第22章 二次函数复习课(第2课时)-人教版九年级数学上册课时互动训练
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第22章二次函数复习课(第2课时)
互动训练
知识点一:二次函数的实际应用
1.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是_____m2.
1题图2题图3题图
2.如图是一座抛物形拱桥,当水面的宽为12m时,拱顶离水面4m,当水面下降3m时,水面的宽为_____m.
3.有一座抛物线形拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米.设正常水位时桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米,则水深超过米时就会影响过往船只在桥下的顺利航行.
4.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x元,月销售利润为y元,则y与x的函数关系式为()
A.y=(x﹣40)(500﹣10x)B.y=(x﹣40)(10x﹣500)
C.y=(x﹣40)[500﹣10(x﹣50)]D.y=(x﹣40)[500﹣10(50﹣x)]
5.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为()
A.60元B.70元C.80元D.90元
6.北中环桥是山西省省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )
A .226675y x =
B .2
26675
y x =- C .2131350y x =
D .2
131350
y x =- 7. 如图,在足够大的空地上有一段长为a m 的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD ≤MN .已知矩形菜园的一边靠墙,另三边一共用了100 m 木栏. (1) 若a =20,所围成的矩形菜园的面积为450 m 2,求所用旧墙AD 的长; (2) 求矩形菜园ABCD 面积的最大值.
7题图
8.如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y =16
-
x 2
+bx +c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为
172
m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那
么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?
8题图
知识点二:二次函数的综合应用
9.已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()
A.﹣2B.﹣4C.2D.4
10.(2019•浙江杭州)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()
A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2
C.M=N或M=N+1D.M=N或M=N﹣1
11.(2019•贵州安顺)如图,已知二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,
与y轴交于C点,OA=OC.则由抛物线的特征写出如下结论:
①abc>0;②4ac﹣b2>0;③a﹣b+c>0;④ac+b+1=0.其中正确的个数是()
A.4个B.3个C.2个D.1个
11题图12题图
12. 已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法
中:①abc<0;②a﹣b+c<0;③3a+c=0;④当﹣1<x<3时,y>0,正确的是
(填写序号).
13. 如图,在平面直角坐标系中,已知点B的坐标为(﹣1,0),且OA=OC=4OB,抛物
线y=ax2+bx+c(a≠0)图象经过A,B,C三点.
(1)求A,C两点的坐标;
(2)求抛物线的解析式.
13题图
课时达标
1.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;
若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,可列出的方程是()
A.(3+x)(4-0.5x)=15B.(x+3)(4+0.5x)=15
C.(x+4)(3-0.5x)=15D.(x+1)(4-0.5x)=15
2.有长24m的篱笆,一面利用围墙围成如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为x m,面积是S m2,则S与x的关系式是()
A.S=﹣3x2+24x B.S=﹣2x2﹣24x C.S=﹣3x2﹣24x D.S=﹣2x2+24x
2题图3题图4题图
3.如图所示,桥拱是抛物线形,其函数的表达式为y=﹣1
4
x2,当水位线在AB位置时,水
面宽12m,这时水面离桥顶的高度为()
A.3m B.m C.D.9m
4.从地面竖直向上抛出一小球,小球的高度h (单位:m)与小球运动时间t (单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=1.5s.其中正确的是( )
A.①④B.①②C.②③④D.②③
5.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表
达式为y=-1
40
x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F
处要安装两盏警示灯,则这两盏灯的水平距离EF是______米(精确到1米).