导数及其应用教案

合集下载

中学数学教案导数在函数中的应用

中学数学教案导数在函数中的应用

中学数学教案导数在函数中的应用一、教学目标1. 理解导数的定义及其几何意义。

2. 学会求解基本函数的导数。

3. 掌握导数在函数中的应用,如单调性、极值、最值等。

4. 能够运用导数解决实际问题。

二、教学内容1. 导数的定义及几何意义2. 基本函数的导数3. 导数的应用a. 单调性b. 极值c. 最值d. 实际问题三、教学重点与难点1. 重点:导数的定义、几何意义、基本函数的导数及导数的应用。

2. 难点:导数的计算及运用。

四、教学方法1. 采用讲授法讲解导数的定义、几何意义及基本函数的导数。

2. 利用实例演示导数在函数中的应用,如单调性、极值、最值等。

3. 引导学生运用导数解决实际问题。

4. 课堂练习与讨论,巩固所学知识。

五、教学过程1. 导入:回顾初中阶段学习的函数图像,引导学生思考函数的增减性、极值等问题。

2. 讲解导数的定义及几何意义,通过实例演示导数的计算过程。

3. 讲解基本函数的导数,如幂函数、指数函数、对数函数等。

4. 引导学生运用导数研究函数的单调性、极值、最值等问题。

5. 结合实际问题,讲解导数在实际中的应用,如物体的运动、经济的增长等。

6. 课堂练习:让学生独立完成一些有关导数的练习题,巩固所学知识。

7. 总结:回顾本节课所学内容,强调导数在函数中的应用及实际意义。

六、教学活动1. 设计课堂活动:通过小组讨论,让学生探究导数在实际问题中的应用,如找出函数在某一点处的切线斜率,模拟函数的增减过程等。

2. 案例分析:分析实际问题,引导学生运用导数解决具体问题,如优化生产过程、确定最佳路线等。

七、自主学习1. 让学生自主学习教材中关于导数的应用部分,了解导数在函数中的作用。

2. 布置课后作业:让学生结合所学知识,完成有关导数在函数中应用的练习题。

八、课堂小结1. 回顾本节课所学内容,总结导数在函数中的应用。

2. 强调导数在实际问题中的重要性。

九、课后反思1. 教师在课后对课堂教学进行反思,分析教学过程中的优点与不足。

导数的应用教案

导数的应用教案

导数的应用教案导数的应用教案导数是微积分中的重要概念,它在解决实际问题中起着至关重要的作用。

本文将介绍一份导数的应用教案,帮助学生更好地理解导数的应用。

一、引言在学习导数之前,我们首先要明确导数的定义和意义。

导数表示函数在某一点的变化率,它可以帮助我们理解函数的斜率、速度、加速度等概念。

在实际应用中,导数可以用来解决各种问题,如求最值、判断函数的增减性、求曲线的切线等。

二、导数的计算方法在教学中,我们首先要教授学生导数的计算方法。

这包括求常函数、幂函数、指数函数、对数函数、三角函数等函数的导数。

通过具体的例子和计算过程,学生可以更好地理解导数的计算方法。

三、导数的几何意义导数不仅有计算上的意义,还有几何上的意义。

在这一部分,我们可以通过绘制函数图像,让学生观察导数和函数图像之间的关系。

例如,当导数为正时,函数图像是上升的;当导数为负时,函数图像是下降的。

通过这种方式,学生可以更好地理解导数的几何意义。

四、导数的应用举例在实际应用中,导数有广泛的应用。

在这一部分,我们可以给学生提供一些具体的例子,让他们应用导数解决实际问题。

例如,求函数的最值、判断函数的增减性、求曲线的切线等。

通过实际问题的解决,学生可以更好地理解导数的应用。

五、导数的局限性尽管导数在解决实际问题中有很大的作用,但它也有一定的局限性。

在这一部分,我们可以讨论导数的局限性,并引导学生思考如何克服这些局限性。

例如,当函数不可导时,我们如何处理?当函数存在间断点时,我们如何求导?通过这种思考,学生可以更全面地理解导数的应用。

六、总结与展望在教学结束时,我们要对导数的应用进行总结,并展望其在更高级的数学学科中的应用。

例如,导数在微分学、积分学、微分方程等领域中都有重要的应用。

通过对导数的应用的总结和展望,学生可以更好地理解导数的重要性和广泛性。

以上是一份导数的应用教案的大致内容。

通过这份教案,我们可以帮助学生更好地理解导数的应用,并培养他们运用导数解决实际问题的能力。

同济大学高等数学《导数及其应用》word教案

同济大学高等数学《导数及其应用》word教案

同济大学高等数学《导数及其应用》w o r d教案(总35页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第 9 次课 2 学时第二章 导数与微分导数和微分是高等数学中的重要内容之一,也是今后讨论一切问题的基础。

导数数大体上变化多少,它从根本上反映了函数的变化情况。

本章主要学习和讨论导数和微分的概念以及它们的计算方法,以后将陆续的介绍它们的用途。

§2、1 导数的概念 一、 引例 1、切线问题:切线的概念在中学已见过。

从几何上看,在某点的切线就是一直线,它在该点和曲线相切。

准确地说,曲线在其上某点P 的切线是割线PQ 当Q 沿该曲线无限地接近于P 点的极限位置。

设曲线方程为)(x f y =,设P 点的坐标为),(00y x p ,动点Q 的坐标为),(y x Q ,要求出曲线在P 点的切线,只须求出P 点切线的斜率k 。

由上知,k 恰好为割线PQ 的斜率的极限。

我们不难求得PQ 的斜率为:0)()(x x x f x f --;因此,当Q P →时,其极限存在的话,其值就是k ,即00)()(limx x x f x f k x x --=→。

若设α为切线的倾角,则有αtan =k 。

2、速度问题:设在直线上运动的一质点的位置方程为)(t s s =(t 表示时刻),又设当t 为0t 时刻时,位置在)(0t s s =处,问:质点在0t t =时刻的瞬时速度是多少?为此,可取0t 近邻的时刻t ,0t t >,也可取0t t <,在由0t 到t 这一段时间内,质点的平均速度为00)()(t t t s t s --,显然当t 与0t 越近,用00)()(t t t s t s --代替0t 的瞬时速度的效果越佳,特别地,当0t t →时,00)()(t t t s t s --→某常值0v ,那么0v 必为0t 点的瞬时速度,此时,00)()(lim 0t t t s t s v t t --=→二、 导数的定义综合上两个问题,它们均归纳为这一极限00)()(limx x x f x f x x --→(其中0x x -为自变量x在0x 的增量,)()(0x f x f -为相应的因变量的增量),若该极限存在,它就是所要讲的导数。

导数及其应用教案

导数及其应用教案

导数及其应用教案教案标题:导数及其应用教案教案概述:本教案旨在引导学生全面了解导数的概念、性质以及其在实际问题中的应用。

通过理论讲解、示例分析和实践练习,培养学生对导数的理解和运用能力,提高他们解决实际问题的能力。

教学目标:1. 理解导数的定义和性质;2. 掌握常见函数的导数计算方法;3. 理解导数在函数图像、极值和曲线运动等方面的应用;4. 运用导数解决实际问题。

教学重点:1. 导数的定义和性质;2. 常见函数的导数计算方法;3. 导数在函数图像、极值和曲线运动等方面的应用。

教学难点:1. 导数在实际问题中的应用;2. 运用导数解决复杂实际问题。

教学准备:1. 教师准备:教学课件、示例题、练习题、实际问题案例等;2. 学生准备:教材、笔记本、计算器等。

教学过程:一、导入(5分钟)1. 引入导数的概念,与学生一起回顾函数的变化率和斜率的概念;2. 提问:你认为如何计算函数在某一点的变化率或斜率?二、理论讲解(15分钟)1. 讲解导数的定义和性质,包括函数在某一点的导数定义、导数的几何意义和导数的性质;2. 通过示例解释导数的计算方法,如常数函数、幂函数、指数函数、对数函数等的导数计算;3. 引导学生理解导数的物理意义,如速度、加速度等的概念。

三、示例分析(15分钟)1. 分析示例题,引导学生运用导数的定义和性质计算函数的导数;2. 分析函数图像的特征,如切线、极值点等,与导数的关系;3. 分析曲线运动的问题,如速度、加速度等与导数的关系。

四、实践练习(15分钟)1. 给学生提供一些练习题,涵盖导数的计算、函数图像分析和实际问题应用等方面;2. 引导学生独立解题,鼓励他们思考和探索;3. 辅导学生解决遇到的问题,及时给予指导和反馈。

五、实际问题应用(15分钟)1. 提供一些实际问题案例,如物体的运动问题、最优化问题等;2. 引导学生分析问题,建立数学模型,并运用导数解决问题;3. 鼓励学生展示解题过程和结果,进行讨论和交流。

导数在大学数学的应用教案

导数在大学数学的应用教案

教学目标:1. 理解导数的概念及其几何意义。

2. 掌握导数的基本运算法则,如导数的四则运算法则。

3. 学会运用导数解决实际问题,如函数的单调性、极值、最值等。

4. 培养学生的逻辑思维能力和解决问题的能力。

教学重点:1. 导数的概念和几何意义。

2. 导数的四则运算法则。

3. 运用导数解决实际问题。

教学难点:1. 导数的概念和几何意义的理解。

2. 导数的四则运算法则的运用。

3. 运用导数解决实际问题的能力。

教学准备:1. 教材、教学课件、多媒体设备。

2. 相关的数学实例和习题。

教学过程:一、导入1. 回顾导数的定义和几何意义。

2. 引入实际问题,如函数的单调性、极值、最值等,激发学生的学习兴趣。

二、导数的概念和几何意义1. 讲解导数的定义,强调自变量增量与函数增量之间的关系。

2. 通过实例展示导数的几何意义,如曲线在某一点的切线斜率。

3. 学生练习,巩固导数的概念和几何意义。

三、导数的四则运算法则1. 讲解导数的四则运算法则,包括和、差、积、商的求导法则。

2. 通过实例展示导数的四则运算法则的运用,如求多项式、指数函数、对数函数等的导数。

3. 学生练习,巩固导数的四则运算法则。

四、运用导数解决实际问题1. 讲解运用导数解决实际问题的步骤,如判断函数的单调性、求函数的极值和最值等。

2. 通过实例展示运用导数解决实际问题的过程,如求解最大值最小值问题、函数的极值问题等。

3. 学生练习,巩固运用导数解决实际问题的能力。

五、总结与反思1. 总结本节课的主要内容,强调导数在大学数学中的应用。

2. 引导学生反思本节课的学习过程,提出自己的疑问和收获。

教学评价:1. 课堂提问,检查学生对导数概念和几何意义的理解。

2. 课堂练习,检查学生对导数四则运算法则的掌握程度。

3. 课后作业,检查学生运用导数解决实际问题的能力。

教学反思:1. 在讲解导数的概念和几何意义时,注重结合实例,帮助学生理解。

2. 在讲解导数的四则运算法则时,强调学生的动手练习,提高学生的运算能力。

《导数及其应用》教案

《导数及其应用》教案

§3.1.1变化率问题教学目标:1.理解平均变化率的概念; 2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。

导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。

导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π= ⏹ 如果将半径r 表示为体积V 的函数,那么343)(πV V r = 分析: 343)(πV V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈-气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈-气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?1212)()(V V V r V r --问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态?思考计算:5.00≤≤t 和21≤≤t 的平均速度在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =, 所以)/(004965)0()4965(m s h h v =--=, 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (二)平均变化率概念:1.上述问题中的变化率可用式子1212)()(x x x f x f --表示,称为函数f (x )从x 1到x 2的平均变化率2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆) 3. 则平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 思考:观察函数f (x )的图象 平均变化率=∆∆x f三.典例分析例1.已,1(x B -∆+-解:)1()1(22x x y ∆+-+∆+--=∆+-,∴x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 例2. 求2x y =在0x x =附近的平均变化率。

导数及其应用教案

导数及其应用教案

导数及其应用一.三维目标:1.知识与技能:(1)熟记求导公式与法则、导数的几何意义;(2)能够熟练应用导数解决函数的单调性、函数的极值(最值)等问题。

2.过程与方法:通过2013-2014高考题或各地市模拟题复习旧知识,让学生通过概括、归纳等方法,形成系统的知识网络,熟练解决新问题。

3.情感、态度与价值观:让学生体会导数在解决函数问题中的重要应用,从而激发学生学习的积极性.二.教学重点与难点:1.重点:运用导数的几何意义解决与切线有关的问题;2.难点:应用导数解决函数的单调性、函数的极值(最值)等问题。

三.教学过程:(一).真题试做:1.(2014·高考广东卷)曲线y=x3-x+3在点(1,3)处的切线方程为_________________.2.(2014·云南模拟)函数()x xx fln=的图象在点()0,1处的切线方程为()A.01=--yx B.01=+-yx C.0=y D.1=y3.(2014·江西高考)若曲线y=x ln x上点P处的切线平行于直线 2x-y+1=0,则点P的坐标是________.(二).典例展示:1.考点一导数的几何意义函数f(x)在x0处的导数就是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P处的切线的斜率k=f′(x0),相应的切线方程为y-f(x0)=f′(x0)(x-x0).(1)根据曲线方程,求其在某点处的切线方程;(2)根据曲线的切线方程求曲线方程中的某一参数.可能出现在导数解答题的第一问,较基础.例1.(2014·高考广东卷)若曲线y=kx+ln x在点(1,k)处的切线平行于x 轴,则k=________.2. 考点二导数与函数的单调性(1)利用导数研究含参函数的单调性问题;(2)由函数的单调性求参数的范围.尤其是含参函数单调性的研究成为高考命题的热点.例2.(2014·高考山东卷改编)已知函数f(x)=ax2+x-ln x(a∈R).设a≥0,求f(x)的单调递增区间.3.考点三导数与函数的极值(最值)(1)由函数的解析式求极值或最值;(2)利用极(最)值求参数的值或范围.常与函数的单调性、方程、不等式及实际应用问题综合,形成知识的交汇问题.例3.(2013·高考福建卷节选)已知函数f(x)=x-1+ae x(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值;(三).课堂练习:强化训练1 (2014·云南省昆明市高三调研测试)若曲线f(x)=a cos x与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=( )A.-1 B.0C.1 D.2强化训练2 (2014·湖北省八校高三第二次联考)已知函数f(x)=(x+a)2-7b ln x+1,其中a,b是常数且a≠0.(1)若b=1时,f(x)在区间(1,+∞)上单调递增,求a的取值范围;(四).课堂小结:(五).课后作业:1.(2014·合肥市高三第二次教学质量检测)函数y=1x2+1在x=1处的切线方程是_______________.2.(2014·高考课标全国卷Ⅱ)已知函数f(x)=e x-ln(x+m).(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;四.教后反思:。

中学数学教案导数在函数中的应用

中学数学教案导数在函数中的应用

中学数学教案导数在函数中的应用一、教学目标:1. 理解导数的基本概念和性质。

2. 学会使用导数求解函数的极值、单调性、凹凸性等问题。

3. 能够运用导数解决实际问题,提高解决问题的能力。

二、教学内容:1. 导数的基本概念:导数的定义、导数的几何意义。

2. 导数的计算:基本导数公式、导数的四则运算、复合函数的导数。

3. 导数在函数中的应用:函数的单调性、极值、凹凸性、实际问题。

三、教学重点与难点:1. 重点:导数的基本概念、导数的计算方法、导数在函数中的应用。

2. 难点:导数的计算、函数的凹凸性判断、实际问题的解决。

四、教学方法:1. 采用启发式教学,引导学生主动探究导数的基本概念和性质。

2. 通过例题讲解,让学生掌握导数的计算方法。

3. 利用多媒体课件,直观展示函数的单调性、极值、凹凸性等概念。

4. 结合实际问题,培养学生的应用能力。

五、教学过程:1. 导入新课:回顾初中阶段学习的函数知识,引导学生思考函数的单调性、极值等问题。

2. 讲解导数的基本概念:介绍导数的定义,解释导数的几何意义。

3. 导数的计算:讲解基本导数公式,示范导数的四则运算,分析复合函数的导数。

4. 导数在函数中的应用:讲解函数的单调性、极值、凹凸性的判断方法,结合实际问题进行演示。

5. 课堂练习:布置相关练习题,让学生巩固所学知识。

7. 作业布置:布置课后作业,巩固导数的基本概念和计算方法。

六、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习兴趣和积极性。

2. 练习完成情况:检查学生课堂练习和课后作业的完成质量,评估学生对导数知识的掌握程度。

3. 实际问题解决:评估学生在解决实际问题时的应用能力,如能否灵活运用导数分析函数的性质。

七、教学拓展:1. 导数在高等数学中的应用:介绍导数在微积分、线性代数等高等数学领域的应用,激发学生的学习兴趣。

2. 导数与其他学科的联系:探讨导数在物理学、经济学等学科中的应用,拓宽学生的知识视野。

导数及其应用教案

导数及其应用教案

导数及其应用教案一、引言在高中数学课程中,导数是一个非常重要的概念。

本教案旨在介绍导数及其应用,帮助学生理解导数的概念和基本性质,并学习如何在实际问题中运用导数进行分析和计算。

二、导数的概念1. 导数的定义:导数表示函数在某一点上的变化率,即函数值随自变量变化而变化的快慢程度。

2. 导数的几何意义:导数等于函数曲线在某一点切线的斜率。

3. 导数的符号表示:通常用f'(x)或dy/dx表示函数f(x)的导数。

三、导数的基本性质1. 常数的导数为0:若f(x) = a(a为常数),则f'(x) = 0。

2. 幂函数的导数:若f(x) = x^n(n为常数),则f'(x) = nx^(n-1)。

3. 和差的导数:若f(x) = u(x) ± v(x),则f'(x) = u'(x) ± v'(x)。

4. 乘积的导数:若f(x) = u(x)v(x),则f'(x) = u'(x)v(x) + u(x)v'(x)。

5. 商的导数:若f(x) = u(x)/v(x),则f'(x) = [u'(x)v(x) - u(x)v'(x)] /v(x)^2。

四、导数的应用1. 切线和法线:导数可以用于求函数曲线在某一点的切线和法线方程。

2. 极值问题:导数可以帮助我们判断函数的极值,并求出极值点和极值。

3. 函数图像的画法:导数可以提供函数图像的一些特征,如拐点、极值、单调性等。

4. 物理问题中的应用:导数可以帮助解决一些物理问题,如速度、加速度等。

五、教学活动1. 导数的计算练习:通过给出具体函数的表达式,让学生计算其导数。

2. 导数在几何中的应用:通过给出函数的图像,让学生判断函数的增减性、拐点、极值等。

3. 实际问题解析:将一些实际问题转化为数学模型,并运用导数进行分析和求解。

六、教学反思通过本教案的讲解和练习,学生应能掌握导数的概念和基本性质,具备运用导数进行实际问题分析和计算的能力。

高中数学导数的应用教案

高中数学导数的应用教案

高中数学导数的应用教案
教学目标:学生能够理解导数的概念,掌握导数在实际问题中的应用,并能够运用导数解决相关问题。

教学重点和难点:掌握导数在实际问题中的应用。

教学准备:教师准备课件、实例题目,学生准备笔记本、笔。

教学过程:
一、导入(10分钟)
通过一个生活实例引入导数的概念,让学生初步了解导数在实际中的意义。

二、概念讲解(15分钟)
1. 温故导数的定义和性质;
2. 导数的应用领域;
3. 导数在实际问题中的意义和作用。

三、实例分析(20分钟)
教师通过实例问题,引导学生运用导数进行问题求解,如最值问题、速度问题等。

四、练习(15分钟)
让学生在课堂上进行练习题目,加深对导数应用的理解。

五、总结(10分钟)
通过讨论和总结,让学生掌握导数在实际问题中的应用方法,并复习导数的相关概念。

六、作业布置(5分钟)
布置相关作业,让学生巩固所学知识。

教学反思:
通过实例讲解和练习,能够有效帮助学生掌握导数在实际问题中的应用方法。

同时,通过讨论和总结,可以使学生更深入地理解导数的概念和性质。

导数及其应用教案

导数及其应用教案

导数及其应用教案一、导数的基本概念导数是微积分中的重要概念,用于描述函数在某一点上的变化率。

在计算机科学、物理学、经济学等领域,导数都具有广泛的应用。

在微积分中,函数f(x)在点x=a处的导数可以表示为f'(a),它描述了函数在该点附近的局部行为。

导数可以通过两种方式计算:几何定义和算术定义。

1. 几何定义:导数可以理解为函数图像在某点的斜率,表示为$f'(a)=\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$。

2. 算术定义:导数可以理解为函数在某点上的瞬时速度,表示为$f'(a)=\lim_{x\to a}\frac{f(x)-f(a)}{x-a}$。

二、导数的性质及计算方法导数具有以下几个重要的性质:1. 导数的可加性:若函数f(x)和g(x)都在某点上可导,那么它们的和f(x)+g(x)也在该点上可导,且导数满足$(f+g)'(a)=f'(a)+g'(a)$。

2. 导数的乘法规则:若函数f(x)和g(x)都在某点上可导,那么它们的乘积f(x)g(x)也在该点上可导,且导数满足$(fg)'(a)=f'(a)g(a)+f(a)g'(a)$。

3. 导数的链式法则:若函数y=f(g(x))可以分解为两个函数f(u)和g(x),且它们在某点上可导,那么复合函数y也在该点上可导,并且满足$\frac{{dy}}{{dx}}=\frac{{dy}}{{du}}\cdot \frac{{du}}{{dx}}$。

计算导数的方法主要有以下几种:1. 利用基本函数的导数公式进行求导。

2. 利用导数的性质,例如可加性、乘法规则和链式法则,对复杂函数进行求导。

3. 利用导数的几何定义,通过极限的方法进行求导。

三、导数的应用导数在实际问题中有着广泛的应用,以下介绍几个常见的应用领域:1. 最优化问题:导数可以帮助我们找到函数的最大值和最小值。

导数的应用教案

导数的应用教案

导数的应用教案一、教学目标1.了解导数的概念和性质;2.掌握导数的计算方法;3.理解导数在实际问题中的应用。

二、教学重点1.导数的概念和性质;2.导数的计算方法;3.导数在实际问题中的应用。

三、教学难点1.导数在实际问题中的应用;2.解决实际问题时如何运用导数。

四、教学内容1. 导数的概念和性质导数是微积分中的一个重要概念,它表示函数在某一点处的变化率。

导数的定义如下:f′(x)=limΔx→0f(x+Δx)−f(x)Δx其中,f′(x)表示函数f(x)在x处的导数。

导数的性质如下:1.导数存在的充分必要条件是函数在该点处连续;2.导数表示函数在该点处的变化率,即函数在该点处的切线斜率;3.导数的值可以为正、负或零,分别表示函数在该点处单调递增、单调递减或取极值。

2. 导数的计算方法导数的计算方法有以下几种:1.利用导数的定义进行计算;2.利用导数的四则运算法则进行计算;3.利用导数的链式法则进行计算;4.利用导数的隐函数求导法进行计算。

3. 导数在实际问题中的应用导数在实际问题中的应用非常广泛,下面介绍几个常见的应用:3.1 函数的极值函数的极值是指函数在某一点处取得最大值或最小值。

求函数的极值可以通过求导数来实现。

具体步骤如下:1.求出函数的导数;2.解方程f′(x)=0,求出导数为零的点;3.利用二阶导数判定法判断这些点是否为极值点。

3.2 函数的最大值和最小值函数的最大值和最小值是指函数在某一区间内取得的最大值或最小值。

求函数的最大值和最小值可以通过求导数和极值来实现。

具体步骤如下:1.求出函数在该区间内的导数;2.求出导数为零的点和导数不存在的点;3.将这些点代入原函数,求出函数在这些点处的函数值;4.比较这些函数值,得出函数的最大值和最小值。

3.3 函数的图像函数的图像可以通过求导数来确定函数的单调性和凸凹性。

具体步骤如下:1.求出函数的导数;2.判断导数的正负性,得出函数的单调性;3.求出导数的导数,即函数的二阶导数;4.判断二阶导数的正负性,得出函数的凸凹性。

高中数学教案新人教版选修

高中数学教案新人教版选修

高中数学全套教案新人教版选修一、第一章:导数及其应用1.1 导数的定义与计算学习目标:理解导数的定义,掌握基本的导数计算方法。

教学内容:引入导数的定义,讲解导数的计算规则,举例说明。

教学活动:讲解导数的定义,通过数学软件或板书演示导数的计算过程,学生跟随练习。

1.2 导数在函数中的应用学习目标:理解导数在函数中的应用,学会求函数的极值和单调性。

教学内容:讲解导数与函数的极值、单调性的关系,举例分析。

教学活动:通过例题讲解导数在函数中的应用,学生跟随练习,讨论解题方法。

二、第二章:积分及其应用2.1 积分的定义与计算学习目标:理解积分的定义,掌握基本的积分计算方法。

教学内容:引入积分的定义,讲解基本的积分计算规则,举例说明。

教学活动:讲解积分的定义,通过数学软件或板书演示积分的计算过程,学生跟随练习。

2.2 积分在几何中的应用学习目标:理解积分在几何中的应用,学会计算几何图形的面积和体积。

教学内容:讲解积分在几何中的应用,举例说明计算面积和体积的方法。

教学活动:通过例题讲解积分在几何中的应用,学生跟随练习,讨论解题方法。

三、第三章:概率与统计学习目标:理解概率的基本概念,学会计算事件的概率。

教学内容:讲解概率的基本定义,举例说明如何计算事件的概率。

教学活动:通过实例讲解概率的基本概念,学生跟随练习,讨论解题方法。

3.2 统计的基本概念学习目标:理解统计的基本概念,学会计算数据的均值、方差等统计量。

教学内容:讲解统计的基本定义,举例说明如何计算均值、方差等统计量。

教学活动:通过实例讲解统计的基本概念,学生跟随练习,讨论解题方法。

四、第四章:数列与级数4.1 数列的基本概念学习目标:理解数列的基本概念,学会计算数列的通项公式和求和公式。

教学内容:讲解数列的定义,举例说明如何求解数列的通项公式和求和公式。

教学活动:通过实例讲解数列的基本概念,学生跟随练习,讨论解题方法。

4.2 级数的基本概念学习目标:理解级数的基本概念,学会判断级数的收敛性。

导数在大学数学的应用教案

导数在大学数学的应用教案

教案:导数在大学数学中的应用课程目标:1. 理解导数的基本概念和性质;2. 掌握导数的计算方法;3. 了解导数在大学数学中的应用场景;4. 能够运用导数解决实际问题。

教学资源:1. 教材或大学数学课本;2. 课件或黑板;3. 练习题和案例题目。

教学内容:1. 导数的基本概念和性质;2. 导数的计算方法;3. 导数在大学数学中的应用场景;4. 实际问题的解决方法。

教学步骤:一、导入(5分钟)1. 引导学生回顾高中数学中导数的基本概念和性质,例如导数的定义、计算公式等;2. 提问学生是否了解导数在大学数学中的应用场景。

二、讲解导数的基本概念和性质(15分钟)1. 复习导数的定义:函数在某一点的导数是其在该点的切线斜率;2. 介绍导数的性质:导数反映了函数在某一点的增减性,导数的正负性可以判断函数的单调性;3. 讲解导数的计算方法:导数的计算公式、导数的四则运算法则等。

三、介绍导数在大学数学中的应用场景(15分钟)1. 微分方程:导数在微分方程中的应用,例如求解微分方程的解;2. 泰勒展开:导数在泰勒展开中的应用,例如求解函数的近似值;3. 极值问题:导数在求解函数极值中的应用,例如找到函数的最大值和最小值;4. 实际问题:导数在物理、经济、生物等领域的应用,例如速度、加速度的计算,成本、收益的最大化等。

四、案例分析(15分钟)1. 给出一个实际问题,例如求解物体在某一时刻的速度;2. 引导学生运用导数的概念和计算方法解决问题;3. 讨论解题过程中遇到的问题和解决方法。

五、练习和总结(10分钟)1. 给出一些练习题,让学生巩固导数的概念和计算方法;2. 总结本节课的重点内容,强调导数在大学数学中的应用;3. 鼓励学生在课后主动寻找实际问题,运用导数解决。

教学反思:本节课通过讲解导数的基本概念和性质,介绍导数在大学数学中的应用场景,以及案例分析,让学生掌握导数的基本知识和应用方法。

通过练习和总结,巩固学生的学习成果,培养学生的数学思维和解决问题的能力。

初中数学导数应用教案

初中数学导数应用教案

初中数学导数应用教案教学目标:1. 理解导数的定义和意义;2. 学会使用导数求解函数的极值和单调性;3. 能够应用导数解决实际问题。

教学重点:1. 导数的定义和意义;2. 导数的求解方法;3. 导数在实际问题中的应用。

教学难点:1. 导数的符号判断;2. 导数在实际问题中的应用。

教学准备:1. 教师准备PPT或黑板,展示导数的定义和求解方法;2. 准备一些实际问题,用于引导学生应用导数解决。

教学过程:一、导入(5分钟)1. 引导学生回顾函数的概念,复习函数图像;2. 提问:函数图像上某一点的切线斜率是什么?二、导数的定义和意义(15分钟)1. 介绍导数的定义:函数在某一点的导数是其图像在该点切线的斜率;2. 解释导数的意义:导数反映了函数在某一点的增减性,即函数值的变化率;3. 举例说明导数的符号判断:正导数表示函数单调递增,负导数表示函数单调递减,导数为0表示函数取得极值。

三、导数的求解方法(15分钟)1. 介绍导数的求解方法:导数的基本运算法则和导数的四则运算法则;2. 演示如何求解函数的导数:求解常见函数的导数,如幂函数、指数函数、对数函数等;3. 练习求解函数的导数:让学生独立求解一些给定函数的导数。

四、导数在实际问题中的应用(15分钟)1. 介绍实际问题中导数的应用:如最优化问题、运动物体的速度与加速度等;2. 演示如何应用导数解决实际问题:给出一个实际问题,引导学生运用导数求解;3. 练习应用导数解决实际问题:让学生独立解决一些给定的实际问题。

五、总结与反思(5分钟)1. 回顾本节课所学内容,让学生总结导数的定义、意义和求解方法;2. 提问:你们认为导数在数学和实际生活中有什么作用?教学延伸:1. 深入学习导数的应用:如曲线的凹凸性、拐点等;2. 学习多元函数的导数:函数的多个变量之间的导数关系。

教学反思:本节课通过导入、讲解、演示和练习等环节,让学生掌握了导数的定义、意义和求解方法,并能够应用导数解决实际问题。

导数的应用教案

导数的应用教案

导数的应用教案导数的应用教案一、教学目标:1.了解导数的概念及其意义;2.掌握导数的计算方法;3.能够应用导数解决实际问题。

二、教学内容:1.导数的概念及其意义;2.导数的计算方法;3.导数的应用实例。

三、教学过程:1.导入导数概念:教师通过提问方式引导学生回顾前面学习的知识,了解函数的极限与导数之间的关系,并引入导数的概念。

教师可以通过举例说明导数的概念,如汽车行驶距离与时间的关系等。

2.导数的计算方法:教师介绍导数的计算方法,包括极限定义、导数公式和导数性质等,并通过具体的例子进行讲解,如多项式函数的导数计算等。

3.导数的应用实例:教师通过实际问题让学生应用导数解决实际问题,如求函数的最值、判定函数的增减性、判定函数的凸凹性等。

教师可以先进行概念讲解,然后给出具体的应用实例,让学生进行分析和解答。

4.教学巩固与拓展:教师进行导数的应用拓展,让学生了解导数在其他领域的应用,如物理学中的速度与加速度、经济学中的边际产量与边际成本等,并进行讲解和讨论。

四、教学方法:1.导入法:通过导入问题或例子引发学生思考,激发学生学习兴趣。

2.讲解法:通过讲解导数的概念和计算方法,使学生掌握相关知识。

3.示范法:通过示范具体例题,帮助学生理解和掌握导数的应用方法。

4.讨论法:通过学生的互动讨论,加深对导数应用的理解和掌握。

五、教学资源:1.课件:包括导数的概念、计算方法及应用实例的课件。

2.习题集:提供导数的应用习题,帮助学生巩固和拓展知识。

六、教学评价:1.课堂练习:提供一定数量的导数应用题,检查学生的掌握情况。

2.作业:布置一定数量的导数应用题,供学生进行复习和巩固。

3.学生评价:通过学生对教学过程的反馈和教师的观察,对教学效果进行评价。

七、教学反思:通过开展导数的应用教学,学生能够进一步理解导数的概念、计算方法及其在实际问题中的应用,从而提高学生的数学思维能力和解决实际问题的能力。

同时,教师应根据学生的实际情况和兴趣,合理安排教学内容和方法,提高教学效果。

导数的应用教案

导数的应用教案

导数的应用教案教案1: 导数的应用——相关变化率教学目标:1. 理解导数的意义,能够解释导数代表相关变化率的含义。

2. 能够在实际问题中应用导数求解相关变化率。

3. 能够在实际问题中应用导数解决最优化问题。

教学准备:1. 教师准备相关变化率和最优化问题的实际应用例题,如某物体运动的速度和加速度问题,总收益和销售量的关系问题等。

2. 准备计算导数和求解最优化问题的手段和方法。

教学过程:引入:1. 导入相关变化率的概念,引导学生思考在我们日常生活中有哪些变量之间存在相关变化的情况,并了解相关变化率的重要性。

2. 引入导数的概念,解释导数代表相关变化率的含义,即导数表示因变量相对于自变量的变化速率。

探究:1. 通过实例和图形直观理解导数的概念,包括斜率、切线、变化率等。

2. 让学生进行实际问题的探究,如给定一个函数表达式,利用导数求解相关变化率的具体问题。

3. 引导学生通过具体实例,进一步理解导数的应用,如速度和加速度的关系问题。

拓展:1. 引导学生应用导数解决最优化问题,比如通过导数求解某函数的最大值、最小值等问题。

2. 引导学生思考一些实际问题,如制作某个产品的成本、利润与销售量的关系,利用导数求解最优销售量等实际问题。

实践:1. 组织学生分组完成一些实际问题的探究和求解,让学生练习运用导数求解实际问题。

2. 学生通过小组展示和分享,互相学习和交流,提高对导数应用的理解和掌握程度。

总结:1. 归纳和总结导数的应用领域,通过概念总结和案例分析,强化学生对导数应用的理解。

2. 提醒学生导数应用的实际意义和重要性,鼓励学生在日常生活中运用导数的方法和思想解决问题。

课后作业:1. 完成课后练习题,巩固导数应用的知识和技能。

2. 搜集相关应用实例,了解和探究更多的导数应用领域。

3. 思考导数应用的局限性和拓展方向,形成个人的思考和见解。

2024年教学能力大赛获奖作品教案

2024年教学能力大赛获奖作品教案

2024年教学能力大赛获奖作品教案一、教学内容本节课选自《新编高中数学》第十五章“导数及其应用”的第二节“导数的概念及计算”。

具体内容包括导数的定义、导数的运算法则、常见函数的导数计算。

二、教学目标1. 理解导数的定义,掌握导数的运算法则。

2. 能够熟练计算常见函数的导数。

3. 培养学生的抽象思维能力,提高解决问题的能力。

三、教学难点与重点教学难点:导数的定义及其内涵的理解,导数的运算法则。

教学重点:导数的计算方法,常见函数导数的求解。

四、教具与学具准备1. 教具:多媒体教学设备,PPT课件。

2. 学具:教材,《新编高中数学》第十五章,课堂练习本。

五、教学过程1. 实践情景引入(5分钟)通过展示物体运动的速度变化图,引导学生思考如何描述物体在某一时刻的瞬时速度。

2. 导数的定义(10分钟)3. 导数的运算法则(15分钟)介绍导数的运算法则,结合例题进行讲解。

4. 常见函数的导数计算(20分钟)讲解常见函数的导数计算方法,通过例题进行演示。

5. 随堂练习(15分钟)布置随堂练习,巩固所学知识。

六、板书设计1. 导数的定义2. 导数的运算法则3. 常见函数的导数计算4. 例题及解答七、作业设计1. 作业题目:a. f(x) = x^3b. f(x) = sin xc. f(x) = ln x(2)已知函数 f(x) = x^2 + 3x + 2,求 f(x) 在 x = 1 处的导数。

2. 答案:(1)a. f'(x) = 3x^2b. f'(x) = cos xc. f'(x) = 1/x(2)f'(x) = 2x + 3,在 x = 1 处,f'(1) = 5。

八、课后反思及拓展延伸1. 反思:本节课学生对导数的定义及运算法则掌握情况良好,但在计算常见函数导数时,部分学生存在困难,需要加强个别辅导。

2. 拓展延伸:引导学生思考导数在物理、几何等领域的应用,提高学生的抽象思维能力。

导数及其应用教案

导数及其应用教案

导数及其应用教案导数及其应用教案一、教学目标:1. 了解导数的定义和性质;2. 掌握导数的计算方法;3. 了解导数的应用领域及其作用。

二、教学内容:1. 导数的定义和性质;2. 导数的计算方法;3. 导数在函数图像研究中的应用;4. 导数在物理、经济等领域的应用。

三、教学过程:1. 导入导数的概念,引出导数的定义:导数是函数在某一点处的变化率,用极限表示。

给出导数的定义:若函数在点a处的导数存在,则称函数在点a处可导,记为f'(a)。

2. 介绍导数的计算方法:a. 用导数定义法计算:根据导数的定义,利用极限运算求出导数;b. 用基本导数公式计算:介绍常见函数的导数公式,如常数函数、幂函数、指数函数、对数函数等;c. 用导数运算法则计算:介绍导数的四则运算法则,包括常数倍、和差、积、商。

3. 导数在函数图像研究中的应用:a. 求函数的增减区间:根据函数的导数求出函数的增减性和极值点;b. 求函数的凹凸区间和拐点:根据函数的导数求出函数的凹凸性和拐点。

4. 导数在物理、经济等领域的应用:a. 导数表示速度和加速度:介绍物理学中速度和加速度的概念,并利用导数计算速度和加速度;b. 导数表示边际效应和弹性:介绍经济学中边际效应和弹性的概念,并利用导数计算边际效应和弹性。

5. 总结导数的应用:导数在数学、物理、经济等领域中都有广泛的应用,帮助我们研究函数的性质、分析物体的运动和评估经济的效益等。

四、教学方法:1. 讲授导数的定义和性质,引导学生思考导数的计算方法;2. 结合例题和实际问题,让学生动手计算导数和应用导数;3. 培养学生的分析和解决问题的能力,引导学生思考导数的实际应用。

五、教学评价:1. 练习题:布置一些导数计算和应用题目,要求学生独立完成;2. 口头回答问题:提问学生导数的定义和应用,检查学生对导数的理解程度;3. 个案分析:根据学生的学习情况,进行个别辅导和评价。

六、板书设计:导数的概念:导数是函数在某一点处的变化率,用极限表示。

导数的实际应用教案

导数的实际应用教案

导数的实际应用教案第一章:导数的基本概念1.1 引入导数的概念解释导数的定义:函数在某一点的导数是其在该点的切线斜率。

强调导数的重要性:导数可以帮助我们理解函数的增减性、极值等性质。

1.2 导数的计算方法介绍导数的计算规则:常数函数的导数为0,幂函数的导数等。

讲解导数的运算法则:导数的四则运算、复合函数的导数等。

1.3 导数的应用解释导数在实际应用中的意义:例如,求解物体的速度、加速度等问题。

举例说明导数在实际问题中的应用:如优化问题、物理运动问题等。

第二章:导数与函数的增减性2.1 引入增减性的概念解释函数的单调递增和单调递减:函数在某一段区间内,如果导数大于0,则函数单调递增;如果导数小于0,则函数单调递减。

2.2 利用导数判断函数的极值解释函数的极值概念:函数在某一点的导数为0,且在该点附近导数符号发生变化的点。

讲解如何利用导数判断函数的极值:通过导数的正负变化来确定函数的极大值和极小值。

2.3 应用实例分析举例说明如何利用导数判断函数的增减性和极值:如函数f(x) = x^3的增减性和极值分析。

第三章:导数与曲线的切线3.1 切线方程的导数表示解释切线的概念:函数在某一点的导数即为该点处的切线斜率。

推导切线方程的一般形式:y y1 = m(x x1),其中m为切线斜率,(x1, y1)为切点坐标。

3.2 利用导数求解曲线的切线讲解如何利用导数求解曲线的切线:求出切点坐标,求出切线的斜率,写出切线方程。

3.3 应用实例分析举例说明如何利用导数求解曲线的切线:如函数f(x) = x^2的切线求解。

第四章:导数与函数的单调性4.1 单调性的定义与性质解释函数的单调性:函数在某一段区间内,如果导数大于0,则函数单调递增;如果导数小于0,则函数单调递减。

强调单调性的重要性:单调性可以帮助我们理解函数的变化趋势。

4.2 利用导数判断函数的单调性讲解如何利用导数判断函数的单调性:通过导数的正负来确定函数的单调递增或递减区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:变化率问题教学目标:1.理解平均变化率的概念; 2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一、情景导入为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。

导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。

导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二、知识探究探究一:气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=⏹ 如果将半径r 表示为体积V 的函数,那么343)(πV V r = ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?1212)()(V V V r V r --探究二:高台跳水:在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态?思考计算:5.00≤≤t 和21≤≤t 的平均速度v在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =,所以)/(004965)0()4965(m s h h v =--=,虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态。

探究(三):平均变化率1、平均变化率概念:上述问题中的变化率可用式子1212)()(x x x f x f --表示,称为函数f (x )从x 1到x 2的平均变化率2.若设12x x x -=∆, 21()()y f x f x ∆=- (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆) 则平均变化率为y x ∆=∆x x f x x f x x x f x f ∆-∆+=--)()()()(111212 思考:观察函数f (x )的图象:平均变化率y ∆=12)()(x f x f -表示什么? 直线AB 的斜率3、函数f(x)从x 0到x 0+△x 的平均变化率怎么表示? 00()()f x x f x x+-V V三、典例分析例1.已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy. 解:)1()1(22x x y ∆+-+∆+--=∆+-,∴x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 例2、求2x y =在0x x =附近的平均变化率。

解:2020)(x x x y -∆+=∆,所以xx x x x y ∆-∆+=∆∆220)( x x xx x x x x ∆+=∆-∆+∆+=020202022所以2x y =在0x x =附近的平均变化率为x x ∆+02例3、求函数y =5x 2+6在区间[2,2+△x]内的平均变化率例4、某盏路灯距离地面高8m ,一个身 高1.7m 的人从路灯的正底下出发,以1.4m/s 的速度匀速沿某直线离开路灯,求人影长度的平均变化率. 解:略四.课堂练习1.质点运动规律为32+=t s ,则在时间)3,3(t ∆+中相应的平均速度为 . 2.物体按照s (t )=3t 2+t +4的规律作直线运动,求在4s 附近的平均变化率. 3.过曲线y =f (x )=x 3上两点P (1,1)和Q (1+Δx ,1+Δy )作曲线的割线,求出当Δx =0.1时割线的斜率. 五.回顾总结1.平均变化率的概念2.函数在某点处附近的平均变化率 六.布置作业 课后记:253t∆+课题:导数的概念教学目标:1.了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵; 3.会求函数在某点的导数教学重点:瞬时速度、瞬时变化率的概念、导数的概念; 教学难点:导数的概念. 教学过程: 一、复习引入 1、函数平均变化率:2121()()f x fx y x x x -∆=∆-11()()f x x f x x+∆-=∆ 2、函数平均变化率的几何意义:表示曲线上两点连线(割线)的斜率3、在高台跳水运动中,平均速度不能准确反映运动员在这段时间里运动状态.因为运动员从高台腾空到入水的过程中,不同时刻的速度是不同的。

二、知识探究1、引例:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题: ⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =,所以)/(004965)0()4965(m s h h v =--=, 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. 2、.瞬时速度:我们把物体在某一时刻的速度称为瞬时速度。

运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,2t =时的瞬时速度是多少?考察2t =附近的情况:hto①、思考:当t ∆趋近于0时,平均速度v 有什么样的变化趋势?②、结论:当t ∆趋近于0时,即无论t 从小于2的一边,还是从大于2的一边趋近于2时,平均速度v 都趋近于一个确定的值13.1-.③、从物理的角度看,时间t ∆间隔无限变小时,平均速度v 就无限趋近于史的瞬时速度,因此,运动员在2t =时的瞬时速度是13.1/m s - ④、为了表述方便,我们用0(2)(2)lim13.1t h t h t∆→+∆-=-∆表示“当2t =,t ∆趋近于0时,平均速度v 趋近于定值13.1-”⑤、小结:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。

3、导数的概念:函数y =f (x )在x =x 0处的瞬时变化率是:0000()()limlimx x f x x f x yxx ∆→∆→+∆-∆=∆∆ 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =,即 0000()()()limx f x x f x f x x∆→+∆-'=∆说明:(1)导数即为函数y =f (x )在x =x 0处的瞬时变化率(2)0x x x ∆=-,当0x ∆→时,0x x →,所以000()()()lim x f x f x f x x x ∆→-'=-4、一般地,求函数f(x)在x =x 0处的导数有哪几个基本步骤? 第一步,求函数值增量:△y =f(x +△x)-f(x 0); 第二步,求平均变化率:00()()f x x f x y x x+-=V V V V 第三步,取极限,求导数:00()lim x yf x x®¢=V V V5、常见结论:(1)0000()()lim()x x f x f x f x x x ®-¢=- (2) 0000()()lim()x f x x f x f x x®--¢=-V V V (3)0000(2)()lim2()x f x x f x f x x®+-¢=V V V (4)0000()()lim()x f x m x f x mf x n xn®+-¢=V V V 三、典例分析例1.(1)求函数y =3x 2在x =1处的导数. 分析:先求Δy =f (1+Δx )-f (1)=6Δx +(Δx )2再求6y x x∆=+∆∆再求0lim 6x f x ∆→∆=∆解:法一(略)法二:222211113313(1)|limlim lim3(1)611x x x x x x y x x x =→→→-⋅-'===+=-- (2)求函数f (x )=x x +-2在1x =-附近的平均变化率,并求出在该点处的导数.解:x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 200(1)(1)2(1)limlim (3)3x x y x x f x x x∆→∆→∆--+∆+-+∆-'-===-∆=∆∆ 例2.(课本例1)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:C o)为2()715(08)f x x x x =-+≤≤,计算第2h 时和第6h 时,原油温度的瞬时变化率,并说明它们的意义.解:在第2h 时和第6h 时,原油温度的瞬时变化率就是'(2)f 和'(6)f 根据导数定义,0(2)()f x f x fx x+∆-∆=∆∆ 22(2)7(2)15(27215)3x x x x+∆-+∆+--⨯+==∆-∆所以00(2)limlim(3)3x x ff x x ∆→∆→∆'==∆-=-∆同理可得:(6)5f '=在第2h 时和第6h 时,原油温度的瞬时变化率分别为3-和5,说明在2h 附近,原油温度大约以3/C h o 的速率下降,在第6h 附近,原油温度大约以5/C h o的速率上升.注:一般地,'0()f x 反映了原油温度在时刻0x 附近的变化情况.四.课堂练习1.质点运动规律为32+=t s ,求质点在3t =的瞬时速度为.2.求曲线y =f (x )=x 3在1x =时的导数.3.例2中,计算第3h 时和第5h 时,原油温度的瞬时变化率,并说明它们的意义. 五.回顾总结1.瞬时速度、瞬时变化率的概念 2.导数的概念 六.布置作业课题:导数的几何意义教学目标:1.了解平均变化率与割线斜率之间的关系;2.理解曲线的切线的概念;3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题;教学重点:曲线的切线的概念、切线的斜率、导数的几何意义;教学难点:导数的几何意义.教学过程:一.复习引入1、函数f(x)在x=x0处的导数的含义是什么?00000()()()lim limx xf x x f xyf xx x+-¢==V VVVV V2、求函数f(x)在x=x0处的导数有哪几个基本步骤?3、导数f′(x0)表示函数f(x)在x=x0处的瞬时变化率,这是导数的代数意义,导数是否具有某种几何意义,是一个需要探究的问题.二.知识探究探究一:导数的几何意义1、曲线的切线及切线的斜率:如图3.1-2,当(,())(1,2,3,4)n n nP x f x n 沿着曲线()f x趋近于点00(,())P x f x时,割线nPP的变化趋势是什么?我们发现,当点nP沿着曲线无限接近点P即Δx→0时,割线nPP趋近于确定的位置,这个确定位置的直线PT称为曲线在点P处的切线.问题:⑴割线nPP的斜率nk与切线PT的斜率k有什么关系?⑵切线PT的斜率k为多少?图3.1-2容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 沿着曲线无限接近点P 时,n k 无限趋近于切线PT 的斜率k ,即0000()()lim()x f x x f x k f x x∆→+∆-'==∆说明: ⑴、设切线的倾斜角为α,那么当Δx →0时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率. 这个概念:①提供了求曲线上某点切线的斜率的一种方法;②切线斜率的本质—函数在0x x =处的导数.⑵、曲线在某点处的切线:①、与该点的位置有关;②、要根据割线是否有极限位置来判断与求解。

相关文档
最新文档