液压泵的基本概念

合集下载

液压泵概述p

液压泵概述p

Tm
pq m 2
mm
(3-14)

输出功率Pm:液压马达工作时实际输出的功率。
Pm 2nmTm pnm q m mm
= pQtmmm pQmvmmm (3-15) 5、总效率 马达的输出功率与输入功率的比值称为泵的 总效率,用η 表示
m
Pm pQ
vm mm
1、压力(差) 工作压力pm :液压马达在实际工作时输入 油液的压力,由外负载决定。 额定压力pHm:在正常工作条件下,按试验 标准规定能连续运转的最高压力。 最高压力pmaxm :按试验标准规定,允许短 暂运行的最高压力。 压力差△P:液压马达输入压力和输出压力 之差值。
2、转速(rpm,r/min)

机械效率ηmm:实际输出转矩与理论转矩的比值, 即 Tm
mm
Ttm
(3-13)
若不考虑摩擦损失,马达的输入功率减去泄漏的 液压功率应等于马达的理论输出功率,即有下式
p(Qm Qm ) pnm q m 2nmTtm
于是可以导出 T pq m tm
2
结合(3-13)式可以得出实际转矩的表达式:
液压泵与液压马达图形符号

3-1 液压泵与马达图形符号
§3-1 液压泵与液压马达概述
一、液压泵的基本原理与分类
1、液压泵的工作原理
图3-2 单柱塞液压单柱塞泵的原理.avi
单柱塞液压泵的工作原理:当偏心轮1旋转
时,柱塞2在偏心轮和弹簧3的作用下在泵 体内作往复运动,使密封腔a的容积发生变 化。密封容腔a容积增大时形成真空,油箱 中的油在大气压力的作用下通过单向阀4进 入,实现吸油,此时单向阀5关闭,系统内 的高压油不能倒流;密封腔容积减小时, 油受挤压后被迫通过单向阀5进入液压系统, 完成排油过程,此过程中单向阀4关闭。这 样,当偏心轮连续转动时,泵便不断地重 复吸油和排油过程。

3《液压传动》液压泵

3《液压传动》液压泵

19
17
1)原因:径向液压力分布不均 啮合力 2)危害:轴承磨损、刮壳。 3)措施:缩小压油口,增加径 向间隙。 ※ 压油口缩小后,安装时注意不 能反转。
18
作用在泵轴上的径向力,能使轴弯曲,从而引起齿顶与泵壳体 相接触,从而降低了轴承的寿命,这种危害会随着齿轮泵压力的提 高而加剧,所以应采取措施尽量减小径向不平衡力,其方法如下: (1) 缩小压油口的直径,使压力油仅作用在一个齿到两个齿的范围 内,这样压力油作用于齿轮上的面积减小,因而径向不平衡力也就 相应地减小。 (2)增大泵体内表面与齿轮齿顶圆 的间隙,使齿轮在径向不平衡力作用 下,齿顶也不能和泵体相接触。 (3)开压力平衡槽,如图所示, 开两个压力平衡槽1和2分别与低、高 压油腔相通,这样吸油腔与压油腔相 对应的径向力得到平衡,使作用在轴 承上的径向力大大地减小。但此种方 法会使泵的内泄漏增加,容积效率降 低,所以目前很少使用此种方法。
9
一、齿轮泵的工作原理 齿轮泵的工作原理
齿轮1、2的齿廓线(面)与壳体内 表面及前后端盖构成若干密封容积, 啮合线将高、低压腔隔离开来。 当齿轮按图示方向旋转时,下侧的轮 齿逐渐脱离啮合,其密封容积逐渐增 大,形成局部真空,油液在大气压力 的作用下从吸油口进入下部低压腔; 随着齿轮的转动,齿轮的齿谷把油液 从下侧带到上侧密封容积中,轮齿在 上侧进入啮合时,使上侧密封容积逐 渐减小,油液从上侧油高压腔将油液 排出。当齿轮泵不断地旋转时,齿轮 泵不断地吸油和排油
10
二、齿轮泵的排量和流量 1.排量与流量: 对于由一对齿数相等的齿轮组成的外啮 排量与流量: 合齿轮泵,其主轴旋转一周所排出的液体体积等于两齿轮轮齿 体积之和。对于标准齿轮而言,轮齿体积与齿谷容积是相同的。 这样,齿轮泵的几何排量等于一个齿轮的轮齿体积和齿谷容积 之和。考虑到齿顶间隙的液体从排液腔仍被带回到吸油腔,不 参与排液,则齿轮泵的几何排量等于以齿顶圆为外径、以 (Z- 2)m的圆为内径、高为齿轮宽度B的圆筒体积

液压基础知识详解(经典培训教材)

液压基础知识详解(经典培训教材)
重。
伸缩式液压缸
具有多级套筒结构,行 程长且收缩后体积小。
摆动式液压缸
输出扭矩大,可实现往 复摆动运动。
液压控制阀概述及分类
按功能分类
方向控制阀、压力控制阀、 流量控制阀。
按结构分类
滑阀式、锥阀式、球阀式 等。
按连接方式分类
管式连接、板式连接、法 兰连接等。
方向控制阀结构与工作原理
01
02
03
04
回路设计注意事项
元件选型
根据系统需求和性能参数选择合适的 液压元件,确保系统可靠运行。
回路布局
合理布局液压元件和管路,减少压力 损失和泄漏,提高系统效率。
安全保护
设计必要的安全保护措施,如过载保 护、超压保护等,确保系统安全运行。
调试维护
方便对系统进行调试和维护,留有必 要的检测点和维修空间。
回路优化策略探讨
应用
液压马达广泛应用于工程机械、农业机械、交通运输、石油采矿、船舶、机床等领域。不同类型的液 压马达具有不同的特点和适用场合,应根据具体需求选择合适的液压马达。
04 液压缸与液压控制阀
液压缸类型及结构特点
活塞式液压缸
由缸筒、活塞和活塞杆 等组成,结构简单,应
用广泛。
柱塞式液压缸
只能实现单向运动,回 程需借助其他外力或自
蓄能器
储存压力能,在需要时释放能量,补充系统 泄漏或提供瞬时大流量。
典型回路分析举例
压力控制回路
通过压力控制阀等元件实现对系 统压力的控制,包括调压、卸荷、
减压、增压等回路。
速度控制回路
通过流量控制阀等元件实现对执行 元件速度的控制,包括节流调速、 容积调速等回路。
方向控制回路
通过方向控制阀等元件实现对执行 元件运动方向的控制,包括换向、 锁紧等回路。

3第三章 液压泵

3第三章  液压泵

泵的输出功率可由下式求得 N出 P Q 63 105 53 103 / 60 5565W 总效率为输出功率与输入功率之比 N出 5565 0.795 N 入 7000 机械效率 m
0.795 0.840 v 0.946
maojian@
2 2
R,r 定子圆弧部分的长短半径;
叶片倾角;
s 叶片厚度; z 叶片数。
maojian@
§3-4 柱塞泵
一、径向柱塞泵的工作原理和流量计算
图3—22 径向柱塞泵的工作原理 1—柱塞 2—缸体 3—衬套 4—定子 5—配油轴
maojian@
径向柱塞泵的排量和流量计算:
二、内啮合齿轮泵
内啮合齿轮泵优点: 1.结构紧凑,体积小; 2.零件少,转速可高达10000r/mim; 3.运动平稳,噪声低; 4.容积效率较高。 内啮合齿轮泵缺点: 1.转子的制造工艺复杂。
maojian@
汽车自动变速器的内啮合齿轮泵
maojian@
§3-3 叶片泵
5 6
2)电机驱动功率 P输入 P输出 / 45.9 / 0.9 51kW
maojian@
三、液压泵的类型
1.液压泵类型
柱塞式 轴向柱塞式 径向柱塞式 单作用叶片式 双作用叶片式 外啮合式 内啮合式
maojian@
液 压 泵
叶片式
齿轮式
maojian@
例2:某液压泵输出压力为200×105Pa,转速 n=1450r/min,排量为100 ml/r,该泵的容积效 率为0.95、总效率为0.9,试求这时泵的输出功 率和电动机的驱动功率。
解:1)泵的输出功率: P输出 pq实际 p V nv 200 10 100 10 1450 0.95 45916W 60 45.9kW

2-1液压泵

2-1液压泵

2 工作空间 e
径向柱塞泵工作原理

柱塞 3 径向排列安装在转子5 中 ,转子 5 由 电动机带动连同柱塞一起旋转 , 转子即为该 泵的油缸体。转子与定子 4 之间有偏心量 δ , 运转 时 , 柱塞在离心力作用下被甩出 , 紧 贴在定子的内表面上。若转子如图示箭头方向 回转 , 在 水平中心线上方的柱塞逐渐伸出 , 则密封工作空间缩小油口 1 而压油。可见 , 转子回转一 周 ,每个油缸各吸油、压油一次。
柱塞泵缸体与泵轴的相对位置关系不同 分为:轴向柱塞泵和径向柱塞泵。 其中,轴向柱塞泵具有可逆性,当输入 高压油时就可以作液压马达使用。

轴向柱塞泵
轴向柱塞泵结构
轴向柱塞泵结构
1-斜盘 2-缸体 3-柱塞 4-配流盘 5-转动轴
轴向柱塞泵结构
轴向柱塞泵工作原理
径向柱塞泵
径向柱塞泵
4 定子 3柱塞 1油口 6配油轴 5 转子
山东劳动职业技术学院
主讲教师:吴 波
§2 液压泵
基本知识 2) 液压泵的性能参数 3) 常用液压泵
1)
§2-1
基本知识
1)液压泵概述 2)液压泵的工作原理和分类 3)液压泵的图形符号
液压泵概述
液压泵是能量转换装置,其任务是 将电动机(或内燃机)输入的机械能转 换为液压能。与电机相比,液压泵相当 于发电机。
齿轮泵的特点
齿轮泵属于定量泵 齿轮泵结构简单、紧凑,容易制造和维 修,价格低廉,对油的污染不敏感,可 用来输送粘度大的油液 齿轮泵泄漏较多,容积效率低;工作压 力低。故一般用于低压系统(齿轮泵在 结构上采取一定措施后,也可以达到较 高的工作压力 ) 中压齿轮泵主要应用于机床、轧钢设备 的液压系统中。中高压和高压齿轮泵主 要用于农林机械工程机械、船舶机械和 航空技术中

液压系统(完整)介绍

液压系统(完整)介绍

液压系统(完整)介绍一、液压系统的基本概念液压系统,是一种利用液体传递压力和能量的动力传输系统。

它主要由液压泵、液压缸(或液压马达)、控制阀、油箱、油管等部件组成。

液压系统广泛应用于各类机械设备中,如挖掘机、起重机、汽车制动系统等,其优势在于结构紧凑、输出力大、操作简便。

二、液压系统的工作原理液压系统的工作原理基于帕斯卡原理,即在密闭容器内,液体受到的压力能够大小不变地向各个方向传递。

具体来说,液压系统的工作过程如下:1. 液压泵:将机械能转化为液体的压力能,为系统提供动力源。

2. 液压缸(或液压马达):将液体的压力能转化为机械能,实现直线或旋转运动。

3. 控制阀:调节液体流动方向、压力和流量,实现对液压系统的控制。

4. 油箱:储存液压油,为系统提供油源。

5. 油管:连接各液压部件,传递压力和能量。

三、液压系统的分类1. 水基液压系统:以水作为工作介质,具有环保、成本低等优点,但易腐蚀金属、密封性能较差。

4. 气液联动液压系统:以气体和液体为工作介质,结合了气压传动和液压传动的优点,适用于特殊场合。

四、液压系统的关键部件详解1. 液压泵:作为液压系统的“心脏”,液压泵负责将低压油转化为高压油,为整个系统提供动力。

常见的液压泵有齿轮泵、叶片泵和柱塞泵等。

每种泵都有其独特的特点和适用范围,选择合适的液压泵对系统的性能至关重要。

2. 液压缸:液压缸是系统的执行元件,它将液压油的压力能转化为机械能,实现直线往复运动或推送力量。

根据结构不同,液压缸可分为活塞式、柱塞式和膜片式等。

3. 控制阀:控制阀是液压系统的“大脑”,它负责调节和分配液压油流动的方向、压力和流量。

常用的控制阀包括方向阀、压力阀和流量阀等,它们共同确保系统按照预定的要求稳定运行。

4. 滤清器:液压油中的杂质会对系统造成损害,滤清器的作用就是过滤液压油中的杂质,保护系统的正常运行。

合理选择和使用滤清器,对延长液压系统寿命具有重要意义。

五、液压系统的优势与应用1. 优势:力量大:液压系统能够实现大范围的力矩放大,轻松完成重物搬运等任务。

液压泵简介

液压泵简介

液压泵液压泵简介液压泵是液压系统的动力元件,其作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。

液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。

影响液压泵的使用寿命因素很多,除了泵自身设计、制造因素外和一些与泵使用相关元(如联轴器、滤油器等)的选用、试车运行过程中的操作等也有关。

液压泵的工作原理是运动带来泵腔容积的变化,从而压缩流体使流体具有压力能。

其必须具备的条件是泵腔有密封容积变化。

液压泵的原理是为液压传动提供加压液体的一种液压元件,是泵的一种。

它的功能是把动力机(如电动机和内燃机等)的机械能转换成液体的压力能。

图中为单柱塞泵的工作原理。

凸轮由电动机带动旋转。

当凸轮推动柱塞向上运动时,柱塞和缸体形成的密封体积减小,油液从密封体积中挤出,经单向阀排到需要的地方去。

当凸轮旋转至曲线的下降部位时,弹簧迫使柱塞向下,形成一定真空度,油箱中的油液在大气压力的作用下进入密封容积。

凸轮使柱塞不断地升降,密封容积周期性地减小和增大,泵就不断吸油和排油。

液压泵的组成联轴器联轴器的选用液压泵传动轴不能承受径向力和轴向力,因此不允许在轴端直接安装带轮、齿轮、链轮,通常用联轴器联接驱动轴和泵传动轴。

如因制造原因,泵与联轴器同轴度超标,装配时又存在偏差,则随着泵的转速提高离心力加大联轴器变形,变形大又使离心力加大。

造成恶性循环,其结果产生振动噪声,从而影响泵的使用寿命。

此外,还有如联轴器柱销松动未及时紧固、橡胶圈磨损未及时更换等影响因素。

联轴器的装配要求刚性联轴器两轴的同轴度误差≤0.05mm;弹性联轴器两轴的同轴度误差≤0.1mm;两轴的角度误差<1°;驱动轴与泵端应保持5~10mm距离;[1]液压油箱液压油箱的选用液压油箱在液压系统中的主要作用为储油、散热、分离油中所含空气及消除泡沫。

选用油箱首先要考虑其容量,一般移动式设备取泵最大流量的2~3倍,固定式设备取3~4倍;其次考虑油箱油位,当系统全部液压油缸伸出后油箱油面不得低于最低油位,当油缸回缩以后油面不得高于最高油位;最后考虑油箱结构,传统油箱内的隔板并不能起沉淀脏物的作用,应沿油箱纵轴线安装一个垂直隔板。

第三章液压泵

第三章液压泵

第3章液压泵内容提要本章主要介绍液压动力元件的几种典型液压泵(齿轮泵、叶片泵、柱塞泵的工作原理、性能参数、基本结构、性能特点及应用范围等)。

基本要求、重点和难点基本要求:掌握齿轮泵、叶片泵、柱塞泵的工作原理、性能参数、结构特点。

了解各类泵的典型结构及应用范围。

重点:通过本章学习,要求掌握液压泵的工作原理、功能、性能参数(压力和流量等)、性能特点及应用范围。

难点: ①密闭容积的确定(特别是齿轮泵)。

②容积效率的概念。

③额定压力和实际压力的概念。

④外反馈限压式变量叶片泵的特性。

⑤柱塞泵的变量机构。

3.1液压泵基本概述液压泵作为液压系统的动力元件,将原动机(电动机、柴油机等)输入的机械能(转矩T 和角速度ω)转换为压力能(压力p 和流量q )输出,为执行元件提供压力油。

液压泵.的性能好坏直接影响到液压系统的工作性能和可靠性,在液压传动中占有极其重要的地位。

3.1.1液压泵的工作原理如图3-1所示,单柱塞泵由偏心轮1、柱塞2、弹簧3、缸体4和单向阀5、6等组成,柱塞与缸体孔之间形成密闭容积。

当原动机带动偏心轮顺时针方向旋转时,柱塞在弹簧力的作用下向下运动,柱塞与缸体孔组成的密闭容积增大,形成真空,油箱中的油液在大气压力的作用下经单向阀5进入其内(单向阀6关闭)。

这一过程称为吸油,当偏心轮的几何中心转到最下点O 1/时,容积增大到极限位置,吸油终止。

吸油过程完成后,偏心轮继续旋转,柱塞随偏心轮向上运动,柱塞与缸体孔组成的密闭容积减小,油液受挤压经单向阀6排出(单向阀5关闭),这一过程称为排油,当偏心轮的几何中心转到最上点O 1//时,容积减小至极限位置,排油终止。

偏心轮连续旋转,柱塞上下往复运动,泵在半个周期内吸油、半个周期内排油,在一个周期内吸排油各一次。

图3-1 单柱塞泵工作原理 1-偏心轮 2-柱塞 3-弹簧 4-缸体 5、6-单向阀 7-油箱如果记柱塞直径为d ,偏心轮偏心距为e ,则柱塞向上最大行程e s 2=,排出的油液体积2422e d s d V ππ==。

第三章 液压泵

第三章 液压泵
配流阀。
第一节 概 述
2.分类
➢ 按结构将液压泵分为:
➢齿轮泵 ➢外啮合齿轮泵 ➢内啮合齿轮泵
➢叶片泵 ➢单作用叶片泵
➢双作用叶片泵 ➢柱塞泵
➢径向柱塞泵 ➢轴向柱塞泵
➢ 按排量能否改变可分为: ➢定量泵 ➢变量泵
➢ 根据其排量和排液方向能否改变 又可分为: ➢单向定量泵 ➢双向定量泵 ➢单向变量泵 ➢双向变量泵
➢排量取决于泵的结构参数,而与其工况无关,它是衡量和比较不同泵的供液能 力的统一标准,是液压泵的一个特征参数。
➢ 流量——是指泵在单位时间内排除液体的体积,以Q表示,单位L/min。
➢流量有理论流量、实际流量和额定流量三种。
➢ 理论流量——是指不考虑泄漏的理想情况下泵在单位时间(常指每分钟)内
排出的液体的体积,以Ql表示。
– 在渐开线齿形内啮合齿轮泵中,小齿轮和内齿轮之间要装一块月牙形隔板,以便把吸油腔 和压油腔隔开,见图3-10a所示。
– 摆线齿形内啮合齿轮泵又称摆线转子泵,在这种泵中,小齿轮和内齿轮只相差一齿,因而 不需设置隔板,见图3-10b所示。
量或称空在排量)。
➢对于性能正常的液压泵,其容积效率大小随泵的结构类型不同而异。如
齿轮泵为0.7~0.9,叶片泵为0.8~0.95,柱塞泵为0.9~0.95。
第一节 概 述
2. 机械效率ηj
机械效率是表征泵摩擦损失的性能参数,它等于泵的理论输出功率与
输入功率之比。
Pl
j
Pd
3. 总效率η
总效率是表征泵总功率损失的性能参数,它等于泵的实际输出功率与
➢ 内泄漏——是指泵的排液腔向吸液腔的泄漏; ➢ 外泄漏——是指从泵的吸排液腔向其他自由空间的泄漏。 ➢ 泄漏量的大小取决于运动副的间隙、工作压力和液体黏度等因素,而与泵的运动速度关 系不大。 ➢ 当泵的结构和采用的液体粘度一定时,泄漏量将随工作压力的提高而增大,即压力

第1章液压泵分析

第1章液压泵分析
解决办法:采用开压力平衡槽、缩小压油腔、提高轴的刚性的办法。 3)泄漏与端面间隙补偿
齿轮泵的(内)泄漏比较大,因此在结构设计、加工精度和技术要求等方面 要最大限度地减少间隙泄漏以提高和保证泵的使用性能。其高压腔的压力油一般 通过以下几种途径泄漏到低压腔:
A、端面间隙泄漏 通过齿轮端面与轴套或侧板之间平行平面间的轴向间隙 泄漏,是齿轮泵泄漏的主要途径(占75%~80%);
液压理论与维护课程
6
二、液压泵的主要性能参数
3. 功率与效率
输入功率Pi:驱动液压泵轴的机械功率。 输出功率Po:液压泵输出的液压功率。 理论功率:Pt=pVn=Ttω=2πTtn 其中:泵的理论转距Tt=pV/(2π)
泵的角速度ω 泵的转速n
液压理论与维护课程
7
3. 功率与效率
功率损失:输入功率与输出功率之差。可分为容积损失和机械
液压理论与维护课程
19
4.齿轮泵的使用要求和常见故障
五、故障分析和排除
A、中小排量泵在正常使用后出现供油不足和压力上不去,如属 于齿轮泵本身故障,用户一般不用自行修理。中小排量轴套结构 齿轮泵属于不可修复产品; B、侧板结构或轴套加侧板结构齿轮泵在正常工作一段时间后出 现供油不足或压力上不去,可拆检下列几项:
解决办法:通常是在端盖上开出卸荷槽。
液压理论与维护课程
13
3. 齿轮泵的结构及存在的几个问题
2)径向不平衡力 齿轮泵齿轮受到压油腔高压油的油压力作用;而压油腔的油液沿泵体内孔和
齿顶圆之间的径向间隙向吸油腔泄漏时,其油压力是递减的,这部分不平衡的油 压力也作用于齿轮上。两个力联合作用的结果,使齿轮泵的上、下两个齿轮及其 轴承都受到一个径向不平衡力的作用。
程便连续进行。

液压基本知识

液压基本知识

液压基本知识一、液压的定义液压是利用液体(通常是油)传递能量的一种技术。

它通过在管道中流动的压力,将能量从一个点传递到另一个点。

液压系统由许多不同的部件组成,包括泵、阀门、缸和马达等。

二、液压系统的组成1. 液压泵:将机械能转换为液体动能的设备;2. 液压阀门:控制和调节液体流动方向和流量大小;3. 液压缸:将液体动能转换为机械能,实现线性运动;4. 液压马达:将液体动能转换为机械能,实现旋转运动;5. 液压油箱:存储和冷却工作介质;6. 连接管路:连接各个部件,形成完整的系统。

三、液体介质1. 润滑油:用于减少摩擦,并保护各个部件不受磨损;2. 工作油:在系统中流动并传递能量;3. 密封油:用于密封各个部件之间的间隙,阻止工作油泄漏。

四、液压传动的优点1. 传动效率高:液压传动可以轻松实现高速、大功率的传动;2. 传递力矩大:液压系统可以提供高扭矩;3. 灵活性好:液压系统可以根据需要调整流量和压力;4. 控制精度高:液压系统可实现精确的位置和速度控制;5. 维护简单:液压系统由少量部件组成,易于维护。

五、常见故障及处理方法1. 漏油:检查密封件是否磨损或老化,并及时更换;2. 压力不稳定:检查泵是否故障或阀门是否堵塞,并进行相应的维修或更换;3. 液体温度过高:检查油箱是否有足够的冷却面积,并清洗散热器。

六、安全注意事项1. 液压系统中的油温可能会很高,因此在维修和保养时要注意避免烫伤;2. 在操作过程中,要注意不要将手指或其他物品放入运动部件中;3. 在加油或排放工作油时,要避免油液喷溅到皮肤或眼睛中。

七、液压系统的应用领域液压系统广泛应用于各种机械设备中,如工程机械、冶金设备、航空航天设备、汽车等。

它们在工业生产过程中起到了至关重要的作用,提高了生产效率和质量。

3.1-齿轮泵

3.1-齿轮泵

PMi = ΔpM .QM
总效率η:
PM TM ω M ηM = = = η Mv η Mm PMi ΔpM .QM
液压与气动 -杨阳
重庆大学
2-1
液压泵概述
四,液压泵图形符号
a 单向定量泵 b 单向变量泵 c 双向定量泵 d 双向变量泵
液压与气动 -杨阳 重庆大学
2-2
齿轮泵
齿轮泵的特点 优点:体积小,重量轻,结构简单,制造方便,价格低, 工作可靠,自吸性能较好,对油液污染不敏感,维护方便等. 缺点:流量和压力脉动较大,噪声大,排量不可变等. 内啮合齿轮泵与外啮合齿轮泵比较,体积小,流量脉动小 ,噪声小,但加工困难,使用受到限制.
液压与气动 -杨阳
重庆大学
2-1
液压泵概述
2.按排油量是否可调分为:定量式和变量式 液压泵的排量:不计泄漏时,泵每转一周或一个 弧度时排出的油液体积. 排量不变时称为定量泵或定量马达,排量可变时 称为变量泵或变量马达.
液压与气动 -杨阳
重庆大学
2-1
液压泵概述
3. 按工作压力可分为:低压,中压,中高压,高 压和超高压泵 低压泵(p≤2.5MPa); 中压泵(p≥2.5-8.0MPa); 中高压泵(p ≥ 8.0 -16.0MPa); 高压泵(p≥16-32MPa); 超高压泵(p > 32.0MPa).
液压与气动 -杨阳 重庆大学
2-1
液压泵概述
(3) 液压泵必须具有配流装置 配流装置的作用是保证泵吸油腔(容积增加的 工作腔)与油箱相通,排油腔(容积减小的工作腔) 与执行元件相通,并避免吸排油强相互而连通出现干 涉. 配流装置的结构取决于液压泵的结构型式,在单 柱塞泵中,采用两只反向布置的单向阀5和6来实现吸 油和排油的可靠进行(阀式配流).

液压泵安全操作规程(四篇)

液压泵安全操作规程(四篇)

液压泵安全操作规程一、前言液压泵是一种常用的工业设备,为确保液压泵的正常运行和使用人员的安全,特制定此液压泵安全操作规程。

二、液压泵的基本知识1. 液压泵是一种将机械能转换成液压能的装置,由电动机、泵体、泵轴和液压油等组成。

2. 液压泵用途广泛,常用于各种机械设备和工艺过程中,包括起重机械、船舶、冶金、矿山等行业。

三、液压泵的安全操作规程1. 操作人员必须经过专业的培训,了解液压泵的结构、工作原理和操作方法,并熟悉液压泵的使用说明书。

2. 在操作液压泵之前,应进行设备的检查和维护,确保液压泵的正常运行。

3. 液压泵的安装位置应平稳、牢固,并具有良好的通风条件。

4. 液压泵的电源必须接地,并与电气设备的接线牢固可靠。

5. 严禁在液压泵运行过程中进行任何维修和调试工作,必须在停机状态下进行。

6. 液压泵的操作人员必须穿戴合适的劳动防护用品,包括安全帽、防护眼镜、防护手套等。

7. 液压泵的操作人员必须全神贯注、认真细致地操作,遵循操作规程和操作流程。

8. 在操作液压泵过程中,应随时注意液压泵的工作状态,如有异常应及时停机检查。

9. 液压泵的开关操作必须准确无误,防止误操作和意外伤害的发生。

10. 使用液压泵之前,必须确保周围环境安全,并清除工作区域内的障碍物。

11. 液压泵的孔口必须保持清洁,严禁在孔口上方堆放杂物。

12. 液压泵的操作人员必须了解液压泵的工作参数,包括压力、流量等,以便进行适当的调整和控制。

13. 液压泵的紧固螺栓必须定期检查和紧固,确保设备的安全运行。

14. 液压泵的液压油必须定期更换和检查,保持合适的油温和油质。

15. 液压泵的密封件、阀门和管道必须保持完好,如发现泄漏现象应及时处理。

四、液压泵的事故处理1. 如发生液压泵的事故,首先应立即停止液压泵的运行,并切断电源。

2. 如遇到液压泵的漏油事故,应立即进行泄漏油处理,以防滑倒和火灾的危险。

3. 如遇到液压泵的异常噪音、震动和冒烟现象,应立即停机检查,并寻找解决方法。

液压泵概述

液压泵概述
⑶实际流量q(L/min) 实际流量 ( )
q=qt-ql
由于泄漏量q 随着压力p的增大而增大 所以实际流量q随 的增大而增大, 由于泄漏量 l随着压力 的增大而增大,所以实际流量 随 着压力p的增大而减小 的增大而减小。 着压力 的增大而减小。 额定流量q ⑷额定流量 n(mL/min) ) 它用来评价液压泵的供油能力,液压泵技术规格指标之一。 它用来评价液压泵的供油能力,液压泵技术规格指标之一。
9
工 学 院
液压泵的输入功率、理论功率和输出功率之间的关系 液压泵的输入功率、
输入 机械 功率 Pi
ηm
理论 机械 功率 Ptm η
理论 液压 功率工 学 院
10
液压泵的特性曲线
目前对一定型号的液压泵, 目前对一定型号的液压泵,仍用试验测出的效率曲线 来评价泵的性能质量,确定泵的合理使用范围。 来评价泵的性能质量,确定泵的合理使用范围。试验 测出的效率曲线称为特性曲线 特性曲线。 测出的效率曲线称为特性曲线。 通常所提供的特性曲线主要是负载特性曲线和转速特 通常所提供的特性曲线主要是负载特性曲线和 负载特性曲线 性曲线。 性曲线。 负载特性曲线是指在一定转速(通常是额定转速) 负载特性曲线是指在一定转速(通常是额定转速)下, 是指在一定转速 工 容积效率和总效率泵随工作压力而变化的曲线。 容积效率和总效率泵随工作压力而变化的曲线。 转速特性曲线是指在一定压力(通常是额定压力) 学 转速特性曲线是指在一定压力(通常是额定压力)下, 是指在一定压力 容积效率随转速而变化的曲线。 容积效率随转速而变化的曲线。 院
的实际输出流量随排油压力的升高而降低。 的实际输出流量随排油压力的升高而降低。
工 容积式液压泵排油的理论流量取决于液压泵的有关几何尺寸 和转速,而与排油压力无关。 和转速,而与排油压力无关。但排油压力要影响泵的内泄漏学 和油液的压缩量,从而影响泵的实际输出流量,所以液压泵 和油液的压缩量,从而影响泵的实际输出流量,所以液压泵 院

液压泵

液压泵

液压泵--动力元件,把机械能转换成液体压力能.液压马达--执行元件, 把压力能转换成机械能.•由于这种泵是依靠泵的密封工作腔的容积变化来实现吸油和压油的,因而称为容积式泵。

•容积式泵的流量大小取决于密封工作腔容积变化的大小和次数。

•液压泵正常工作的三个必备条件:•必须具有一个由运动件和非运动件所构成的密闭容积;•密闭容积的大小随运动件的运动作周期性的变化,容积由小变大——吸油,由大变小——压油;•密闭容积增大到极限时,先要与吸油腔隔开,然后才转为排油;密闭容积减小到极限时,先要与排油腔隔开,然后才转为吸油。

•二. 液压泵的主要性能和参数• 1. 液压泵的压力•1)工作压力p:液压泵实际工作时的输出压力称为工作压力。

工作压力大小取决于外负载的大小和排油管路上的压力损失,而与液压泵的流量无关。

•2)额定压力p s:液压泵在正常工作条件下,按试验标准规定,连续运转中允许达到的最高压力称为液压泵的额定压力。

•3)最高允许压力:在超过额定压力的条件下,根据试验标准规定,允许液压泵短暂运行的最高压力值,称为液压泵的最高允许压力,超过此压力,泵的泄漏会迅速增加。

• 2. 液压泵的排量和流量•排量V:液压泵主轴每转一周所排出液体体积的理论值.如泵排量固定,则为定量泵;排量可变则为变量泵。

一般定量泵因密封性较好,泄漏小,在高压时效率较高。

• 2.选用的原则•(1)是否要求变量;•(2)工作压力;柱塞泵额定压力最高•(3)工作环境; 齿轮泵抗污能力最好•(4) 噪音指标;低噪音有双作用叶片泵•(5) 效率•齿轮泵是定量泵,可分为外啮合齿轮泵和内啮合齿轮泵两种。

• 1.优点:•(1) 结构简单,制造容易,工艺性好,价格便宜;•(2)结构紧凑,体积小,重量轻;•(3)吸油能力较好,且能耐冲击性负载;•(4)转速范围大;•(5)抗污染能力强,不易咬死;•(6)便于维护管理。

•2.缺点:•(1)轴承承受载荷大(径向力不易平衡);•(2)流量脉动变化大;•(3)噪声大,效率低。

液压系统工作原理之--液压泵

液压系统工作原理之--液压泵

液压泵工作原理
单柱塞泵工作原理
(一)液压泵的工作原理
构成容积泵的基本条件是: 1.结构上能实现具有密封性的工作腔; 2.工作腔能周而复始地增大和减小,当它增大时与吸 油口相连,当它减小时与排油口相连,泵的输出流量与 此空间的容积的变化量和单位时间内的变化次数成比例, 与其它因素无关; 3.吸油口与排油口不能沟通; 4. 油池内液体的绝对压力必须恒等于或大于大气压力。 这是容积式液压泵能够吸入液体的外部条件。 5. 设置专门的配流机构。
变量单作用叶片泵
变量叶片泵
3. 流量-压力特性曲线
调节限位螺钉,qmax 变; 改变弹簧刚度,pmax变,BC斜率变。
4. 优缺点及应用
优点:功率利用合理,简化液压系统 缺点:结构复杂,泄漏增加,ηm↓,ηv↓ 应用:要求执行元件有快速、慢速和保压的 场合
四、叶片泵的常见故障及排除方法
故障现象 产生原因 1.叶片顶部倒角太小 2.叶片各面不垂直 3.定子内表面被刮伤或磨损,产生运动噪声 4.由于修磨使配油盘上三角形卸荷槽太短,不能消除困油现象 5.配油盘端面与内孔不垂直,旋转时刮磨转子端面而产生噪声 6.泵轴与原动机不同轴 排除方法 1.重新倒角(不小于1×45°)或修成圆角 2.检查,修磨 3.抛光,有的定子可翻转180°使用 4.锉修卸荷槽 5.修磨配油盘端面,保证其与内孔的垂 直度小于0.005~0.01mm 6.调整连轴器,使同轴度小于ф0.1mm
特点: ●定子和转子偏心; ●定子内曲线是圆; ●配油盘有二个月牙形 窗口。 ●叶片靠离心力伸出。
单作用叶片泵工作原理
单作用叶片泵工作原理
2. 工作原理
密封工作腔(转子、定子、叶片、配油盘组成) 吸油过程:叶片伸出→V ↑ → p ↓ →吸油; 排油过程:叶片缩回→V ↓ → p ↑ →排油。 旋转一周,完成一次吸油,一次排油——单作用泵 径向力不平衡——非平衡式叶片泵 (一个吸油区,一个排油区)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液压泵的基本概念
液压泵是将机械能转换为液压能的一种设备。

它根据受压液体的流动方式,可以分为容积式液压泵和动力液压泵两类。

容积式液压泵是将液体从一个闭合的容器中抽出,然后通过机械运动将该液体逐渐压入另一个容器中,从而增加液体的压力。

容积式液压泵主要包括齿轮泵、齿轮隔膜泵、柱塞泵等。

动力液压泵是通过旋转叶片或活塞等元件的机械运动将液体推入液压系统中,增加液体的压力。

动力液压泵主要包括旋转翼片泵、滚子泵、柱塞式泵等。

液压泵的工作原理是通过机械运动产生变量容积的空间,从而使液体产生压力,从而驱动液压系统实现工作。

液压泵通常被广泛应用于工程机械、船舶、航空航天、冶金、矿山等领域中。

相关文档
最新文档