不等式的解集
不等式的解集和应用
![不等式的解集和应用](https://img.taocdn.com/s3/m/b98ca99029ea81c758f5f61fb7360b4c2e3f2a1c.png)
不等式的解集和应用不等式是数学中常见的一种关系符号,用于描述数之间的大小关系。
与等式不同的是,不等式可以是大于(>)、小于(<)、大于等于(≥)或小于等于(≤)的关系。
解不等式的过程需要确定符合不等关系的数值范围,得到的解集可以用数轴或集合来表示。
本文将介绍不等式的解集及其应用。
一、不等式的解集表示方式解不等式可以通过求解不等式的解集来得到。
解集可以用不等式的形式、数轴表示或集合表示。
1. 不等式形式表示对于简单的一元不等式,可以直接用不等式的解集形式表示。
例如,对于不等式2x + 1 > 5,解集可以表示为{x | x > 2},其中“|”表示“使得”,“x > 2”表示x的取值范围大于2。
2. 数轴表示法数轴表示法是用数轴来表示不等式的解集。
在数轴上将解集表示出来,可以清晰地展示数的大小关系。
例如,对于不等式x + 3 ≥ 7,可以在数轴上标出x ≥ 4的区间。
3. 集合表示法集合表示法用集合的形式来表示不等式的解集。
解集用大括号{}表示,其中的元素满足不等式的条件。
例如,对于不等式3x - 2 < 4,可以表示为{x | x < 2},表示x的取值范围小于2的整数集合。
二、不等式的应用不等式在实际问题中有着广泛的应用,下面将介绍不等式在几个常见问题中的运用。
1. 货币问题不等式可以用于描述货币问题中的收入和支出关系。
例如,某人的月收入为x元,月支出为y元,如果要求月储蓄不少于z元,则可以得到不等式x - y ≥ z,其中x、y、z为正实数。
2. 几何问题不等式在几何问题中常用于描述图形的范围和性质。
例如,对于一个正方形,设其边长为a,若要求正方形的面积不小于b,则可以得到不等式a² ≥ b,其中a、b为正实数。
3. 线性规划线性规划是一种优化问题,常需要通过不等式来描述约束条件。
例如,对于生产某种产品,设其产量为x1和x2,若要求生产量满足一定的限制条件,如总产量不小于100个单位,每单位的成本不超过10元,则可以得到一组不等式:x1 + x2 ≥ 100以及10x1 + 10x2 ≤ k,其中k为正实数。
8.2 不等式的解集
![8.2 不等式的解集](https://img.taocdn.com/s3/m/4415b99471fe910ef12df891.png)
)
)
2.不等式x<5有多少个解?有多少个正整数解?
3.你能求出适合不等式-1≤x<4的整数 解吗?其中的x的最大整数值是多少呢?
-2 -1
0
1
2
3
4
5
6
4. 不等式-2<x<3是什么意思?它有 哪些整数解?
请你在数轴上表示出不等式-3<x≤3的 解集,并找出其中的整数解.
5.若x<a的解集中最大的整数解为3, 则a的取值范围为 .
集表示出来.
(2)用不等式表示图中所示的解集.
x<2 x≤2
x≥ -7.5
(3)下列表示怎样的不等式? x>3 x ≥a b<x<a b<x ≤ a
0
1
2
3
a
b
a
b
a
注意 :
• 将不等式的解集表示在数轴上时,要注意: 1)指示线的方向,“>”向右,“<”向左.
2)有“=”用实心点,没有“=”用空心圈.
拓展训练(二)
1.已知不等式x>a的最小整数解为2,那么 a的取值范围是_________ 2.已知不等式x≥a的最小整数解为2,那 么a的取值范围是_________ 3.已知不等式x<a的最大整数解为2,那么 a的取值范围是_________ 4.已知不等式x≤a的最大整数解为2,那 么a的取值范围是_________
如x≤a在数轴上表示为
1、在数轴上表示不等式3X>6 的解集,正确的是 ( )
0
2 1 (A) x<2 1 2
0
1
2 (B) x>2 2
0
0
1
(C) x≤2
(D) x≥2
不等式的解集
![不等式的解集](https://img.taocdn.com/s3/m/5b91b9232af90242a895e5ab.png)
(2) 不等式 x2 > 0 的解集是
答案:
。
(1)x>4
(2)x是所有非0实数。
议一议
• 1)你能用自己的方式将x>5的解集表示在数 轴上吗?
不等式x>5的解集可以用数轴上表示5 的点的右边部分来表示。在数轴上表示 5的点的位置上画空心圆圈,表示5不包 含在这个解集内。
-3 -2 -1 0 1 2 3 4 5 6 7 8
• 2)你能将x-5≤ -1的解集表示在数 轴上吗? (x≤4)
不等式x-5≤-1的解集可以用数轴上 表示4的点的左边部分来表示。在数轴 上表示4的点的位置上画实心圆点,表 示4包含在这个解集内。
-3 -2 -1 0 1 2 3 4 5 6 7 8
想一想
请同学们回顾一下,什么叫做方程的解?
使方程左右两边的值相等的未知数的值,叫做 方程的解。换句话说, 方程的解是就是使方程成立的未知数的值。
类似地,你认为什么是不等式的解?
能使不等式成立的未知数的值叫做不等式的解。
燃放礼花时,为了确保安全,人在点燃导火线后要在燃放前转 移到10米以外的安全区域,已知导火线的燃烧速度为0.02m/s, 人离开的速度为 4 m/s,那么导火线的长度应是多少厘米? 解:设导火线的长度为x cm,即0.01x m 人离开的时间为:
-3 -2 -1 0 1 2 3 4 5 6 7 8
(2)x<-1 (3)x≥-2
-3 -2 -1 0 1 2 3 4 5 6 7 8 -3 -2 -1 0 1 2 3 4 5 6 7 8
(4)x≤6
-3 -2 -1 0 1 2 3 4 5 6 7 8
不等式的解集
![不等式的解集](https://img.taocdn.com/s3/m/08277659ce2f0066f53322a3.png)
不大于a”.②“x≥a”
(2)在数轴上表示“x≤a”或“x<a”
①解集x≤a,是指表示数a的点 左边 的部分,包括表示数
a 的点在内,这一点
画成
实心圆点 .
②解集x<a,是指表示数a的点
成
空心圆圈 .
左边 的部分,不包括表示数a的点,这一点画
探究点一:利用不等号表示不等式
【例1】 汛期来临,一个工程队要在6天内完成300土方的修渠工程,第一天完成了60
加10分,答错或不答一题扣5分,小辉在初赛得分超过160分顺利进入决赛.设他答对x道题,
根据题意,可列出关于x的不等式为
10x-5(20-.x)>160
5.不等式的解集x<3与x≤3有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把 这两个解集表示出来.
解:x<3的解集是小于3的所有数,在数轴上表示出来是空心圆圈; x≤3的解集是小于且等于3的所有数,在数轴上表示出来是实心圆点,包括3这个数.把它 们表示在数轴上为
,71,并利用数轴说明这些
2
【导学探究】
1.在数轴上描出各点,表示出不等式-3≤x<6的解集. 2.在不等式 解集内 的点满足不等式,在不等式 解集外的点不满足不等式.
解:如图所示,满足不等式的数值有-2,0,4.5; 不满足不等式的数值有-4,7.
数轴描点“两注意” (1)一注意方向:分清向左或向右; (2)二注意端点:是否包含各端点.
1.“数x不小于2”是指( B )
(A)x≤2 (B)x≥2 (C)x<2 (D)x>2
2.(2018怀柔模拟)把不等式x≤-2的解集在数轴上表示出来,下列正确的是(
)D
3.若m是非负数,则用不等式表示正确的是(
不等式的解集
![不等式的解集](https://img.taocdn.com/s3/m/7da0193e31126edb6f1a10b1.png)
解:设至多可买X支笔 买笔记本的总价格与买笔的总价 格的和不超过30元 ,则有: 3×4 + 2X ≤ 30
∴ X≤9 而X为整数,因此X最多为9支.
燃放礼花时,为了确保安全,人在点燃导火线后要在燃放前转 移到10米以外的安全区域,已知导火线的燃烧速度为0.02m/s, 人离开的速度为 4 m/s,那么导火线的长度应是多少厘米? 解:设导火线的长度为x cm,即0.01x m 人离开的时间为:
-3 -2 -1 0 1 2 3 4 5 6 7 8
(2)x<0 (1)x≥-3
-3 -2 -1 0 1 2 3 4 5 6 7 8 -3 -2 -1 0 1 2 3 4 5 6 7 8
(4)-2 ≤ x≤3
-3 -2 -1 0 1 2 3 4 5 6 7 8
3、填空
• 1)方程2x=4的解有( 1 2x<4的解有( 无数 )个 )个,不等式
注意 :
• 将不等式的解集表示在数轴上时,要注意: 1)指示线的方向,“>”向右,“<”向左.
2)有“=”用实心点,没有“=”用空心圈.
-3 -2 -1 0 1 2 3 4 5 6 7 8
-3 -2 -1 0 1 2 3 4 5 6 7 8
例题
(1)x-2≥ -4 x
≥ -2
根据不等式的基本性质求不等式的 解集,并把解集表示在数轴上.
不等式x>5的解有无数个。它们都比5大。
3、不等式x2≤0的解有哪些?不等式x2≤-2 呢?
不等式x2≤0的解是x=0;不等式x2≤-2无解。
总结 :
不等式的解一般有无数个,但有 时只有有限个,有时无解。
一个含有未知数的不等式的所有 解,组成这个不等式的解集。 求不等式解集的过程叫做解不等
不等式的解集与表示
![不等式的解集与表示](https://img.taocdn.com/s3/m/2e0f3cbdfbb069dc5022aaea998fcc22bcd143f9.png)
不等式的解集与表示不等式是数学中的一种重要的数值关系表达式,用于描述数值之间的大小关系。
不等式的解集指满足不等式的所有实数的集合,解集的表示方法有多种。
本文将从不等式的基本概念入手,详细介绍不等式的解集表示方法。
一、不等式的基本概念不等式是数学中常用的表达式,可以用来表示数值的大小关系。
不等式的一般形式为:a <b (a小于b)a >b (a大于b)a ≤b (a小于等于b)a ≥b (a大于等于b)其中,符号"<"、">"表示严格不等,符号"≤"、"≥"表示非严格不等。
在不等式中,a、b可以是任意实数,也可以是变量或函数。
例如,对于不等式2x + 3 < 7,其中x是变量,解集表示了使得不等式成立的x的取值范围。
二、不等式的解集表示方法1. 集合表示法不等式的解集可以用集合表示法来表示,即将满足不等式的数值或变量放入一个集合中。
例如,对于不等式x > 3,解集可以表示为{x | x > 3},其中“|”表示“使得”的含义。
解集表示了所有大于3的实数。
2. 区间表示法当不等式涉及到连续的数值范围时,可以用区间表示法来表示解集。
- 开区间表示法开区间表示法用小括号表示,例如(3, +∞)表示大于3的所有实数。
- 闭区间表示法闭区间表示法用方括号表示,例如[3, +∞)表示大于等于3的所有实数。
- 半开半闭区间表示法半开半闭区间表示法用一个开括号和一个闭括号表示,例如(3, +∞]表示大于3且小于等于无穷大的所有实数。
3. 图形表示法对于某些简单的不等式,可以使用图形表示法来表示解集。
例如,对于不等式x > 3,可以将其表示为一条从点3开始的无限延伸的射线。
这种表示方法直观清晰,便于理解。
三、不等式的解集的性质不等式的解集有一些基本的性质,包括:1. 解集的包含关系:对于不等式a ≤ b和b ≤ c,解集满足a ≤ c,即解集是传递的。
不等式的解集完美版
![不等式的解集完美版](https://img.taocdn.com/s3/m/27c5184e17fc700abb68a98271fe910ef02dae1d.png)
当 $Delta > 0$ 时,不等式有两个不相等 的实数根 $x_1$ 和 $x_2$($x_1 < x_2$), 解集为 $x < x_1$ 或 $x > x_2$。
当 $Delta < 0$ 时,不等式无实数根, 解集为全体实数。
当 $Delta = 0$ 时,不等式有两个相 等的实数根 $x_1 = x_2$,解集为 $x neq x_1$。
不等式约束条件的建立
在非线性规划问题中,不等式约束条件的建立与线性规划问题类似,但需要考虑非线性函 数的特点。建立不等式约束条件时,需要选择合适的变量和函数形式,并根据问题的实际 情况确定不等式的符号和取值范围。
非线性规划问题的求解
求解非线性规划问题的方法有多种,如梯度下降法、牛顿法等。这些方法通过迭代计算, 寻找满足所有约束条件并使目标函数达到最优的解。需要注意的是,由于非线性函数的复 杂性,求解过程可能比线性规划问题更加困难。
实际应用案例分析与讨论
案例一
生产计划问题。某企业需要制定生产计划,以满足市场需求并实现利润最大化。该问题可以转化为线性规划问题进行 求解,其中不等式约束条件表示生产资源的限制和市场需求的限制。
案例二
投资组合优化问题。投资者需要在多个投资项目中选择合适的投资组合以实现收益最大化并控制风险。该问题可以转 化为非线性规划问题进行求解,其中不等式约束条件表示投资项目的风险和收益限制。
案例三
交通流量优化问题。交通管理部门需要优化城市交通网络的流量分配以减少拥堵并提高交通效率。该问 题可以转化为线性或非线性规划问题进行求解,其中不等式约束条件表示道路通行能力、交通信号灯时 间等限制条件。
THANKS FOR WATCHING
感谢您的观看
不等式的解集(八年级数学)
![不等式的解集(八年级数学)](https://img.taocdn.com/s3/m/728f7b11ce84b9d528ea81c758f5f61fb73628a3.png)
B. x> 2 是不等式-2x>-3的解集 C.不等式x>-5的负整数解有无数多个
D.不等式x<7的非正整数解有无数多个
课堂检测
基础巩固题
3.如果式子 2x 6 有意义,那么x的取值范围在数轴上 表示出来正确的是 ( C )
课堂检测
基础巩固题
4. a≥1的最小正整数解是m,b≤8的最大正整数解是n,求关于x 的不等式(m+n)x>18的解集.
把表示2 的点A画成 空心圆圈,表示解 集不包括2.
探究新知
思考:如何在数轴上表示x ≤ 5的解集呢?
-1 0 1 2 3 4 5 6 解集x≤5中包含5,所以在数轴上将表示5的点画成实心圆点.
符号“≤”表示“小 于等于”,“≥”表 示“大于等于”.
探究新知 将不等式的解集表示在数轴上时,要注意:
探究新知
知识点 1 不等式的解集的概念
问题:燃放某种烟花时,为了确保安全,燃放者在点燃引火 线后要在燃放前转移到10m以外的安全区域.已知引火线的燃 烧速度为0.02m/s,燃放者离开的速度为4m/s,那么引火线的长 度应满足什么条件?
解:设引火线的长度为x cm,根据题意,得
x >10 . 0.02 100 4
A. x≤-4
B. x≥-5
C. x≤-6
D. x≥-7
巩固练习
变式训练
下列4种说法:
①x=
5 4
是不等式4x-5>0的解;②x= 52
是不等式4x-5>0的一个解;
③x> 5 是不等式4x-5>0的解集;
4
④x>2中任何一个数都可以使不等式4x-5>0成立,所以x>2也
是它的解集.
不等式的解集与区间的概念
![不等式的解集与区间的概念](https://img.taocdn.com/s3/m/0268810e1fb91a37f111f18583d049649b660edc.png)
因式分解得
(x + 1)(x - 1)(x + 2)(x - 2) < 0
解集表示为
{ x | -2 < x < -1 或 1 < x < 2 }
利用数轴穿根法,解得解集为
-2 < x < -1 或 1 < x < 2
拓展应用:不等式组与区间综合问题
单击此处添加文本具体内容
PART.01
不等式组定义及性质
(a, b) - (c, d) = (a-d, b-c)
区间表示方法及运算规则
区间表示方法
减法运算
乘法运算
除法运算
加法运算
区间运算规则
除了使用圆括号和方括号表示开区间和闭区间外,还可以使用无穷大符号表示包含正无穷大或负无穷大的区间,如(a, +∞)、(-∞, b)等。
对于任意两个实数a、b(a < b)以及实数c、d(c < d),有以下运算规则
根据判别式确定解的情况,将解集在数轴上表示为开区间、闭区间或半开半闭区间。
解集与区间对应关系分析
解集与区间的区别
03
解集是具体的数值集合,而区间是数轴上的连续区域,两者在表现形式和性质上有所不同。
不等式的解集可以表示为区间,而区间也可以用来描述不等式的解集。
解集与区间的定义
01
解集是满足不等式的所有解的集合,而区间是数轴上的一段连续区域。
一元二次不等式案例解析
案例一
解析不等式 x^2 - 4x + 3 < 0
因式分解得
(x - 1)(x - 3) < 0
根据一元二次不等式的解法,解集为
1 < x < 3
不等式与不等式的解集
![不等式与不等式的解集](https://img.taocdn.com/s3/m/8234592d24c52cc58bd63186bceb19e8b8f6ecdf.png)
不等式与不等式的解集不等式是数学中常见的一种数值关系表达方式,它用于描述两个数字或者表达式之间的大小关系。
而不等式的解集则是满足某一不等式的所有实数解的集合。
在解不等式的过程中,我们需要运用一系列的性质和规则来确定解的范围和形式。
本文将介绍不等式的基本概念、解不等式的常用方法和技巧,并通过实例来演示解不等式的过程。
一、不等式的基本概念不等式是数学中一种常见的表达方式,用于描述数值之间的大小关系。
一般形式为a < b或a > b,其中a和b可以是实数或者变量,而不等号可以是小于号(<)、大于号(>)、小于等于号(≤)、大于等于号(≥)中的任意一种。
二、不等式的解集不等式的解集指的是满足不等式条件的所有实数解的集合。
解集可以是一个区间、多个区间的并集、无穷集合或者空集。
解不等式的常用方法和技巧1. 加减法性质:如果a < b,则a + c < b + c;如果a > b,则a - c > b - c。
通过加减法的性质,我们可以将不等式中的常数项移到一边,将变量项移到另一边,从而得到简化后的不等式。
2. 乘除法性质:如果a < b,且c > 0,则ac < bc;如果a < b,且c< 0,则ac > bc;如果a > b,且c > 0,则ac > bc;如果a > b,且c < 0,则ac < bc。
通过乘除法的性质,我们可以将不等式中的系数进行乘除运算,从而得到简化后的不等式。
3. 绝对值不等式:绝对值不等式是一类常见的不等式,形式为|a - b| < c或者|a - b| > c。
在解决绝对值不等式时,我们需要根据具体的不等式条件进行讨论,并结合绝对值的性质进行推导。
4. 平方不等式:平方不等式是一类常见的不等式,形式为a^2 > b或者a^2 < b。
不等式的解集的表示方法
![不等式的解集的表示方法](https://img.taocdn.com/s3/m/16465a399a6648d7c1c708a1284ac850ad0204a2.png)
不等式的解集的表示方法不等式的解集有多种表示方法呢。
一种是用不等式表示。
比如x > 3,这多简单明了啊。
就像你在排队,有人告诉你要站在3号后面,这就是一个规则。
这里步骤就是直接根据题目条件得出不等式就好啦。
注意事项嘛,符号可千万不能弄错呀,大于就是大于,小于就是小于,要是弄混了,那就像把左右脚的鞋子穿反了,多别扭啊。
这里哪有什么安全性和稳定性的问题呀,它就是一个数学表示,只要你遵循数学规则,它就稳稳当当的。
它的应用场景可多啦,像分东西的时候,要是说每个人分到的糖果数要大于3颗,就可以用这个表示。
优势就是直观,一看就知道这个量的范围。
比如说,一个班级里,老师说这次考试成绩优秀的标准是分数x > 80,大家马上就知道要考多少分以上才行了。
还有一种是用区间表示。
例如(3, +∞)表示大于3的所有数。
步骤呢,确定端点值,再看是开区间还是闭区间。
注意端点值能不能取到很关键呀,这就像在一个有门的房间里,开区间就是门没锁你可以靠近但不能进去,闭区间就是门开着你可以进去。
这也不存在什么安全性问题啦,稳定得很,只要按照规则来。
应用场景啊,在函数的定义域、值域的表示中经常用到。
优势就是简洁,尤其是对于那些取值范围很广的情况。
像计算一个物体在某个时间段后的速度范围,可能是从某个时间t之后速度一直增加到无穷大,用区间(v(t), +∞)就很方便。
再一种是用集合表示。
{x | x > 3},就像把所有符合条件的x都放在一个小篮子里。
步骤就是先确定描述的对象x,再写出它的条件。
这里要注意集合元素的准确性,别把不符合的元素也放进去了,那可就像把鱼放到鸟笼里一样奇怪了。
这也没有什么安全性不稳定的情况。
在一些数学逻辑的严谨推导中经常用。
优势就是严谨。
比如说在证明一些数学定理涉及到变量范围的时候,用集合表示就很正规。
在实际案例中,假设你要设计一个桥梁,桥梁能承受的重量有个范围。
如果设能承受的重量为x吨,根据材料和设计要求得出x要大于50吨,用不等式x > 50表示就很清楚。
各类不等式求解集的方法
![各类不等式求解集的方法](https://img.taocdn.com/s3/m/5e461f9a6e1aff00bed5b9f3f90f76c661374cc4.png)
各类不等式求解集的方法一、一元一次不等式的求解一元一次不等式是指只含有一个未知数的不等式,其一般形式为:ax + b > c (或者ax + b < c)。
1.方法一:移项法将不等式中的项按照相同的顺序移动到同一边,得到ax > c - b(或者ax < c - b),然后根据a的正负情况来判断解集。
2.方法二:倍增法将不等式中的项乘以相同的正数(或者倒数),得到ax > c(或者ax < c),然后根据a的正负情况来判断解集。
3.方法三:画图法将不等式转化为对应的线性方程,然后在数轴上画出对应线性方程的图像,然后根据不等式的符号来确定解集的范围。
二、一元二次不等式的求解一元二次不等式是指只含有一个未知数的二次不等式,其一般形式为:ax² + bx + c > 0 (或者ax² + bx + c < 0)。
1.方法一:因式分解法将一元二次不等式进行因式分解,得到(x+m)(x+n)>0(或者(x+m)(x+n)<0),然后根据m和n的正负情况来判断解集的范围。
2.方法二:配方法将一元二次不等式进行配方法,得到(ax + m)² + n > 0 (或者(ax + m)² + n < 0),然后根据n的正负情况来判断解集的范围。
3.方法三:作图法将一元二次不等式转化为对应的二次函数,然后在坐标系中画出对应的函数图像,然后根据不等式的符号来确定解集的范围。
三、一元三次及更高次不等式的求解一元三次及更高次不等式是指只含有一个未知数的三次及更高次的不等式,其求解方法相对复杂。
1.方法一:图像法将一元三次及更高次不等式转化为对应的函数,然后在坐标系中画出对应的函数图像,然后根据不等式的符号来确定解集的范围。
2.方法二:化简法将一元三次及更高次不等式进行化简,分解为一元二次或一元一次不等式的组合,然后根据已经掌握的方法来求解。
不等式的解集表示方法
![不等式的解集表示方法](https://img.taocdn.com/s3/m/8f6233eb0129bd64783e0912a216147917117ea8.png)
不等式的解集表示方法不等式是数学中重要的概念之一,用来描述数值或者变量之间的大小关系。
解不等式的问题在数学中也是常见的,解集表示方法是描述不等式解的形式化方式。
本文将介绍不等式的解集表示方法,包括数轴表示法、集合表示法以及区间表示法。
一、数轴表示法数轴表示法是一种简洁直观的不等式解集表示方法。
通过绘制数轴,并在数轴上标注不等式中的关键数值点,可以清晰地表示不等式的解集。
下面举一个例子进行说明:假设有不等式 x > 2,我们可以在数轴上找到数值点2,并用一个开放的圆圈表示它。
由于不等式是大于关系,因此解集即为2之后的所有实数。
在数轴上,我们可以用箭头表示解集,即从2开始向右延伸的无穷区间。
数轴表示法简单明了,适用于一元线性不等式的解集表示。
二、集合表示法集合表示法是用集合的形式表示不等式的解集。
具体而言,用大括号{}表示集合,将解集中的元素依次列举于括号之内,并用逗号隔开。
如果集合中的元素具有特定的规律,可以用描述性的方式表示。
例如,如果不等式是 x > -3,解集为所有大于-3的实数,则可以用集合表示法表示为{x | x > -3}。
在该表示法中,x表示集合中的元素,竖线“|”表示“使得”。
集合表示法可以直观地表示解集,适用于复杂的不等式或多元不等式的解集。
三、区间表示法区间表示法是一种以区间的方式表示不等式的解集。
在数轴上,解集可以用有限或无限的区间来表示。
对于有限区间,用方括号[]表示闭区间,用圆括号()表示开区间,并结合数轴的方向来表示不等式的解集。
例如,对于不等式 -2 ≤ x < 3,解集可以表示为闭区间[-2, 3)。
在该表示法中,-2表示解集的起始点,3表示解集的结束点,方括号表示包含起始点,圆括号表示不包含结束点。
对于无限区间,可以用有限的数代替。
例如,对于不等式x ≥ 4,解集为大于等于4的所有实数,则可以表示为区间[4, +∞),其中+∞表示正无穷。
综上所述,不等式的解集可以通过数轴表示法、集合表示法以及区间表示法来表达。
不等式的解集与区间
![不等式的解集与区间](https://img.taocdn.com/s3/m/0cd909c05fbfc77da269b13a.png)
(4)实数集 R 表示为
(, )
符号 “+≦” 读作“正无穷大” “-≦” 读作“负无穷大”
①满足x≥a的全体实数,可记作[a,+≦)
a
x
②满足x>a的全体实数,可记作(a,+≦)
a x
③满足x≤a的全体实数,可记作(-≦,a]
a x
④满足x<a的全体实数,可记作(-≦,a)
a x
三、例题讲解 例1 用区间法表示下列不等式的解集 (1)9 x 10 例2
练习:用区间表示集合{x︱-1<x<3},并在数轴 上表示出来。 (-1,3) -1 3
x
(3)半开半闭区间 满足a≤x<b或a<x≤b的所有实数集合,都叫做 半开半闭区间,分别记作[a, b)或(a,b]。
练习:用区间表示-1≤x<3,-1<x≤3,并在 数轴上表示出来。
注: (1)a与b(a<b)分别叫做区间的左端点和右端点, a必须写在区间左端,b写在右端。 (2)数轴表示区间时,属于这个区间的实数所对 应的端点,用实心点表示,不属于这个区间的 0}
2
二、用区间表示不等式的解集 • 区间: 设 a、b∈ R,且 a< b: (1)闭区间 满足不等式a≤x≤b的所有实数的集合,叫做由a 到b的闭区间,记为[a,b]。
例:用区间表示集合{x|-1≤x≤3},并在数轴上表示出 来。
-1, 3
-1
3
x
(2)开区间 满足不等式a<x<b的所有实数的集合,叫做由a到b 的开区间,记为(a,b)
知识回顾
• 方程 x 1 0的解集可用列举法表示为: {-1,1}
2
• 用描述法表示为: x2 1 0 } { x|
不等式的解集
![不等式的解集](https://img.taocdn.com/s3/m/431e504e336c1eb91a375d7c.png)
(2)x<-1 (3)x≥-2
-3 -2 -1 0 1 2 3 4 5 6 7 8 -3 -2 -1 0 1 2 3 4 5 6 7 8
(4)x≤6
-3 -2 -1 0 1 2 3 4 5 6 7 8
3、填空
• 1)方程2x=4的解有( 1 2x<4的解有( 无数 )个 )个,不等式
不等式x>5的解有无数个。它们都比5大。
3、不等式x2≤0的解有哪些?不等式x2≤-2 呢?
不等式x2≤0的解是x=0;不等式x2≤-2无解。
总结 :
不等式的解一般有无数个,但有 时只有有限个,有时无解。
一个含有未知数的不等式的所有 解,组成这个不等式的解集。 求不等式解集的过程叫做解不等
式。
做一做
• 2)不等式5x≥-10的解集是( x≥-2 )
• 3)不等式x≥-3的负整数解是( -3, -2, -1) • 4)不等式x-1<2的正整数解是( 2, 1 )
课堂小结 :
• 本节课你学会了哪些数学知识?增长了哪些 数学技能? • 一个不等式的解是唯一的吗?有哪几种情况? • 什么叫做不等式的解集?什么叫做解不等式? • 在数轴上表示不等式的解集时要注意哪些方 面?
10/4=5/2(s) 0.01x/0.02=x/2
导火线的燃烧时间为:
依题意得:
x/2=5/2
由不等式的基本性质2得:x>5 所以,导火线的长度应大于5厘米。
想一想
1、x=-2、1、5、6、8是不等式x>5的解吗?
x=6、8是不等式x>5的解。x=-2、1、5不是。
2、你还能说出几个不等式x>5的解吗?你认 为不等式x>5的解有几个?它们有什么特点?
不等式的解集
![不等式的解集](https://img.taocdn.com/s3/m/7db1284b78563c1ec5da50e2524de518964bd31d.png)
不等式的解集
要确定不等式的解集,首先需要将不等式化简为标准形式,即最高次项系数为正。
然后,根据不等式的类型进行讨论。
以下是常见不等式类型的解集确定方法:
1. 一元线性不等式(形如ax + b < 0或ax + b > 0):
- 当a > 0时,解集为(-∞, -b/a)或(-b/a, +∞);
- 当a < 0时,解集为(-∞, -b/a)或(-b/a, +∞)的补集。
2. 一元二次不等式(形如ax^2 + bx + c < 0或ax^2 +
bx + c > 0):
- 当a > 0时,解集为[x1, x2]或(-∞, x1)∪(x2, +∞);
- 当a < 0时,解集为(-∞, x1]∪[x2, +∞)或(x1, x2)的补集。
3. 一元分式不等式(形如f(x) < 0或f(x) > 0,其中f(x)为有理函数):
- 先确定分母为0的点,然后根据分子符号来确定解集。
4. 二元线性不等式(形如ax + by < c或ax + by > c):
- 将不等式化简为标准形式(最高次项系数为正),然后确定解集。
无论什么类型的不等式,我们都可以使用数轴上的表示或图形表示来更直观地表示解集。
不等式的解集
![不等式的解集](https://img.taocdn.com/s3/m/59f93968783e0912a2162ad9.png)
3、不等式x2≤0的解有哪些?不等式x2≤-2 呢?
不等式x2≤0的解是x=0;不等式x2≤-2无解。
总结 :
不等式的解一般有无数个,但有 时只有有限个,有时无解。
一个含有未知数的不等式的所有 解,组成这个不等式的解集。 求不等式解集的过程叫做解不等
式。
做一做
(1) 不等式 x + 1 > 5 的解集是 ;
(2) 不等式 x2 > 0 的解集是
答案:
。
(1)x>4
(2)x是所有非0实数。
议一议
• 1)你能用自己的方式将x>5的解集表示在数 轴上吗?
不等式x>5的解集可以用数轴上表示5 的点的右边部分来表示。在数轴上表示 5的点的位置上画空心圆圈,表示5不包 含在这个解集内。
课外作业
课本第12页习题1.3
思考题:
已知不等式3x-a≤0的正整数解是1,2,3, 求a的取值范围。
-3 -2 -1 0 1 2 3 4 5 6 7 8
(2)x<-1 (3)x≥-2
-3 -2 -1 0 1 2 3 4 5 6 7 8 -3 -2 -1 0 1 2 3 4 5 6 7 8
(4)x≤6
-3 -2 -1 0 1 2 3 4 5 6 7 8
3、填空
• 1)方程2x=4的解有( 1 2x<4的解有( 无数 )个 )个,不等式
第二章 一元一次不等式与 一元一次不等式组
2.3 不等式的解集
复
习
• 不等式的基本性质
不等式的基本性质1:不等式两边同时加上(或减去)同 一个整式,不等号的方向不变. 不等式的基本性质2:不等式两边同时乘以(或除以)同 一个正数,不等号的方向不变. 不等式的基本性质3:不等式两边同时乘以(或除以)同 一个负数,不等号的方向改变. 你认为不等式的基本性质与等式的基本性质有哪些异同 点?请用自己的语言描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.2不等式的解集
教学目标:
1.理解不等式解集的含义与方程解的区别。
2.能在数轴上直观地表示出不等式的解集。
知识与技能:
理解不等式解集的概念并能在数轴上表示出不等式的解集。
情感与态度:
让学生能够联想数轴,明白解集的意思的解的集合。
过程与方法:
计算机课件,师生共同探索。
设置情景:
在上一节练习第3题中,我们发现,-3、-2、-1、0、1.5、2.5、3都不是不等式x+2>5的解。
由此可以看出,不等式x+2>5有许多个解。
进而看出,大于3的每一个数都是不等式x+2>5的解,而不大于3的每一个数都不是不等式x+2>5的解。
由此可见,不等式x+2>5的解有无限多个,它们组成一个集合,称为不等式x+2>5的解集。
教学过程与步骤:
直接概括:
不等式的解集:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集(solution set)。
解不等式:求不等式的解集的过程,叫做解不等式(solving inequality)。
不等式x+2>5的解集的表示方法:
方法1:可以表示成x>3。
方法2:可以在数轴上直观地表示出来,如图13.2.1所示。
同样,如果某个不等式的解集为x ≤-2,也可以在数轴上直观地表示出来,如图13.2.2所示。
例题:在数轴上,将下列不等式的解集表示出来。
(1)x ≥2
12 (2)x ≤-1 (3)x ≥1.5 (4)x>-2 (5)x<5 (6)x>2.5 (7)x ≤-2.5 (8)x ≥-1.5
在表示过程中,你发现了什么?
注意:(1)因为数轴上的点所表示的数,左边的数总比右边的小,所以大于某数时向右拐,而小于某数时向左拐。
(2)含等号与不含等号的区别:含等号时用实心点表示,不含等号时用空心点表示。
教学总结:
1. 会在数轴上表示不等式的解集。
2. 理解不等式的解集不只是一个解。
3. 会将数轴上表示的不等式解集用不等式表示出来。
知识巩固:
1. 当x 为任何正数时,都能使不等式x +3>2成立,能不能说不等式x
+3>2的解集是x>0?为什么?
2. 两个不等式的解集分别为x<2和x ≤2,它们有什么不同?在数轴上怎样
表示它们的区别?
3.两个不等式的解集分别为x<1和x≥1,分别在数轴上将它们表示出来。
作业:
P练习册40------1、2
板书设计:
13.2 不等式的解集
不等式的解集:例题:
解不等式:
教学反馈:。