu 2+/Cu +) = 0.1607V , E 2Ө(Cu 2+/Cu) = 0.3394 V ,试求 E x Ө(Cu +/Cu)。

02-7.5 电极电势能斯特方程的影响因素

02-7.5 电极电势能斯特方程的影响因素

第7 讲电化学基础中南大学:王一凡知行合一、经世致用C e n t r a l S o u t h U n i v e r s i t y7.5 电极电势能斯特方程的影响因素7.5 The influencing factors of electrode potential Nernst equation本次课主要内容:酸度对电极电势的影响难溶化合物的形成对电极电势的影响弱酸或弱碱的生成对电极电势的影响E-pH 图•一般而言,温度、浓度或分压等因素的影响不大。

仅当氧化态或还原态物质浓度很大或很小、以及电极反应中物质的计量系数很大时,温度、浓度或分压等才会有显著影响。

•从电极电势的能斯特方程可知,电极电势主要决定于电极的本性,即标准电极电势E 的大小。

⊖•电极电势能斯特方程的通式:E = E –lg J⊖RTnF酸度对电极电势的影响对于有H +或OH -参与的电极反应,酸度变化对E将产生影响。

已知E Ө(Cr 2O 72‾/Cr 3+) =1.232 V ,c (Cr 2O 72‾) = c (Cr 3+) =1.0mol·L -1。

计算298.15 K 时,电对Cr 2O 72-/Cr 3+ 在下列情况下的E (Cr 2O 72-/Cr 3+)。

(1)在1.0 mol·L -1 HCl 中;(2)在中性溶液中。

解:写出配平的电极反应为:Cr 2O 72-+ 14H + + 6e -⇌2Cr 3+ + 7H 2O(1)当c (H +) = 1.0 mol·L‾1,c (Cr 2O 72‾) = c (Cr 3+) = 1.0 mol·L‾1E = E –lg ⊖0.05926c (Cr 3+)2c (Cr 2O 72-) c (H +)14能斯特方程为:E = 1.232 –lg 0.05926 1.021.0 ×1.014= 1.232 V例1c (H +): 1.0 mol·L -11.0×10-7 mol·L -1 E (Cr 2O 72-/Cr 3+) : 1.232 V 0.265 V(2)当c (H +) = 1.0 ×10-7 mol·L‾1,c (Cr 2O 72‾) = c (Cr 3+) = 1.0mol·L‾1E = 1.232 –lg 0.05926 1.021.0 ×(1.0×10-7)14= 0.265 V-含氧酸盐在酸性介质中的氧化性更强。

物理化学-第七章-电化学

物理化学-第七章-电化学
解: 电极反应: Ag e Ag
通入的总电量:Q I t 0.23060 360库仑
电极上起化学反应物质的量:
n Q 360 0 00373mol zF 196500
析出Ag的质量: m=n×MAg=0.00373×107.88=0.403g
二、电导、电导率和摩尔电导率
体积与浓度的关系如何呢?
c n V
(mol·m-3)
若n为1mol
Vm

1 c
m

Vm


c
S·m2·mol-1
注意:c的单位:mol﹒m-3
3.电导、电导率和摩尔电导率之间的关系
G 1 R
K l A
G K
m


Vm


c
例: 298K时,将0.02mol·dm-3的KCl溶液放入 电导池,测其电阻为82.4Ω,若用同一电导池充 0.0025mol.dm-3的K2SO4溶液,测其电阻为 326Ω,已知298K时,0.02mol·dm-3的KCl溶液 的电导率为0.2768S.m-1 (1)求电导池常数; (2)0.0025mol.dm-3的K2SO4溶液的电率; (3)0.0025mol.dm-3的K2SO4溶液的摩尔电 导率。
★电池 汽车、宇宙飞船、照明、通讯、 生化和医学等方面都要用不同类型的化学 电源。
★ ⒊电分析 ★ ⒋生物电化学
§7-1 电解质溶液的导电性质 一、电解质溶液的导电机理
1.导体: 能够导电的物体叫导体。
第一类: 靠导体内部自由电子的定向运动而导电的物体
如 金属导体
石墨
性质:
A.自由电子作定向移动而导电
F:法拉第常数,即反应1mol电荷物质所需电量 1F=96500库仑/摩尔

物理化学第7章 电化学

物理化学第7章 电化学

放置含有1 mol电解质的溶液,这时溶液所具有的
电导称为摩尔电导率 Λ m
Λ m
def
kVm
=
k c
Vm是含有1 mol电解质的溶液
的体积,单位为 m3 mol1,c 是电解
质溶液的浓度,单位为 mol m3 。
摩尔电导率的单位 S m2 mol1
注意:
Λ 在 后面要注明所取的基本单元。 m
b、强电解质: 弱电解质:
强电解质的Λ m

c
的关系
随着浓度下降,Λ 升高,通 m
常当浓度降至 0.001mol dm3 以下
时,Λ 与 m
c 之间呈线性关系。德
国科学家Kohlrausch总结的经验
式为:
Λ m
=Λm (1
c)
是与电解质性质有关的常数
将直线外推至 c 0
得到无限稀释摩尔电导率Λm
-
- 电源 +
e-
+
e-




CuCl2
电解池
阳极上发生氧化作用
2Cl aq Cl2(g) 2e
阴极上发生还原作用
Cu2 aq 2e Cu(s)
三、法拉第定律
Faraday 归纳了多次实验结果,于1833年总结出该定律
1、内容:当电流通过电解质溶液时,通过电极 的电荷量与发生电极反应的物质的量成正比;
作电解池 阴极: Zn2 2e Zn(s)
阳极 2Ag(s) 2Cl 2AgCl(s) 2e
净反应: 2Ag(s) ZnCl2 Zn(s) 2AgCl(s)
2.能量变化可逆。要求通过的电流无限小。
二、可逆电极的种类
1、第一类电极

chap7 电化学

chap7 电化学

第七章 电化学7.0 绪言7.0.1电化学定义电化学定义:研究电能和化学能的相互转化及转换过程中有关规律的科学。

化学反应通常伴随着热的吸放(反应热效应),不涉及到电能。

而作为电化学则讨论在消耗外电功的情况下进行的反应或作为电能来源的反应。

显然,从热力学的观点看,电化学反应与一般的化学反应不同,电化学是一门独立的学科。

应该说,上述的电化学定义是相当概括的定义。

1970年,Bockris 在其名著《ModernElectrochemistry 》中把电化学定义为:电化学是研究带电界面的现象的科学,即研究电子导体和离子导体界面现象的 科学。

区分、认识电化学反应的两个关键因素: (1)反应必须发生在两类导体的界面上;(2)反应中应有电子的得失。

电化学中的能量转换: 电 能 → 化学能:电解(池);化学能 → 电 能:原电池。

7.0.2电化学与化学反应的区别以下列反应为例:+++++=+223Cu Fe Cu Fe若这个反应以化学反应的方式进行,它将具有以下的特点:(1) 反应只有当反应物在碰撞时才可能发生,及反应质点必须碰撞;(2) 在碰撞的一瞬间,当反应质点相互靠近时,电子从一个质点转移到另一个质点成为可能。

这个电子转移的实际上能否发生,取决于反应质点的内能以及内能与活化能的比值。

活化能是化学反应本性的函数;在离子反应中,这个能量通常是不大的。

电子所经过的途径也是非常小的;(3)对于简单离子反应,不管反应质点彼此相对位置如何,在反应区间的任何一点都可能发生碰撞。

因此,电子可能在空间任一方向上转移。

反应质点间碰撞的混乱性,以及由此引起的电子混乱运动;(4)由于这些特点,其能量效应采用热的方式释放。

如果这个反应以电化学的方式进行,反应条件必须改变:(1)电能的获得和损失是与电流的通过有关的,而电流是电子在一定方向上的流动。

只有当电子通过的路径与原子的大小相比很大时,电能的利用才有可能。

因此,在电化学反应中,电子从一种参加反应的物质转移到另一种物质必须经过足够长的路径。

第七章 电化学

第七章 电化学

第七章电化学教学目的与要求了解电解质溶液的导电机理和法拉第定律、离子独立运动定律理解离子迁移数、电导率, 摩尔电导率的概念。

理解电导测定的应用。

理解电解质活度和离子平均活度系数的概念。

了解离子氛的概念和Debye-Huckel极限公式。

理解可逆电池及韦斯顿标准电池,理解原电池电动势和热力学函数的关系。

掌握能斯特方程及其计算。

掌握电动势测定方法与其主要应用。

掌握各种类型电极的特征。

理解把电池反应设计成电池的方法*。

理解电极极化的原因和超电势的概念。

了解分解电压、析出电势的概念以及析出反应次序与析出电势的关系*。

教学重点与难点重点:电化学系统中的基本原理及其应用。

难点:离子氛的概念,电解质活度、离子平均活度系数和超电势的计算.作业: 7.1 7.5 7.7 7.11 7.13 7.16 7.19 7.25 7.29 7.30 7.36 7.40 电化学主要研究电能和化学能相互转化的一门科学。

是物理化学的一个重要分支。

研究的主要内容:电解质溶液、电化学平衡电极过程热力学、应用问题7-1 电解质溶液的导电机理及法拉第定律一、基本概念1、导体分类第一类导体(电子导体):依靠电子在电场下作定向移动导体。

如金属、石墨等A.自由电子作定向移动而导电B.导电过程中导体本身不发生变化C.温度升高,电阻也升高D.导电总量全部由电子承担第二类导体(又称离子导体),如电解质溶液、熔融电解质等。

依靠正负离子在电场作用下移动导电。

A.正、负离子作反向移动而导电B.导电过程中有化学反应发生C.温度升高,电阻下降D.导电总量分别由正、负离子分担2、电池(电解池、原电池)(1)电解池装置(2)原电池装置3. 阴极、阳极和正、负极的确定①按电势的高低高→正极低→负极②按得失电子的不同失电子,发生氧化反应→阳极得电子,发生还原反应→阴极4. 分析对照图讲解原电池中:负极(阳极),正极(阴极)电解池中:负极(阴极),正极(阳极)5. 电解质溶液的导电机理正、负离子的定向移动以及在电极溶液界面上发生化学反应而实现。

物理化学电子课件第七章电化学基础

物理化学电子课件第七章电化学基础

第二节 电解质溶液
六、电导测定的应用
2. 难溶盐或微溶盐在水中的溶解度很小,很难用普通的滴定方法测 定出来,但是可以用电导的方法测定。用一已预先测定了电导率的高 纯水,配置待测微溶或难溶盐的饱和溶液,测定此饱和溶液的电导率 κ,则测出值为盐和水的电导率之和,故
第二节 电解质溶液
3. 在科学研究及生产过程中,经常需要纯度很高的水。例如,半导 体器件的生产和加工过程,清洗用水若含有杂质会严重影响产品质量 甚至变为废品。
第二节 电解质溶液
表7-2 25 ℃时几种浓度KCl水溶液的电导率
第二节 电解质溶液
四、摩尔电导率与浓度的关系
科尔劳施 (Kolrausch)对电解质溶液的摩尔电导率进行了深入的 研究,根据实验结果得出结论:在很稀的溶液中,强电解质的摩尔电 导率Λm与其浓度c的平方根呈直线关系,即科尔劳施经验式:
第七章 电化学基础
第一节 电化学的基本概念 第二节 电解质溶液第三节 可逆电池及原电池热力学 第四节 电极电势 第五节 不可逆电极过程 第六节 电化学的基本应用
第一节电化学的基本概念
一、电解池与原电池
电化学的根本任务是揭示化学能与电能相互转换的规律,实现这 种转换的特殊装置称为电化学反应器,分为电解池和原电池两类。电 解池是将电能转化为化学能的装置,而原电池是将化学能转化为电能
第三节 可逆电池及原电池热力学
四、可逆电池的热力学 1.可逆电池的电动势E与电池反应的摩尔反应吉布斯函数ΔrGm的关
在恒温、恒压且电池可逆放电过程中,系统吉布斯函数的变化量等 于系统与环境间交换的可逆电功,即等于电池的电动势E与电量Q的乘积。 根据法拉第定律,每摩尔电池反应的电量为zF,故
第三节 可逆电池及原电池热力学

第7章-电化学基础

第7章-电化学基础

标准电极电势的测定
例5 简述测定Pt | Fe3+(1.0), Fe2+(1.0)的标准电极电势的方法及结果。 解 将Pt | Fe3+(1.0), Fe2+(1.0)与标准氢电极组成电池。从实验电流的方向确定此待测电极为正极,标准氢电极为负极。 测得电动势为0.771V,则 EΘ= E+Θ - E- Θ = EΘFe3+ /Fe2+ - EΘH+/H2
2.电极反应
任何氧化还原反应都可拆分为两个氧化还原电对的半反应(半电池反应,电极反应): Fe3+ + e → Fe2+ Sn2+ → Sn4+ + 2e 氧化-还原反应的实质: 两个共轭电对之间的电子转移反应。
3.电对拆分:
2MnO4-+5H2C2O4 + 6H+ → 2Mn2+ + 10CO2 + 8H2O MnO4- + 8H+ + 5e → Mn2+ + 4H2O ① H2C2O4 → 2CO2 + 2H+ + 2e ② MnO4- / Mn2+; CO2 /H2C2O4
例1 用离子-电子法配平下列氧化还原反应: K2Cr2O7 + KI + H2SO4 →K2SO4 + Cr2(SO4)3+I2+H2O 解:先写成离子反应式: Cr2O72- + I- + H+→ Cr3+ + I2 + H2O 将离子反应式分成两个半反应: I- → I2(电对:I2 /I- ) Cr2O72- + H+ → Cr3+ + H2O(电对:Cr2O72- /Cr3+) 分别配平两个半反应: 2I- = I2 + 2e Cr2O72- + 14 H+ + 6e = 2Cr3+ +7 H2O

第七章电化学-PPT课件

第七章电化学-PPT课件

Q t Q Q U U U
Q U t Q Q U U
故有
t U t U
31
4. 迁移数测定的方法 (1) 希托夫法 根据迁移数的定义,将电解池划分为 三个区:阴极区、阳极区和中间区。
Q Q
Q t Q Q Q t Q Q
(3) 影响离子迁移数因素 从上式可见,离子迁移数与溶液中正、 负离子在电场中运动的速率有关。
28
离子在电场中运动的速率除了与离子的 本性(包括离子半径、离子水化程度、所带 电荷等)以及溶剂的性质(如粘度等)有关以 外,还与外加电场的电位梯度有关,电位梯 度越大,推动离子运动的电场力也越大。 影响离子迁移数因素:温度、溶液浓度 溶质特性、溶剂特性。一般情况下,温度升 高,正、负离子的迁移数趋于相等。 离子迁移数是一比值,为无量纲的纯数。
+ -
24
+
-
25
(3) 电解时 正负离子运动规律 A. 向阴、阳两极方向迁移的正、负离子的 物质的量总和(电量)恰等于通入溶液的总电 量(法拉第数)。 通入溶液的总电量 = Q+ + QB.
正离子迁移的电量Q+ 负离子迁移的电量Q负离子运动速率正离子迁出阳极区的物质的量n+ 负离子迁出阴极区的物质的量n正离子迁入阴极区的物质的量n+
Q t Q Q
32
Q t Q Q
=
正离子迁出阳极区的物质的量n+ 通过电解池电荷的物质的量n
=
=
正离子迁出阳极区的物质的量n+
电极反应的物质的量n 正离子迁出阳极区时所迁移的电量Q+ 通过电解池的总电量

天津大学物理化学第七章-电化学PPT课件

天津大学物理化学第七章-电化学PPT课件
解:电极反应为: 阳极 Ag→Ag++e阴极 Ag++e- →Ag
对阳极区的Ag+ 进行物料衡算,假定通电前后阳极区的水量不变(水分 子不迁移),则电解前阳极区23.14g水中原有AgNO3的物质的量为:
n 电 解 前 ( A g N O 3 )4 1 3 0 . 0 5 0 0 2 3 . 1 4 m m o l1 . 0 0 7 m m o l = n 电 解 前 ( A g + )
化学能与电能之间 相互转换的规律
原电池
利用化学反应来 产生电能将 能够自发进行的 化学反应放在原 电池装置中使化 学能转化为电能
电解池
利用电能来驱动 化学反应将 不能自发进行的 反应放在电解池 装置中输入电流 使反应得以进行
-
4
无论是原电池还是电解池,其内部工作介质都离不 开电解质溶液。因此本章除介绍原电池和电解池外,还
电解过程 法拉第定律 同时适用于
原电池放电过程
1 mol 电子电量=L×e = 6.023×1023(mol-1)×1.602×10-19 (库仑,C) = 96485 C·mol-1 = 1 F
-
12
电极反应的通式可写为:
或:
M ( 氧 化 态 ) z e
M ( 还 原 态 )
M ( 还 原 态 ) M ( 氧 化 态ቤተ መጻሕፍቲ ባይዱ)z e
但如将逆反应放入如图 所示装置内,通电后,逆反 应可进行。
极板/溶液:电子得失 溶液中: 离子定向迁移
利用电能来发生化学反 应的装置成称为电解池
H2 阴极-
Fe
电解池
-
电源
O2 +阳极 Ni
KOH 水溶液
6

第7章 电化学极化 ppt课件

第7章   电化学极化  ppt课件
ppt课件 40
Tafel曲线
• lg|J|对于η作图所得半对数极化曲线称为Tafel曲线
阴极极化 Tafel曲线
• β可通过斜率得到,J0可pp通t课件过截距得到 41
(3) 低过电势下的近似公式:线 性极化公式
• η<12mV或J<0.5J0时,可使用线性极化公式,误 差<1%
• 线性极化公式的误差受传递系数影响较大,相对而 言,Tafel公式适用条件基本不受传递系数影响。
电化学原理
高鹏 哈尔滨工业大学(威海)
ppt课件
1
第7章 电化学极化
• 7.1 电化学动力学理论基础 • 7.2 电极动力学的Butler-Volmer模型 • 7.3 单电子反应的电化学极化 • 7.4 多电子反应的电极动力学 • 7.5 电极反应机理的研究 • 7.6 分散层对电极反应速率的影响 • 7.7 平衡电势与稳定电势
• 精细平衡原理:平衡时体系中每一个基元反应在 正、逆两个方向进行反应的速率相等。 – 在复杂反应中如果有一个决速步骤,则它必然 是逆反应的决速步骤。
ppt课件 6
v v v0
(3)绝对电流密度与交换电流密度
ppt课件 7
ppt课件 8
(4)过渡态理论
ppt课件 9
ppt课件 10
ppt课件 67

习题
ppt课件 68
7.6 分散层对电极反应速率的影响
• ψ1效应:分散层电势 ψ1对电子转移步骤反应速度的 影响。 –Tafel曲线不是直线 –k、J0是电势的函数,也是支持电解质浓度的函 数
ppt课件 13
(8)电荷转移的微观理论
• 建立在量子力学和统计热力学基础之上 • 电子迁移的Marcus理论在电化学研究中已有广泛的

物理化学 第七章电化学总结

物理化学  第七章电化学总结
阳极部电解质物质的量的减少 正离子所传导的电量(Q ) 2. 阴极部电解质物质的量的减少 负离子所传导的电量(Q ) 正离子的迁移速率(ν+) r = 负离子的迁移速率(ν-) r
如果正、负离子荷电量不等,如果电极本身也发生反 应,情况就要复杂一些。
29
(2)迁移数 transfer number 某种离子运载的电流与通过溶液的总电流之比 称为该离子的迁移数, 以t 表示。

即每有1mol Ag+被还原或1molAg沉积下来,通过的 电量一定为96500C
21
2+ + 2e对于电极反应:Cu = Cu
z=2, Q=96500C 时:
Q 96500 C 0.5mol zF 2 96500 mol 1 C
n(Cu ) (Cu )
n(Cu) (Cu) 0.5mol
49
3.摩尔电导率与浓度的关系
例1例2例3例4例5
0.04 HCl 0.03 0.02 NaOH
0.01
0 0
AgNO3 CH3COOH 0.5 1.0 1.5
•随着电解质浓度c降低, 离子间引力减小, 离子 运动速度增加,故摩尔 电导率m增大。
m/(S m2 mol-1)
c , F , v , m 。
F=L· e
=6.0221367×1023 mol-1×1.6022×10-19 C =96485.309 C· -1 mol
≈96500 C· -1 mol
19
对各种电解质溶液, 每通过96485.309C的电量,
在任一电极上发生得失1mol电子的反应, 同时相
对应的电极反应的物质的量亦为1mol(所选取的 基本粒子荷一价电).

物理化学第七章 电化学

物理化学第七章 电化学

CdCl2 a Cd
Q Id t
t 电流表:指示测定时,电路中 的电流变化。
界面移动法可以较精确地测定离子迁移数,关键是如 何寻找一种指示溶液,能与被测溶液之间形成一清晰界面。 形成清晰界面的条件:
n电解后=该离子电解前的物质的量n电解前±该离子参与 电极反应的物质的量n反应±该离子迁移的物质的量n迁

由实验数据计算离子的迁移数时,如果所用电极也参加电极 反应时,应加以考虑。
例:用两个银电极电解AgNO3水溶液,在电解前,溶液中每1kg 水含43.50mnol AgNO3。实验后,银库仑计中有0.723mmol 的Ag 沉积。由分析知,电解后阳极区有23.14g水和1.390mmolAgNO3。 试计算t(Ag+)和t(NO3-)。 解:用银电极电解AgNO3溶液时,电极反应:
导电机理 电子导体:电子定向运动 离子导体:离子在溶液中定向迁移 电流流经导体 不发生化学变化 发生电解反应 温度升高 导电性下降 导电性上升
原电池和电解池的共同特点: 当外电路接通时在电极与溶液的界面上有电子得失的 反应发生,溶液内部有离子做定向迁移运动。
电极反应:把电极上进行的有电子得失的化学反应. 两个电极反应的总和对原电池叫电池反应,对电解池叫电解 反应。 注意:阴离子在阳极失去电子,失去电子通过外线路流向电源 正极.阳离子在阴极得到电子. 发生氧化反应的电极叫阳极,发生还原反应的电极叫阴极. 正负极依电势高低来定.
阳极:Ag→Ag++e阴极:Ag++e→Ag
电解前阳极区在23.14g水中有AgNO3为:
43.50 23.14 1.007mmol 1000
由库仑计中有0.723mmol的Ag沉积,则在电解池的阳极也有相 同数量的Ag被氧化为Ag+ 所以Ag+迁出阳极区的摩尔数为: (n电解前+n反应)-n电解后=1.007+0.723-1.390=0.340mmol

物理化学电化学(新)PPT课件

物理化学电化学(新)PPT课件

波根多夫对消法
检流计中无电流通过时:
E E AC x N AC
.
38
§7.6 原电池热力学
根据热力学第二定律:
dGT,p = δW’r

W’=-EIt=-EQ,
δW’r = - Ed(zFξ) = dGT,p 则单位反应进度的反应:
ΔrGmG T,p zFE
标准态下进行的反应:ΔrGmӨ = - zFEӨ
3Δ )rG m zF ;Δ r E S m z F E T p Q rm , T Δ rS m
.
43
§7.7 电极电势和液体接界电势
1. 电极电势 选氢电极作为参考标准,定义其在标准态
下的电极电势为0,以此电极为负极与欲测电 极组成电池,测得此电池的电动势即为欲测电 极的电极电势,也称为还原电极电势。
之间的关系:
QzF
Q --通过电极的电量;
z -- 电极反应的电荷数(即转移电子数)
ξ--电极反应的反应进度;
F -- 法拉第常数, ≈96500 C·mol-1.
.
7
例题
0.20 A的电流通过 CuCl2溶液2 h,在 阴极上析出了Cu和H2,析出Cu的质量为 0.3745 g,求析出H2标准状况下的体积, Cu的相对原子质量为63.33。
17
5. 应用举例
(1)柯尔劳施公式可以求算弱电解质的极限摩尔电
导率。
例题
已知25℃HCl、CH3COONa和NaCl极限摩 尔电导率分别是426.16×10-4、91.01×10-4和
126.45 S·m2·mol-1, 求CH3COOH 的极限摩尔电 导率。
.
18
(2)计算弱电解质的解离度及解离常数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,H 2O m
2 2

cH 2 O
,H O cH O 548.42 104 104 5.48 106 S m 1 m
水质好坏的判别标准
第八章 电化学
2,水视为弱电解质
H2O(溶剂) H2O(溶剂) H+ OH-
查表: 298K
,H 349.82 104 S m 2 mol1 , ,OH 198.6 104 S m 2 mol1 m m
强电解质溶液
(1) m 1/ c (2)稀溶液: m与 c呈线性关系 (3)Kohlrausch(柯尔劳施)公式: m 1 c m


摩尔电导率
lim m m
c 0
弱电解质溶液
(1) m 1/ c
极限摩尔电导率 经验常数
298K时一些电解质在水溶液 中的摩尔电导率与浓度的关系
与强电解质情况不同
(2)稀溶液、浓溶液: m与 c呈线性关系
(3)Kohlrausch(柯尔劳施)公式: m 1 c m


第八章 电化学
m
c 0 m m
极限摩尔电导率、无限稀释摩尔电导率、无限稀薄摩尔电导率
的求得 m
强电解质溶液的 m
- + -e + + + + + + + +

— + + e - - - - - - - - -
e -

电解质溶液
电解质溶液的导电机理示意图
+e
第八章 电化学
(1)离子在电场作用下的定向迁移--离子的电迁移 离子的迁移速度
影响因素 1,离子的本性--离子大小,所带电荷的多少 离子越小,移动速度越快 电荷越多,移动速度越快
m:以电解质溶液中电解质的单位量为基准
:以电解质溶液的单位量为基准
5,
l K l A G K G A
K称为电导池常数
对于 m:物质基本单元是什么??? m (物质基本单元,温度T)

1 ( CuSO4 ) 7.17 103 S m2 mol1 , (CuSO4 ) 14.34 103 S m 2 mol 1 m m 2
G
l A
:电导率,单位:S m1
第八章 电化学
(3)摩尔电导率(molar conductivity)
相距1m的平行电极间1mol电解质溶液所具有的电导
m

c
2 1
1mol电解质
m:电解质溶液的摩尔电导率,单位:S m mol
1m 摩尔电导率示意图
:电解质溶液的电导率,单位:S m 1
qA zAU A qB zBU B
1:1型电解质
qA U A qB U B
第八章 电化学
电解质溶液中有n种离子
tB
qB q UB B q qB U B
B B
B B
q t q
B
B
1
B
B
电解质溶液中只有一种正离子和一种负离子
t+ t
q+ U q q U U q U q q U U
第八章 电化学
3、电解质溶液的导电能力-电导
(1)电导(conductance) 导体的导电能力
1 G R
R:导体的电阻,单位:(欧姆) G:导体的电导,单位:S(西门子,siemens)
(2)电导率(conductivity)
1 G R
l R A

A G l 1
1

A G l
2,溶液的粘度 粘度越小,移动速度越快
3,溶液的温度 温度越高,移动速度越快 4,电场的强度 电场强度越大,移动速度越快
第八章 电化学
离子淌度
离子移动速度
dE v dl
dE v U dl
dE 1 dl
v U
讨论
v:离子迁移速率 dE :电势梯度 dl U:离子淌度(ionic mobility)
为何引入离子淌度???
即:离子淌度为单位电势梯度时的离子迁移速率
U的单位:m2 V1 s1
第八章 电化学
离子的迁移数(transference number of ion)
定义 在一定电解质溶液中各种离子的导电份额或导电百分数
qB tB q
tB:B种离子的迁移数 qB:B种离子传输的电量 q:通过溶液的总电量
电导电极
电导率仪
待测溶液
第八章 电化学
(2)电导的应用
求电解质溶液中离子的量 (1)检验水的纯度与计算水的离子积 (2)求弱电解质的电离度 (3)求难溶盐的溶解度和溶度积
基本公式
, , m m m
m m
m

c
盐 溶液 水
第八章 电化学
第八章 电化学
例2:溶解度及溶度积的计算
145.0×10-4、133.4×10-4 S m 2 mol 1,饱和AgCl水溶液和纯水的电导率 分别为3.41×10-4和1.60×10-4 S m1,求AgCl的溶解度及溶度积Ksp。 25℃时, KCl、KNO3、AgNO3的无限稀释摩尔电导率 Λm 分别为149.9×10-4、
(1)Kohlrausch(柯尔劳施)公式外推法
弱电解质溶液的 m
(1)离子独立运动定律
电离 B电解质 v X z v Y z
m 1 c m
m


m
m c
v , v , m m m
t t 1
第八章 电化学
Faraday(法拉第)定律
q n Z F
n:电极上发生反应的物质的量(mol) q:通过的电量 Z :离子所带电荷数的绝对值 F:Faraday(法拉第)常数, 96485C mol1
说明
1,法拉第定律为最准确的定律之一 2,法拉第常数为1mol电子所带的电量,常简记为96500 C·mol-1 3,法拉第常数为经常用的常数之一,要牢记
t t
t 0
n0 n0 n

n转化 n0 n n0
0 v n
0
v n
电离度
t t
n0 (1 )
v n0 v n0


(1)根据 大小划分
电解质种类
(2)根据电离的离子来划分
(1)根据 大小划分
1
0
强电解质 弱电解质
(2)根据电离的离子来划分 电离反应
,H2O ,H ,OH 548.42 104 S m 2 mol 1 m m m
m ,H2O

cm ,H2O
cm ,H2O ???
m,H2O ???
第八章 电化学
m ,H2O

cm ,H2O
m,H O cm,H O
例1:水的电导率的计算
水的电解质的种类???
强电解质
H2O(溶剂) H2O
H2O(溶剂)
H+
OH-
弱电解质
H2O(溶剂)
H2O(溶剂) H+ OH-
第八章 电化学
1,水视为强电解质
H2O(溶剂) H2O H2O(溶剂)
H+
OH-
查表: 298K
,H 349.82 104 S m 2 mol1 , ,OH 198.6 104 S m 2 mol1 m m
c:电解质溶液的体积摩尔浓度,单位:mol m 3
第八章 电化学
说明
1,
2, 3, 4,
1 l G G m R A c 任意导体 单位任意导体 电解质溶液 G, , m:导体导电能力大小的量度
, m:可用于不同导体导电能力大小的比较
G:不可用于不同导体导电能力大小的比较
第八章 电化学
1、电解质溶液
(1)构成 可有可无 1,溶剂 2,正、负离子 一定有 3,电解质 可有可无 可有可无 4,其他
(2)性质或作用
(I)导电!!!! (II)提供反应原料
第八章 电化学
2、电解质溶液的导电机理 导电过程
(1)离子在电场作用下的 定向迁移--离子的电迁移
(2)在电极上发生离子得 失电子
6, G,, m:为可测物理量
第八章 电化学 (4)电导率、摩尔电导率与电解质的物质的量的浓度的关系
与电解质物质的量的浓度关系
强电解质溶液
稀溶液: c;浓溶液: 1/ c 有一浓度极限值c0 :
弱电解质溶液
0 c
电导率与浓度的关系
第八章 电化学
m与电解质物质的量的浓度关系

分析
AgCl(s) Ag Cl
溶解度S cAgCl(l ) cAg+ cCl-
2 溶度积K SP cAg+ cCl- c AgCl(l ) S2
B电解质 v X v Y
电离
z
z
NaCl Na Cl
z : z
2 Na 2SO4 2Na SO4
1:1型电解质
1: 2型电解质
CuSO4 Cu 2 SO2 4
2 : 2型电解质
2 :1型电解质
CuCl2 Cu 2 2Cl
电 化 学
电解质溶液理论


一、电解质溶液理论(Theory of Electrolyte Solution)
导体
能够传导电子的物体称为导电体
离子导体
导电机理
离子迁移导电
相关文档
最新文档